1
|
Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum. Trop Med Infect Dis 2022; 8:tropicalmed8010018. [PMID: 36668925 PMCID: PMC9864225 DOI: 10.3390/tropicalmed8010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
High IL-10 levels are pivotal to parasite survival in visceral leishmaniasis (VL). Antigenic stimuli induce IL-10 expression and release of adenosine by CD39/CD73. Due their intrinsic ability to express IL-10 and produce adenosine from extracellular ATP, we evaluated the IL-10, CD39, and CD73 expression by Regulatory T cells (Treg) correlated with VL pathology. Using flow cytometry, Treg cells was analyzed in peripheral blood samples from VL patients (in the presence and absence of Leishmania infantum soluble antigen (SLA)) and healthy individuals (negative endemic control-NEC group), without any treatment. Additionally, IL-10 levels in leukocytes culture supernatant were measured in all groups by ELISA assay. VL patients presented more Treg frequency than NEC group, independently of stimulation. ELISA results demonstrated that SLA induced higher IL-10 expression in the VL group. However, the NEC group had a higher Treg IL-10+ compared to the VL group without stimulation and SLA restored the IL-10 in Treg. Additionally, an increase in Treg CD73+ in the VL group independently of stimuli compared to that in the NEC group was observed. We suggest that Treg are not the main source of IL-10, while the CD73 pathway may be an attempt to modulate the exacerbation of immune response in VL disease.
Collapse
|
2
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
3
|
Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. J Immunol Res 2019; 2019:4103819. [PMID: 30756088 PMCID: PMC6348913 DOI: 10.1155/2019/4103819] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Worldwide, an estimated 12 million people are infected with Leishmania spp. and an additional 350 million are at risk of infection. Leishmania are intracellular parasites that cause disease by suppressing macrophage microbicidal responses. Infection can remain asymptomatic or lead to a spectrum of diseases including cutaneous, mucocutaneous, and visceral leishmaniasis. Ultimately, the combination of both pathogen and host factors determines the outcome of infection. Leishmaniasis, as well as numerous other infectious diseases, exhibits sex-related differences that cannot be explained solely in terms of environmental exposure or healthcare access. Furthermore, transcriptomic evidence is revealing that biological sex is a variable impacting physiology, immune response, drug metabolism, and consequently, the progression of disease. Herein, we review the distribution, morbidity, and mortality among male and female leishmaniasis patients. Additionally, we discuss experimental findings and new avenues of research concerning sex-specific responses in cutaneous and visceral leishmaniasis. The limitations of current therapies and the emergence of drug-resistant parasites underscore the need for new treatments that could harness the host immune response. As such, understanding the mechanisms driving the differential immune response and disease outcome of males versus females is a necessary step in the development of safer and more effective treatments against leishmaniasis.
Collapse
|
4
|
Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, Croft SL, Kaye PM. Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Res 2019; 3:135. [PMID: 30542664 PMCID: PMC6248268 DOI: 10.12688/wellcomeopenres.14867.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human visceral leishmaniasis, caused by infection with Leishmania donovani or L. infantum, is a potentially fatal disease affecting 50,000-90,000 people yearly in 75 disease endemic countries, with more than 20,000 deaths reported. Experimental models of infection play a major role in understanding parasite biology, host-pathogen interaction, disease pathogenesis, and parasite transmission. In addition, they have an essential role in the identification and pre-clinical evaluation of new drugs and vaccines. However, our understanding of these models remains fragmentary. Although the immune response to Leishmania donovani infection in mice has been extensively characterized, transcriptomic analysis capturing the tissue-specific evolution of disease has yet to be reported. Methods: We provide an analysis of the transcriptome of spleen, liver and peripheral blood of BALB/c mice infected with L. donovani. Where possible, we compare our data in murine experimental visceral leishmaniasis with transcriptomic data in the public domain obtained from the study of L. donovani-infected hamsters and patients with human visceral leishmaniasis. Digitised whole slide images showing the histopathology in spleen and liver are made available via a dedicated website, www.leishpathnet.org. Results: Our analysis confirms marked tissue-specific alterations in the transcriptome of infected mice over time and identifies previously unrecognized parallels and differences between murine, hamster and human responses to infection. We show commonality of interferon-regulated genes whilst confirming a greater activation of type 2 immune pathways in infected hamsters compared to mice. Cytokine genes and genes encoding immune checkpoints were markedly tissue specific and dynamic in their expression, and pathways focused on non-immune cells reflected tissue specific immunopathology. Our data also addresses the value of measuring peripheral blood transcriptomics as a potential window into underlying systemic disease. Conclusions: Our transcriptomic data, coupled with histopathologic analysis of the tissue response, provide an additional resource to underpin future mechanistic studies and to guide clinical research.
Collapse
Affiliation(s)
- Helen Ashwin
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Karin Seifert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sarah Forrester
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Sandy MacDonald
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Dept of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Jeremy C Mottram
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| |
Collapse
|
5
|
A Comparative Evaluation of Regulatory T Cells Profile among Acute and Chronic Cutaneous Leishmaniasis Using Flow Cytometry. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:190-196. [PMID: 31543906 PMCID: PMC6737365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is described as a major health problem in many countries of the world. Regulatory T cells (Tregs) are characterized as one of immunologic indexes. One of the best methods to determine of Tregs percentage is flow cytometry. The aim of this study was determination of the role of Tregs profile among acute and chronic forms of human CL using flow cytometry analysis. METHODS This study was conducted on 24 patients referred to Laboratory of Leishmaniasis, Tehran University of Medical Sciences, Tehran, Iran with acute and 14 patients with chronic phases of CL as well as 15 healthy individuals as control group in 2015-2016. After microscopic examination, 2 ml of peripheral blood samples were collected for determining percentage of CD4 + CD25 + CD127 low Tregs by using flow cytometry method. RESULTS Using flow cytometry analysis, the average percentage of Tregs were calculated 5.73, 6.71 and 6.61 for acute, chronic and healthy individuals, respectively. With SPSS software and Scheffe multiple comparison tests, the differences within in these groups are statistically significant (P=0.04) and between the acute and chronic group, there was marginally significant with approximately 91% of confidence level (P=0.088). CONCLUSION Marginally differences were found significantly among averages of Regulatory T cells, acute and chronic phases of CL. Further comprehensive studies can be needed to verify the role of Tregs in both phases of CL cases.
Collapse
|
6
|
Khatoon N, Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK. Exploratory algorithm to devise multi-epitope subunit vaccine by investigating Leishmania donovani membrane proteins. J Biomol Struct Dyn 2018; 37:2381-2393. [DOI: 10.1080/07391102.2018.1484815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nazia Khatoon
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Muthukalingan Krishnan
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, IndiaCommunicated by Ramaswamy H. Sarma
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
7
|
Singh B, Fakiola M, Sudarshan M, Oommen J, Singh SS, Sundar S, Blackwell JM. HLA-DR Class II expression on myeloid and lymphoid cells in relation to HLA-DRB1 as a genetic risk factor for visceral leishmaniasis. Immunology 2018; 156:174-186. [PMID: 30403401 DOI: 10.1111/imm.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022] Open
Abstract
Genetic variation at HLA-DRB1 is a risk factor for visceral leishmaniasis (VL) caused by Leishmania donovani. The single nucleotide polymorphism rs9271252 upstream of the DRB1 gene provides a perfect tag for protective versus risk HLA-DRB1 four-digit alleles. In addition to the traditional role of the membrane-distal region of HLA class II molecules in antigen presentation and CD4 T-cell activation, the membrane-proximal region mediates 'non-traditional' multi-functional activation, differentiation, or death signals, including in DR-expressing T cells. To understand how HLA-DR contributes to disease pathogenesis, we examined expression at the protein level in circulating myeloid (CD14+ , CD16+ ) and lymphoid (CD4+ , CD8+ , CD19+ ) cells of VL patients (pre- and post-treatment) compared with endemic healthy controls (EHC). Although DR expression is reduced in circulating myeloid cells in active disease relative to EHC and post-treatment groups, expression is enhanced on CD4+ DR+ and CD8+ DR+ T cells consistent with T-cell activation. Cells of all myeloid and lymphoid populations from active cases were refractory to stimulation of DR expression with interferon-γ (IFN-γ). In contrast, all populations except CD19+ B cells from healthy blood bank controls showed enhanced DR expression following IFN-γ stimulation. The rs9271252 genotype did not impact significantly on IFN-γ-activated DR expression in myeloid, B or CD8+ T cells, but CD4+ T cells from healthy individuals homozygous for the risk allele were particularly refractory to activated DR expression. Further analysis of DR expression on subsets of CD4+ T cells regulating VL disease could uncover additional ways in which pleiotropy at HLA DRB1 contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Michaela Fakiola
- Department of Pathology, The University of Cambridge, Cambridge, UK
| | - Medhavi Sudarshan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Joyce Oommen
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Jenefer M Blackwell
- Department of Pathology, The University of Cambridge, Cambridge, UK.,Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| |
Collapse
|
8
|
Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, Croft SL, Kaye PM. Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Res 2018; 3:135. [PMID: 30542664 PMCID: PMC6248268 DOI: 10.12688/wellcomeopenres.14867.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 11/08/2023] Open
Abstract
Background: Human visceral leishmaniasis, caused by infection with Leishmania donovani or L. infantum, is a potentially fatal disease affecting 50,000-90,000 people yearly in 75 disease endemic countries, with more than 20,000 deaths reported. Experimental models of infection play a major role in understanding parasite biology, host-pathogen interaction, disease pathogenesis, and parasite transmission. In addition, they have an essential role in the identification and pre-clinical evaluation of new drugs and vaccines. However, our understanding of these models remains fragmentary. Although the immune response to Leishmania donovani infection in mice has been extensively characterized, transcriptomic analysis capturing the tissue-specific evolution of disease has yet to be reported. Methods: We provide an analysis of the transcriptome of spleen, liver and peripheral blood of BALB/c mice infected with L. donovani. Where possible, we compare our data in murine experimental visceral leishmaniasis with transcriptomic data in the public domain obtained from the study of L. donovani-infected hamsters and patients with human visceral leishmaniasis. Digitised whole slide images showing the histopathology in spleen and liver are made available via a dedicated website, www.leishpathnet.org. Results: Our analysis confirms marked tissue-specific alterations in the transcriptome of infected mice over time and identifies previously unrecognized parallels and differences between murine, hamster and human responses to infection. We show commonality of interferon-regulated genes whilst confirming a greater activation of type 2 immune pathways in infected hamsters compared to mice. Cytokine genes and genes encoding immune checkpoints were markedly tissue specific and dynamic in their expression, and pathways focused on non-immune cells reflected tissue specific immunopathology. Our data also addresses the value of measuring peripheral blood transcriptomics as a potential window into underlying systemic disease. Conclusions: Our transcriptomic data, coupled with histopathologic analysis of the tissue response, provide an additional resource to underpin future mechanistic studies and to guide clinical research.
Collapse
Affiliation(s)
- Helen Ashwin
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Karin Seifert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sarah Forrester
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Sandy MacDonald
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Dept of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Jeremy C Mottram
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| |
Collapse
|
9
|
Rodrigues-Neto JF, Monteiro GR, Keesen TSL, Lacerda HG, Carvalho EM, Jeronimo SMB. CD45RO+ T Cells and T Cell Activation in the Long-Lasting Immunity after Leishmania infantum Infection. Am J Trop Med Hyg 2017; 98:875-882. [PMID: 29280433 DOI: 10.4269/ajtmh.16-0747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Manifestations of Leishmania infantum infection range from asymptomatic to symptomatic visceral leishmaniasis (VL). People with symptomatic VL (sVL) have suppressed immune responses against Leishmania antigens that are reversed after clinical cure. The intradermal leishmanin skin test (LST) is negative during sVL, but it becomes positive after treatment. The aim of this study was to compare T cell responses in individuals with sVL, recovered VL (RecVL), and endemic controls. Endemic controls were household contacts of a VL case and they were grouped by their LST results, either positive (LST+) or negative (LST-). Mononuclear cells were studied ex vivo or after stimulation with soluble Leishmania antigens (SLA); cell surface markers and cytokines were determined. T cells, ex vivo, from individuals with sVL and from LST+ individuals presented a higher activation for CD4+ and CD8+ cells expressing CD69. However, lymphocytes from sVL stimulated with SLA had lower percentages of CD4+ and CD8+ cells expressing CD69 and CD8+ cells expressing CD25, with no release of interferon-γ or tumor necrosis factor. sVL subjects had lower percentage of memory cells (CD4+ CD45RO+), ex vivo, without SLA stimulation than RecVL, LST+, or LST- (P = 0.0022). However, individuals with sVL had fewer regulatory cells after SLA stimulation (CD4+ CD25HIGH, P = 0.04 and CD4+ FOXP3+, P = 0.02) than RecVL. The decrease in specific memory and activated CD4+ and CD8+ cells, as in response to Leishmania antigens, could explain, in part, the immune impairment during sVL. Finally, protective T cell responses are long lasting because both RecVL or LST+ individuals maintain a specific protective response to Leishmania years after the primary infection.
Collapse
Affiliation(s)
- João F Rodrigues-Neto
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Gloria R Monteiro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Tatjana S L Keesen
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Henio G Lacerda
- Department of Infectious Diseases, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.,Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Edgar M Carvalho
- Immunology Service, Federal University of Bahia, Salvador, Bahia, Brazil.,National Institute of Science and Technology of Tropical Diseases (INCT-DT/CNPq), Federal University of Bahia, Salvador, Bahia, Brazil
| | - Selma M B Jeronimo
- National Institute of Science and Technology of Tropical Diseases (INCT-DT/CNPq), Federal University of Bahia, Salvador, Bahia, Brazil.,Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
10
|
Banerjee A, Bhattacharya P, Dagur PK, Karmakar S, Ismail N, Joshi AB, Akue AD, KuKuruga M, McCoy JP, Dey R, Nakhasi HL. Live Attenuated Leishmania donovani Centrin Gene-Deleted Parasites Induce IL-23-Dependent IL-17-Protective Immune Response against Visceral Leishmaniasis in a Murine Model. THE JOURNAL OF IMMUNOLOGY 2017; 200:163-176. [PMID: 29187586 DOI: 10.4049/jimmunol.1700674] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.
Collapse
Affiliation(s)
- Antara Banerjee
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993.,Department of Zoology, Bangabasi College, Kolkata, 700016 West Bengal, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Adovi D Akue
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - John Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
11
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
12
|
Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 2017; 7:8285. [PMID: 28811600 PMCID: PMC5557753 DOI: 10.1038/s41598-017-08842-w] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is a fatal form of leishmaniasis which affects 70 countries, worldwide. Increasing drug resistance, HIV co-infection, and poor health system require operative vaccination strategy to control the VL transmission dynamics. Therefore, a holistic approach is needed to generate T and B memory cells to mediate long-term immunity against VL infection. Consequently, immunoinformatics approach was applied to design Leishmania secretory protein based multi-epitope subunit vaccine construct consisting of B and T cell epitopes. Further, the physiochemical characterization was performed to check the aliphatic index, theoretical PI, molecular weight, and thermostable nature of vaccine construct. The allergenicity and antigenicity were also predicted to ensure the safety and immunogenic behavior of final vaccine construct. Moreover, homology modeling, followed by molecular docking and molecular dynamics simulation study was also performed to evaluate the binding affinity and stability of receptor (TLR-4) and ligand (vaccine protein) complex. This study warrants the experimental validation to ensure the immunogenicity and safety profile of presented vaccine construct which may be further helpful to control VL infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Codon
- Computational Biology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine
- Leishmania/immunology
- Leishmaniasis/immunology
- Leishmaniasis/metabolism
- Leishmaniasis/prevention & control
- Leishmaniasis Vaccines/chemistry
- Leishmaniasis Vaccines/immunology
- Models, Molecular
- Protein Binding
- Protein Conformation
- Quantitative Structure-Activity Relationship
- T-Lymphocytes/immunology
- Toll-Like Receptor 4/chemistry
- Toll-Like Receptor 4/metabolism
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Nazia Khatoon
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
13
|
Moore JWJ, Beattie L, Osman M, Owens BMJ, Brown N, Dalton JE, Maroof A, Kaye PM. CD4+ Recent Thymic Emigrants Are Recruited into Granulomas during Leishmania donovani Infection but Have Limited Capacity for Cytokine Production. PLoS One 2016; 11:e0163604. [PMID: 27658046 PMCID: PMC5033337 DOI: 10.1371/journal.pone.0163604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Recent thymic emigrants (RTEs) represent a source of antigen-naïve T cells that enter the periphery throughout life. However, whether RTEs contribute to the control of chronic parasitic infection and how their potential might be harnessed by therapeutic intervention is currently unclear. Here, we show that CD4+ recent thymic emigrants emerging into the periphery of mice with ongoing Leishmania donovani infection undergo partial activation and are recruited to sites of granulomatous inflammation. However, CD4+ RTEs displayed severely restricted differentiation either into IFNγ+ or IFNγ+TNFα+ effectors, or into IL-10-producing regulatory T cells. Effector cell differentiation in the chronically infected host was not promoted by adoptive transfer of activated dendritic cells or by allowing extended periods of post-thymic differentiation in the periphery. Nevertheless, CD4+ RTEs from infected mice retained the capacity to transfer protection into lymphopenic RAG2-/- mice. Taken together, our data indicate that RTEs emerging into a chronically inflamed environment are not recruited into the effector pool, but retain the capacity for subsequent differentiation into host protective T cells when placed in a disease-free environment.
Collapse
Affiliation(s)
- John W. J. Moore
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Mohamed Osman
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Benjamin M. J. Owens
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Najmeeyah Brown
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Jane E. Dalton
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Asher Maroof
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology & Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Bhattacharya P, Ghosh S, Ejazi SA, Rahaman M, Pandey K, Ravi Das VN, Das P, Goswami RP, Saha B, Ali N. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+ T Cells Correlates with Parasite Load in Indian Kala-azar Patients Infected with Leishmania donovani. PLoS Negl Trop Dis 2016; 10:e0004422. [PMID: 26829554 PMCID: PMC4735109 DOI: 10.1371/journal.pntd.0004422] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown. Methodology/Principal Findings We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells. Conclusions/Significance Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease. Visceral leishmaniasis (VL) is one of the most widespread parasitic diseases worldwide and is caused by kinetoplastid protozoa of the Leishmania donovani complex. The disease begins with internalization of L. donovani parasites and their multiplication within host macrophages followed subsequently by immune suppression. However, the immunological factors responsible for disease progression and their association with parasite dynamics are not completely understood. Herein, we investigated the correlation of different immune components (cytokines and cellular subsets) with parasite load and their involvement in the course of VL. Our study revealed a significant positive correlation between parasite load and plasma as well as antigen specific levels of IL-10 and TGFβ. In addition to cytokines, cellular subsets could also contribute to disease pathogenesis through their regulatory mechanisms. Our results indicate different Treg cell markers (absolute numbers of CD4+CD25+ and CD4+CD25hi and percentages of CD4+CD25+FoxP3+) to be strongly correlated with parasite load. Exploring an association between these immunological correlates revealed Treg cells to be the source of these cytokines during VL. Therefore, this study points to a significant role of IL-10, TGFβ and Treg cells in parasite load and active VL, providing evidence which could be helpful in devising new immunotherapeutic strategies against this disease.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Smriti Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Mehebubar Rahaman
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Vidya Nand Ravi Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Rama Prosad Goswami
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
15
|
CD4+FOXP3+ cells produce IL-10 in the spleens of dogs with visceral leishmaniasis. Vet Parasitol 2014; 202:313-8. [PMID: 24703254 DOI: 10.1016/j.vetpar.2014.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022]
Abstract
Visceral Leishmaniasis (VL) is caused by intracellular parasites of the genus Leishmania that affect humans and several animal species. Dogs are one of the main urban reservoirs of the parasite and play a central role in the transmission cycle to humans via sandflies. Studies concerning the immune response in dogs with VL have demonstrated that protective immunity is associated with cellular immune response, while disease progression is associated with humoral response and IL-10 and TGF-β production. The study aimed to evaluate IL-10 and TGF-β production by regulatory T (Treg) cells in the blood and spleen of dogs naturally infected by Leishmania spp. and correlate this with parasite load. Five healthy dogs and 29 dogs with proven infection were selected for the study group. Real-time PCR was used to quantify parasite load and confirm infection by Leishmania spp. Treg cells producing IL-10 and TGF-β were quantified using flow cytometry. An increase in IL-10 production by Treg cells was verified in the spleen of dogs naturally infected by Leishmania spp. Concurrently, a decrease in the total number of T cells in these dogs was verified compared with healthy dogs. No association was determined between parasite load and the percentage of spleen Treg cells producing IL-10 and TGF-β. These findings suggest that Treg cells are an important source of IL-10 in the spleen, participating in immune response modulation, while the reduced percentage of these cells in infected dogs could be attributed to persistent immune activation.
Collapse
|
16
|
Cortese L, Annunziatella M, Palatucci AT, Rubino V, Piantedosi D, Di Loria A, Ruggiero G, Ciaramella P, Terrazzano G. Regulatory T cells, Cytotoxic T lymphocytes and a T(H)1 cytokine profile in dogs naturally infected by Leishmania infantum. Res Vet Sci 2013; 95:942-9. [PMID: 24079840 DOI: 10.1016/j.rvsc.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/22/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Canine leishmaniasis caused by the protozoan parasite Leishmania infantum is a chronic systemic disease endemic in Mediterranean basin. The aim of the study is to investigate the immune profile of dogs naturally infected by Leishmania infantum. In order to address such issue, CD4(+) and CD8(+) lymphocyte T cell subsets, peripheral CD4(+)CD3(+)Foxp3(+) (Treg) levels and the presence of pro-inflammatory T cells have been assessed, in 45 infected dogs and in 30 healthy animals, by using immunofluorescence and flow cytometry detection. Animals were categorised according to their clinical-pathological status and their antibody titer at diagnosis. Results showing a significant increase of CD8(+)CD3(+) T lymphocytes, a reduced percentage of the T regulatory CD4(+)CD3(+)Foxp3(+) subset and a significant increase of T(H)1 cells, characterise the infected dogs, regardless of their antibody titer or the occurrence of clinical symptomatic disease. These data may provide new insights into the pathogenesis of immune-mediated alterations associated with canine leishmaniasis.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, Division of Internal Medicine, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Carow B, Reuschl AK, Gavier-Widén D, Jenkins BJ, Ernst M, Yoshimura A, Chambers BJ, Rottenberg ME. Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog 2013; 9:e1003442. [PMID: 23853585 PMCID: PMC3701707 DOI: 10.1371/journal.ppat.1003442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3(fl/fl) LysM cre, Socs3(fl/fl) lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130(F/F) mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3(fl/fl) lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3(fl/fl) lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Kathrin Reuschl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dolores Gavier-Widén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences and National Veterinary Institute, Uppsala, Sweden
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Matthias Ernst
- Cell Signaling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Bhattacharya P, Ali N. Involvement and interactions of different immune cells and their cytokines in human visceral leishmaniasis. Rev Soc Bras Med Trop 2013; 46:128-34. [DOI: 10.1590/0037-8682-0022-2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/18/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Nahid Ali
- Indian Institute of Chemical Biology, India
| |
Collapse
|
19
|
Hartley MA, Kohl K, Ronet C, Fasel N. The therapeutic potential of immune cross-talk in leishmaniasis. Clin Microbiol Infect 2013; 19:119-30. [DOI: 10.1111/1469-0691.12095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
|
20
|
Soong L, Henard CA, Melby PC. Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 2012; 34:735-51. [PMID: 23053396 PMCID: PMC4111229 DOI: 10.1007/s00281-012-0350-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
The outcomes of Leishmania infection are determined by host immune and nutrition status, parasite species, and co-infection with other pathogens. While subclinical infection and self-healing cutaneous leishmaniasis (CL) are common, uncontrolled parasite replication can lead to non-healing local lesions or visceral leishmaniasis (VL). It is known that infection control requires Th1-differentiation cytokines (IL-12, IL-18, and IL-27) and Th1 cell and macrophage activation. However, there is no generalized consensus for the mechanisms of host susceptibility. The recent studies on regulatory T cells and IL-17-producing cells help explain the effector T cell responses that occur independently of the known Th1/Th2 cell signaling pathways. This review focuses on the immunopathogenesis of non-healing American CL and progressive VL. We summarize recent evidence from human and animal studies that reveals the mechanisms of dysregulated, hyper-responses to Leishmania braziliensis, as well as the presence of disease-promoting or the absence of protective responses to Leishmania amazonensis and Leishmania donovani. We highlight immune-mediated parasite growth and immunopathogenesis, with an emphasis on the putative roles of IL-17 and its related cytokines as well as arginase. A better understanding of the quality and regulation of innate immunity and T cell responses triggered by Leishmania will aid in the rational control of pathology and the infection.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
21
|
Abstract
Visceral leishmaniasis (VL), commonly known as kala-azar, is caused by Leishmania donovani and Leishmania infantum (Leishmania chagasi in the Americas). These Leishmania species infect macrophages throughout the viscera, and parasites are typically found in the spleen, liver, and bone marrow. Patients with active disease typically exhibit marked immunosuppression, lack reactivity to the Leishmania skin test (LST), a delayed type hypersensitivity test, and their peripheral blood mononuclear cells (PBMC) fail to respond when stimulated with leishmanial antigens in vitro. However, most people infected with visceralizing species of Leishmania never develop disease. Understanding immune failure and the underlying immune mechanism that lead to disease as well as control of infection are key questions for research in this field. In this review, we discuss immunological events described in human and experimental VL and how these can affect the outcome of infection.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | | |
Collapse
|
22
|
Palermo ML, Pagliari C, Trindade MAB, Yamashitafuji TM, Duarte AJS, Cacere CR, Benard G. Increased expression of regulatory T cells and down-regulatory molecules in lepromatous leprosy. Am J Trop Med Hyg 2012; 86:878-83. [PMID: 22556091 PMCID: PMC3335697 DOI: 10.4269/ajtmh.2012.12-0088] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 12/19/2022] Open
Abstract
T regulatory cells (Tregs) play an important role in the mechanism of host's failure to control pathogen dissemination in severe forms of different chronic granulomatous diseases, but their role in leprosy has not yet been elucidated; 28 newly diagnosed patients (16 patients with lepromatous leprosy and 12 patients with tuberculoid leprosy) and 6 healthy Mycobacterium leprae-exposed individuals (contacts) were studied. Tregs were quantified by flow cytometry (CD4+ CD25+ Foxp3+) in peripheral blood mononuclear cells stimulated in vitro with a M. leprae antigenic preparation and phytohemagglutinin as well as in skin lesions by immunohistochemistry. The lymphoproliferative (LPR), interleukin-10 (IL-10), and interferon-γ (IFN-γ) responses of the in vitro-stimulated peripheral blood mononuclear cells and the in situ expression of IL-10, transforming growth factor-β (TGF-β), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) were also determined. We show that M. leprae antigens induced significantly lower LPR but significantly higher Treg numbers in lepromatous than tuberculoid patients and contacts. Mitogen-induced LPR and Treg frequencies were not significantly different among the three groups. Tregs were also more frequent in situ in lepromatous patients, and this finding was paralleled by increased expression of the antiinflammatory molecules IL-10 and CTLA-4 but not TGF-β. In lepromatous patients, Tregs were intermingled with vacuolized hystiocyte infiltrates all over the lesion, whereas in tuberculoid patients, Tregs were rare. Our results suggest that Tregs are present in increased numbers, and they may have a pathogenic role in leprosy patients harboring uncontrolled bacillary multiplication but not in those individuals capable of limiting M. leprae growth.
Collapse
Affiliation(s)
- Maria L Palermo
- Laboratory of Medical Investigation Unit 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
23
|
Regulatory T cells suppress T cell activation at the pathologic site of human visceral leishmaniasis. PLoS One 2012; 7:e31551. [PMID: 22347492 PMCID: PMC3275558 DOI: 10.1371/journal.pone.0031551] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022] Open
Abstract
Suppression of T cell response is thought to be involved in the pathogenesis of visceral leishmaniasis (VL). Regulatory T cell (Treg) mediated immune-suppression is reported in animal models of Leishmania infection. However, their precise role among human patients still requires pathologic validation. The present study is aimed at understanding the frequency dynamics and function of Treg cells in the blood and bone marrow (BM) of VL patients. The study included 42 parasitologically confirmed patients, 17 healthy contact and 9 normal bone marrow specimens (NBM). We show i) the selective accumulation of Treg cells at one of the disease inflicted site(s), the BM, ii) their in vitro expansion in response to LD antigen and iii) persistence after successful chemotherapy. Results indicate that the Treg cells isolated from BM produces IL-10 and may inhibit T cell activation in IL-10 dependent manner. Moreover, we observed significantly higher levels of IL-10 among drug unresponsive patients, suggesting their critical role in suppression of immunity among VL patients. Our results suggest that IL-10 plays an important role in suppression of host immunity in human VL and possibly determines the efficacy of chemotherapy.
Collapse
|
24
|
Velavan TP, Ojurongbe O. Regulatory T cells and parasites. J Biomed Biotechnol 2011; 2011:520940. [PMID: 22262943 PMCID: PMC3255565 DOI: 10.1155/2011/520940] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 10/04/2011] [Indexed: 01/10/2023] Open
Abstract
Human host encounters a wide array of parasites; however, the crucial aspect is the failure of the host immune system to clear these parasites despite antigen recognition. In the recent past, a new immunological concept has emerged, which provides a framework to better understand several aspects of host susceptibility to parasitic infection. It is widely believed that parasites are able to modulate the magnitude of effector responses by inducing regulatory T cell (Tregs) population and several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during parasite infection. This review discusses the several mechanism of Treg-mediated immunosuppression in the human host and focuses on the functional role of Tregs and regulatory gene polymorphisms in infectious diseases.
Collapse
Affiliation(s)
- T P Velavan
- Institute for Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany.
| | | |
Collapse
|
25
|
Zhao ZG, Niu CY, Zhang YP, Han R, Hou YL, Wang XR, Jiang H, Du ST, Lu B. The Mechanism of Spleen Injury in Rabbits with Acute Renal Failure. Ren Fail 2011; 33:418-25. [DOI: 10.3109/0886022x.2011.568145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|