1
|
Babbitt CR, Laidemitt MR, Mutuku MW, Oraro PO, Brant SV, Mkoji GM, Loker ES. Bulinus snails in the Lake Victoria Basin in Kenya: Systematics and their role as hosts for schistosomes. PLoS Negl Trop Dis 2023; 17:e0010752. [PMID: 36763676 PMCID: PMC9949660 DOI: 10.1371/journal.pntd.0010752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/23/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The planorbid gastropod genus Bulinus consists of 38 species that vary in their ability to vector Schistosoma haematobium (the causative agent of human urogenital schistosomiasis), other Schistosoma species, and non-schistosome trematodes. Relying on sequence-based identifications of bulinids (partial cox1 and 16S) and Schistosoma (cox1 and ITS), we examined Bulinus species in the Lake Victoria Basin in Kenya for naturally acquired infections with Schistosoma species. We collected 6,133 bulinids from 11 sites between 2014-2021, 226 (3.7%) of which harbored Schistosoma infections. We found 4 Bulinus taxa from Lake Victoria (B. truncatus, B. tropicus, B. ugandae, and B. cf. transversalis), and an additional 4 from other habitats (B. globosus, B. productus, B. forskalii, and B. scalaris). S. haematobium infections were found in B. globosus and B. productus (with infections in the former predominating) whereas S. bovis infections were identified in B. globosus, B. productus, B. forskalii, and B. ugandae. No nuclear/mitochondrial discordance potentially indicative of S. haematobium/S. bovis hybridization was detected. We highlight the presence of Bulinus ugandae as a distinct lake-dwelling taxon closely related to B. globosus yet, unlike all other members of the B. africanus species group, is likely not a vector for S. haematobium, though it does exhibit susceptibility to S. bovis. Other lake-dwelling bulinids also lacked S. haematobium infections, supporting the possibility that they all lack compatibility with local S. haematobium, thereby preventing widespread transmission of urogenital schistosomiasis in the lake's waters. We support B. productus as a distinct species from B. nasutus, B. scalaris as distinct from B. forskalii, and add further evidence for a B. globosus species complex with three lineages represented in Kenya alone. This study serves as an essential prelude for investigating why these patterns in compatibility exist and whether the underlying biological mechanisms may be exploited for the purpose of limiting schistosome transmission.
Collapse
Affiliation(s)
- Caitlin R. Babbitt
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R. Laidemitt
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin W. Mutuku
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Polycup O. Oraro
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gerald M. Mkoji
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
3
|
De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J, Vara-Perez M, Ali L, Mampay M, Deneyer L, Miranda JF, Cai R, Bouwens L, De Bundel D, Caljon G, Stijlemans B, Massie A, Van Ginderachter JA, Vandenbroucke RE, Movahedi K. Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 2022; 55:2085-2102.e9. [PMID: 36228615 DOI: 10.1016/j.immuni.2022.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.
Collapse
Affiliation(s)
- Karen De Vlaminck
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannah Van Hove
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Monica Vara-Perez
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Myrthe Mampay
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Juliana Fabiani Miranda
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ruiyao Cai
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Benoît Stijlemans
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Laboratory, VIB Center for Inflammation Research, Ghent, Belgium; Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
5
|
Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathog 2021; 17:e1010060. [PMID: 34780575 PMCID: PMC8629383 DOI: 10.1371/journal.ppat.1010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/29/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Human African Trypanosomiasis (HAT) has been responsible for several deadly epidemics throughout the 20th century, but a renewed commitment to disease control has significantly reduced new cases and motivated a target for the elimination of Trypanosoma brucei gambiense-HAT by 2030. However, the recent identification of latent human infections, and the detection of trypanosomes in extravascular tissues hidden from current diagnostic tools, such as the skin, has added new complexity to identifying infected individuals. New and improved diagnostic tests to detect Trypanosoma brucei infection by interrogating the skin are therefore needed. Recent advances have improved the cost, sensitivity and portability of Raman spectroscopy technology for non-invasive medical diagnostics, making it an attractive tool for gambiense-HAT detection. The aim of this work was to assess and develop a new non-invasive diagnostic method for T. brucei through Raman spectroscopy of the skin. Infections were performed in an established murine disease model using the animal-infective Trypanosoma brucei brucei subspecies. The skin of infected and matched control mice was scrutinized ex vivo using a confocal Raman microscope with 532 nm excitation and in situ at 785 nm excitation with a portable field-compatible instrument. Spectral evaluation and Principal Component Analysis confirmed discrimination of T. brucei-infected from uninfected tissue, and a characterisation of biochemical changes in lipids and proteins in parasite-infected skin indicated by prominent Raman peak intensities was performed. This study is the first to demonstrate the application of Raman spectroscopy for the detection of T. brucei by targeting the skin of the host. The technique has significant potential to discriminate between infected and non-infected tissue and could represent a unique, non-invasive diagnostic tool in the goal for elimination of gambiense-HAT as well as for Animal African Trypanosomiasis (AAT). Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a disease caused by the parasite Trypanosoma brucei and has been responsible for the death of millions of people across Africa in the 20th century. It is also a major economic burden for countries endemic for trypanosomiasis, affecting livestock productivity in rural areas (Animal African Trypanosomiasis). A long-term international collaboration with the help of the World Health Organisation has resulted in the rate of human infection decreasing to less than 1000 new cases per year. However, the human disease continues to spread within remote villages. Current diagnosis is based on the detection of parasites in blood and serum samples, but this is challenging during chronic human infections with low or non-detectable parasitaemia. However, the recent discovery of extravascular skin-dwelling trypanosomes indicates that a reservoir of infection remains undetected, threatening the effort to eliminate the disease. In this study we have targeted the skin as a site for diagnosis using Raman spectroscopy and demonstrate that this method showed great promise in the laboratory, laying the foundation for field studies to examine its potential to strengthen current diagnostic strategies for detecting HAT cases.
Collapse
|
6
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
7
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Ndung’u K, Murilla GA, Thuita JK, Ngae GN, Auma JE, Gitonga PK, Thungu DK, Kurgat RK, Chemuliti JK, Mdachi RE. Differential virulence of Trypanosoma brucei rhodesiense isolates does not influence the outcome of treatment with anti-trypanosomal drugs in the mouse model. PLoS One 2020; 15:e0229060. [PMID: 33151938 PMCID: PMC7643984 DOI: 10.1371/journal.pone.0229060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/04/2020] [Indexed: 11/19/2022] Open
Abstract
We assessed the virulence and anti-trypanosomal drug sensitivity patterns of Trypanosoma brucei rhodesiense (Tbr) isolates in the Kenya Agricultural and Livestock Research Organization-Biotechnology Research Institute (KALRO-BioRI) cryobank. Specifically, the study focused on Tbr clones originally isolated from the western Kenya/eastern Uganda focus of human African Trypanosomiasis (HAT). Twelve (12) Tbr clones were assessed for virulence using groups(n = 10) of Swiss White Mice monitored for 60 days post infection (dpi). Based on survival time, four classes of virulence were identified: (a) very-acute: 0-15, (b) acute: 16-30, (c) sub-acute: 31-45 and (d) chronic: 46-60 dpi. Other virulence biomarkers identified included: pre-patent period (pp), parasitaemia progression, packed cell volume (PCV) and body weight changes. The test Tbr clones together with KALRO-BioRi reference drug-resistant and drug sensitive isolates were then tested for sensitivity to melarsoprol (mel B), pentamidine, diminazene aceturate and suramin, using mice groups (n = 5) treated with single doses of each drug at 24 hours post infection. Our results showed that the clones were distributed among four classes of virulence as follows: 3/12 (very-acute), 3/12 (acute), 2/12 (sub-acute) and 4/12 (chronic) isolates. Differences in survivorship, parasitaemia progression and PCV were significant (P<0.001) and correlated. The isolate considered to be drug resistant at KALRO-BioRI, KETRI 2538, was confirmed to be resistant to melarsoprol, pentamidine and diminazene aceturate but it was not resistant to suramin. A cure rate of at least 80% was achieved for all test isolates with melarsoprol (1mg/Kg and 20 mg/kg), pentamidine (5 and 20 mg/kg), diminazene aceturate (5 mg/kg) and suramin (5 mg/kg) indicating that the isolates were not resistant to any of the drugs despite the differences in virulence. This study provides evidence of variations in virulence of Tbr clones from a single HAT focus and confirms that this variations is not a significant determinant of isolate sensitivity to anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Kariuki Ndung’u
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- * E-mail:
| | - Grace Adira Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- KAG EAST University, Nairobi, Kenya
| | - John Kibuthu Thuita
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Meru University of Science and Technology, Meru, Kenya
| | - Geoffrey Njuguna Ngae
- Food Crops Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Joanna Eseri Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Purity Kaari Gitonga
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Daniel Kahiga Thungu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Kiptum Kurgat
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Judith Kusimba Chemuliti
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Raymond Ellie Mdachi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| |
Collapse
|
9
|
Evaluation of the Immunoprotective Potential of Recombinant Paraflagellar Rod Proteins of Trypanosoma evansi in Mice. Vaccines (Basel) 2020; 8:vaccines8010084. [PMID: 32059486 PMCID: PMC7157580 DOI: 10.3390/vaccines8010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Trypanosomosis, caused by Trypanosoma evansi, is an economically significant disease of livestock. Systematic antigenic variation by the parasite has undermined prospects for the development of a protective vaccine that targets the immunodominant surface antigens, encouraging exploration of alternatives. The paraflagellar rod (PFR), constituent proteins of the flagellum, are prominent non-variable vaccine candidates for T. evansi owing to their strategic location. Two major PFR constituent proteins, PFR1 (1770bp) and PFR2 (1800bp), were expressed using Escherichia coli. Swiss albino mice were immunized with the purified recombinant TePFR1 (89KDa) and TePFR2 (88KDa) proteins, as well as with the mix of the combined proteins at equimolar concentrations, and subsequently challenged with virulent T. evansi. The PFR-specific humoral response was assessed by ELISA. Cytometric bead-based assay was used to measure the cytokine response and flow cytometry for quantification of the cytokines. The recombinant TePFR proteins induced specific humoral responses in mice, including IgG1 followed by IgG2a and IgG2b. A balanced cytokine response induced by rTePFR 1 and 2 protein vaccination associated with extended survival and improved control of parasitemia following lethal challenge. The observation confirms the immunoprophylactic potential of the covert antigens of T. evansi.
Collapse
|
10
|
Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. Methods Mol Biol 2020; 2116:721-738. [PMID: 32221951 DOI: 10.1007/978-1-0716-0294-2_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, trypanosomosis control in humans and animals is achieved by a combination of parasitological screening and treatment. While this approach has successfully brought down the number of reported T. b. gambiense Human African Trypanosomosis (HAT) cases, the method does not offer a sustainable solution for animal trypanosomosis (AT). The main reasons for this are (i) the worldwide distribution of AT, (ii) the wide range of insect vectors involved in transmission of AT, and (iii) the existence of a wildlife parasite reservoir that can serve as a source for livestock reinfection. Hence, in order to control livestock trypanosomosis the only viable long-term solution is an effective antitrypanosome vaccination strategy. Over the last decades, multiple vaccine approaches have been proposed. Despite repeated reports of promising experimental approaches, none of those made it to a field applicable vaccine format. This failure can in part be attributed to flaws in the experimental design that favor a positive laboratory result. This chapter provides a vaccine protocol that should allow for a proper outcome prediction in experimental anti-AT vaccine approaches.
Collapse
|
11
|
Ndungu K, Thungu D, Wamwiri F, Mireji P, Ngae G, Gitonga P, Mulinge J, Auma J, Thuita J. Route of inoculation influences Trypanosoma congolense and Trypanosoma brucei brucei virulence in Swiss white mice. PLoS One 2019; 14:e0218441. [PMID: 31220132 PMCID: PMC6586304 DOI: 10.1371/journal.pone.0218441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/03/2019] [Indexed: 11/28/2022] Open
Abstract
Experiments on infections caused by trypanosomes are widely performed in Swiss white mice through various inoculation routes. To better understand the effect of route of trypanosome inoculation on disease outcomes in this model, we characterised the virulence of two isolates, Trypanosoma brucei KETRI 2710 and T. congolense KETRI 2765 in Swiss white mice. For each of the isolates, five routes of parasite inoculation, namely intraperitoneal (IP), subcutaneous (SC), intramuscular (IM) intradermal (ID) and intravenous (IV) were compared using groups (n = 6) of mice, with each mouse receiving 1x104 trypanosomes. We subsequently assessed impact of the routes on disease indices that included pre-patent period (PP), parasitaemia levels, Packed Cell Volume (PCV), bodyweight changes and survival time. Pre-patent period for IP inoculated mice was a mean ± SE of 3.8 ± 0.2 and 6.5 ± 0.0 for the T brucei and T. congolense isolates respectively; the PP for mice groups inoculated using other routes were not significantly different(p> 0.05) irrespective of route of inoculation and species of trypanosomes. With ID and IP routes, parasitaemia was significantly higher in T. brucei and significantly lower in T. congolense infected mice and the progression to peak parasitaemia routes showed no significant different between the routes of either species of trypanosome. The IM and ID routes in T. congolense inoculations, and IP and IV in T. b. brucei induced the fastest and slowest parasitaemia progressions respectively. There were significant differences in rates of reduction of PCV with time post infection in mice infected by the two species and which was more pronounced in sc and ip injected mice. No significant differences in mice body weight changes and survivorship was observed between the routes of inoculation. Inoculation route therefore appears to be a critical determinant of pathogenicity of Trypanosoma congolense and Trypanosoma brucei brucei in murine mouse model of African trypanosomiasis.
Collapse
Affiliation(s)
- Kariuki Ndungu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Daniel Thungu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Paul Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research—Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Geoffrey Ngae
- Food Crops Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Purity Gitonga
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Joanna Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - John Thuita
- Meru University of Science and Technology, Meru, Kenya
| |
Collapse
|
12
|
Djokic V, Primus S, Akoolo L, Chakraborti M, Parveen N. Age-Related Differential Stimulation of Immune Response by Babesia microti and Borrelia burgdorferi During Acute Phase of Infection Affects Disease Severity. Front Immunol 2018; 9:2891. [PMID: 30619263 PMCID: PMC6300717 DOI: 10.3389/fimmu.2018.02891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease with 300,000 cases estimated by CDC every year while ~2,000 cases of babesiosis occur per year in the United States. Simultaneous infection with Babesia microti and Borrelia burgdorferi are now the most common tick-transmitted coinfections in the U.S.A., and they are a serious health problem because coinfected patients show more intense and persisting disease symptoms. B. burgdorferi is an extracellular spirochete responsible for systemic Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Immune status and spleen health are important for resolution of babesiosis, which is more severe and even fatal in the elderly and splenectomized patients. Therefore, we investigated the effect of each pathogen on host immune response and consequently on severity of disease manifestations in both young, and 30 weeks old C3H mice. At the acute stage of infection, Th1 polarization in young mice spleen was associated with increased IFN-γ and TNF-α producing T cells and a high Tregs/Th17 ratio. Together, these changes could help in the resolution of both infections in young mice and also prevent fatality by B. microti infection as observed with WA-1 strain of Babesia. In older mature mice, Th2 polarization at acute phase of B. burgdorferi infection could play a more effective role in preventing Lyme disease symptoms. As a result, enhanced B. burgdorferi survival and increased tissue colonization results in severe Lyme arthritis only in young coinfected mice. At 3 weeks post-infection, diminished pathogen-specific antibody production in coinfected young, but not older mice, as compared to mice infected with each pathogen individually may also contribute to increased inflammation observed due to B. burgdorferi infection, thus causing persistent Lyme disease observed in coinfected mice and reported in patients. Thus, higher combined proinflammatory response to B. burgdorferi due to Th1 and Th17 cells likely reduced B. microti parasitemia significantly only in young mice later in infection, while the presence of B. microti reduced humoral immunity later in infection and enhanced tissue colonization by Lyme spirochetes in these mice even at the acute stage, thereby increasing inflammatory arthritis.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Monideep Chakraborti
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
13
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
14
|
Ahouty B, Koffi M, Ilboudo H, Simo G, Matovu E, Mulindwa J, Hertz-Fowler C, Bucheton B, Sidibé I, Jamonneau V, MacLeod A, Noyes H, N’Guetta SP. Candidate genes-based investigation of susceptibility to Human African Trypanosomiasis in Côte d'Ivoire. PLoS Negl Trop Dis 2017; 11:e0005992. [PMID: 29059176 PMCID: PMC5695625 DOI: 10.1371/journal.pntd.0005992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Human African Trypanosomiasis (HAT) or sleeping sickness is a Neglected Tropical Disease. Long regarded as an invariably fatal disease, there is increasing evidence that infection by T. b. gambiense can result in a wide range of clinical outcomes, including latent infections, which are long lasting infections with no parasites detectable by microscopy. The determinants of this clinical diversity are not well understood but could be due in part to parasite or host genetic diversity in multiple genes, or their interactions. A candidate gene association study was conducted in Côte d’Ivoire using a case-control design which included a total of 233 subjects (100 active HAT cases, 100 controls and 33 latent infections). All three possible pairwise comparisons between the three phenotypes were tested using 96 SNPs in16 candidate genes (IL1, IL4, IL4R, IL6, IL8, IL10, IL12, IL12R, TNFA, INFG, MIF, APOL1, HPR, CFH, HLA-A and HLA-G). Data from 77 SNPs passed quality control. There were suggestive associations at three loci in IL6 and TNFA in the comparison between active cases and controls, one SNP in each of APOL1, MIF and IL6 in the comparison between latent infections and active cases and seven SNP in IL4, HLA-G and TNFA between latent infections and controls. No associations remained significant after Bonferroni correction, but the Benjamini Hochberg false discovery rate test indicated that there were strong probabilities that at least some of the associations were genuine. The excess of associations with latent infections despite the small number of samples available suggests that these subjects form a distinct genetic cluster different from active HAT cases and controls, although no clustering by phenotype was observed by principle component analysis. This underlines the complexity of the interactions existing between host genetic polymorphisms and parasite diversity. Since it was first identified, human African trypanosomiasis (HAT) or sleeping sickness has been described as invariably fatal. Recent data however suggest that infection by T. b. gambiense can result in a wide range of clinical outcomes in its human host including long lasting infections, that can be detected by the presence of antibodies, but in which parasites cannot be seen by microscopy; these cases are known as latent infections. While the factors determining, this varied response have not been clearly characterized, the effectors of the immune responses have been partially implicated as key players. We collected samples from people with active HAT, latent infections and controls in endemic foci in the Côte d’Ivoire. We tested the role of single nucleotide polymorphisms (SNPs) in 16 genes on susceptibility/resistance to HAT by means of a candidate gene association study. There was some evidence that variants of the genes for IL4, IL6, APOL1, HLAG, MIF and TNFA modified the risk of developing HAT. These proteins regulate the inflammatory response to many infections or are directly involved in killing the parasites. In this study, the results were statistically weak and would be inconclusive on their own, however other studies have also found associations in these genes, increasing the chance that the variants that we have identified play a genuine role in the response to trypanosome infection in Côte D’Ivoire.
Collapse
Affiliation(s)
- Bernardin Ahouty
- Laboratoire de Génétique, Félix Houphouët Boigny University, Abidjan, Côte d’Ivoire
| | - Mathurin Koffi
- Unité de Recherche en Génétique et Epidémiology Moléculaire, Jean Lorougnon Guédé University, Daloa, Côte d’Ivoire
- * E-mail:
| | - Hamidou Ilboudo
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Gustave Simo
- Department of Biochemistry, University of Dchang, Dchang, Cameroon
| | - Enock Matovu
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | | | - Bruno Bucheton
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
| | - Issa Sidibé
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
- Unité de Recherche Glossines et Trypanosomes, Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
15
|
Pinger J, Chowdhury S, Papavasiliou FN. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat Commun 2017; 8:828. [PMID: 29018220 PMCID: PMC5635023 DOI: 10.1038/s41467-017-00959-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that evades its host's adaptive immune response by repeatedly replacing its dense variant surface glycoprotein (VSG) coat from its large genomic VSG repertoire. While the mechanisms regulating VSG gene expression and diversification have been examined extensively, the dynamics of VSG coat replacement at the protein level, and the impact of this process on successful immune evasion, remain unclear. Here we evaluate the rate of VSG replacement at the trypanosome surface following a genetic VSG switch, and show that full coat replacement requires several days to complete. Using in vivo infection assays, we demonstrate that parasites undergoing coat replacement are only vulnerable to clearance via early IgM antibodies for a limited time. Finally, we show that IgM loses its ability to mediate trypanosome clearance at unexpectedly early stages of coat replacement based on a critical density threshold of its cognate VSGs on the parasite surface. Trypanosoma brucei evades the host immune system through replacement of a variant surface glycoprotein (VSG) coat. Here, the authors show that VSG replacement takes several days to complete, and the parasite is vulnerable to the host immune system for a short period of time during the process.
Collapse
Affiliation(s)
- Jason Pinger
- The Rockefeller University, Laboratory of Lymphocyte Biology, 1230 York Avenue, New York, NY, 10065, USA.
- The David Rockefeller Graduate School, 1230 York Avenue, New York, NY, 10065, USA.
| | - Shanin Chowdhury
- The Rockefeller University, Laboratory of Lymphocyte Biology, 1230 York Avenue, New York, NY, 10065, USA
| | - F Nina Papavasiliou
- The Rockefeller University, Laboratory of Lymphocyte Biology, 1230 York Avenue, New York, NY, 10065, USA.
- Division of Immune Diversity, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| |
Collapse
|
16
|
Wu H, Liu G, Shi M. Interferon Gamma in African Trypanosome Infections: Friends or Foes? Front Immunol 2017; 8:1105. [PMID: 28936213 PMCID: PMC5594077 DOI: 10.3389/fimmu.2017.01105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 12/24/2022] Open
Abstract
African trypanosomes cause fatal infections in both humans and livestock. Interferon gamma (IFN-γ) plays an essential role in resistance to African trypanosomes. However, increasing evidence suggests that IFN-γ, when excessively synthesized, also induces immunopathology, enhancing susceptibility to the infection. Thus, production of IFN-γ must be tightly regulated during infections with African trypanosomes to ensure that a robust immune response is elicited without tissue destruction. Early studies have shown that secretion of IFN-γ is downregulated by interleukin 10 (IL-10). More recently, IL-27 has been identified as a negative regulator of IFN-γ production during African trypanosome infections. In this review, we discuss the current state of our understanding of the role of IFN-γ in African trypanosome infections. We have focused on the cellular source of IFN-γ, its beneficial and detrimental effects, and mechanisms involved in regulation of its production, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Hui Wu
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Gongguan Liu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Gitonga PK, Ndung'u K, Murilla GA, Thande PC, Wamwiri FN, Auma JE, Ngae GN, Kibugu JK, Kurgat R, Thuita JK. Differential virulence and tsetse fly transmissibility of <i>Trypanosoma congolense</i> and <i>Trypanosoma brucei</i> strains. ACTA ACUST UNITED AC 2017; 84:e1-e10. [PMID: 28697609 PMCID: PMC6238703 DOI: 10.4102/ojvr.v84i1.1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022]
Abstract
African animal trypanosomiasis causes significant economic losses in sub-Saharan African countries because of livestock mortalities and reduced productivity. Trypanosomes, the causative agents, are transmitted by tsetse flies (Glossina spp.). In the current study, we compared and contrasted the virulence characteristics of five Trypanosoma congolense and Trypanosoma brucei isolates using groups of Swiss white mice (n = 6). We further determined the vectorial capacity of Glossina pallidipes, for each of the trypanosome isolates. Results showed that the overall pre-patent (PP) periods were 8.4 ± 0.9 (range, 4–11) and 4.5 ± 0.2 (range, 4–6) for T. congolense and T. brucei isolates, respectively (p < 0.01). Despite the longer mean PP, T. congolense–infected mice exhibited a significantly (p < 0.05) shorter survival time than T. brucei–infected mice, indicating greater virulence. Differences were also noted among the individual isolates with T. congolense KETRI 2909 causing the most acute infection of the entire group with a mean ± standard error survival time of 9 ± 2.1 days. Survival time of infected tsetse flies and the proportion with mature infections at 30 days post-exposure to the infective blood meals varied among isolates, with subacute infection–causing T. congolense EATRO 1829 and chronic infection–causing T. brucei EATRO 2267 isolates showing the highest mature infection rates of 38.5% and 23.1%, respectively. Therefore, our study provides further evidence of occurrence of differences in virulence and transmissibility of eastern African trypanosome strains and has identified two, T. congolense EATRO 1829 and T. brucei EATRO 2267, as suitable for tsetse infectivity and transmissibility experiments.
Collapse
Affiliation(s)
| | - Kariuki Ndung'u
- Kenya Agricultural and Livestock Research Organization - Biotechnology Research Institute (KALROBioRI), Kikuyu.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ehret T, Torelli F, Klotz C, Pedersen AB, Seeber F. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities. Front Cell Infect Microbiol 2017. [PMID: 28638807 PMCID: PMC5461347 DOI: 10.3389/fcimb.2017.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.
Collapse
Affiliation(s)
- Totta Ehret
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany.,Department of Molecular Parasitology, Humboldt-Universität zu BerlinBerlin, Germany
| | - Francesca Torelli
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Christian Klotz
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Amy B Pedersen
- School of Biological Sciences, University of EdinburghEdinburgh, United Kingdom
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
19
|
Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, Gorman TA, Calvo-Alvarez E, Crouzols A, Jouvion G, Jamonneau V, Weir W, Stevenson ML, O'Neill K, Cooper A, Swar NRK, Bucheton B, Ngoyi DM, Garside P, Rotureau B, MacLeod A. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 2016; 5. [PMID: 27653219 PMCID: PMC5065312 DOI: 10.7554/elife.17716] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI:http://dx.doi.org/10.7554/eLife.17716.001
Collapse
Affiliation(s)
- Paul Capewell
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christelle Cren-Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Paris, France.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Francesco Marchesi
- Veterinary Diagnostic Services, Veterinary School, University of Glasgow, Glasgow, United Kingdom
| | - Pamela Johnston
- Veterinary Diagnostic Services, Veterinary School, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert A Benson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Taylor-Anne Gorman
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Estefania Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Paris, France.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Paris, France.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Grégory Jouvion
- Human Histopathology and Animal Models Unit, Institut Pasteur, Paris, France
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - William Weir
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - M Lynn Stevenson
- Veterinary Diagnostic Services, Veterinary School, University of Glasgow, Glasgow, United Kingdom
| | - Kerry O'Neill
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Bruno Bucheton
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Paul Garside
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Paris, France.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Annette MacLeod
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Henry Wellcome Building for Comparative Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Caljon G, Van Reet N, De Trez C, Vermeersch M, Pérez-Morga D, Van Den Abbeele J. The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies. PLoS Pathog 2016; 12:e1005744. [PMID: 27441553 PMCID: PMC4956260 DOI: 10.1371/journal.ppat.1005744] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Abstract
Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures. Sleeping sickness is caused by trypanosomes that are transmitted by the blood feeding tsetse flies. The present study has established an experimental transmission model with fluorescently labeled parasites in mice that allows us to study their fate following natural transmission by a tsetse fly bite. Parasites that arise in the tsetse salivary glands were found to be highly infective following inoculation in the mammalian skin in contrast with previous observations made for trypanosomes purified from the blood stream. This study unveiled that a proportion of parasites is retained in the skin and actively proliferates close to the initial inoculation site resulting in significantly elevated skin temperatures. This retention was linked to interaction with fat cells and collagen fibrous structures. Experimental transmission experiments were able to demonstrate that parasites can be acquired from the inoculation site immediately after the initial transmission.
Collapse
Affiliation(s)
- Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
- * E-mail: (GC); (JVDA)
| | - Nick Van Reet
- Unit of Parasite Diagnostics, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Carl De Trez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Structural Biology Research Center (SBRC), VIB, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- * E-mail: (GC); (JVDA)
| |
Collapse
|
21
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
22
|
Muchiri MW, Ndung’u K, Kibugu JK, Thuita JK, Gitonga PK, Ngae GN, Mdachi RE, Kagira JM. Comparative pathogenicity of Trypanosoma brucei rhodesiense strains in Swiss white mice and Mastomys natalensis rats. Acta Trop 2015; 150:23-8. [PMID: 26099681 DOI: 10.1016/j.actatropica.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
We evaluated Mastomys natelensis rat as an animal model for Rhodesian sleeping sickness. Parasitaemia, clinical and pathological characteristics induced by T. b. rhodesiense isolates, KETRI 3439, 3622 and 3637 were compared in Mastomys rats and Swiss white mice. Each isolate was intra-peritonially injected in mice and rat groups (n=12) at 1×10(4) trypanosomes/0.2mL. Pre-patent period (PP) range for KETRI 3439 and KETRI 3622-groups was 3-6 days for mice and 4-5 days for rats while for KETRI 3637-infected mice and rats was 5-9 and 4-12 days, respectively. Pairwise comparison between PP of mice and rats separately infected with either isolate showed no significant difference (p>0.05). The PP's of KETRI 3637-infected mice were significantly (p>0.01) longer than those infected with KETRI 3439 or KETRI 3622, a trend also observed in rats. The second parasitaemic wave was more prominent in mice. Clinical signs included body weakness, dyspnoea, peri-orbital oedema and extreme emaciation which were more common in rats. Survival time for KETRI 3439 and 3622-infected groups was significantly (p<0.05) longer in mice than rats but similar in KETRI 3637-infected groups. Inflammatory lesions were more severe in rats than mice. All mice and KETRI 3622-infected rats had splenomegaly, organ congestion with rats additionally showing prominent lymphadenopathy. KETRI 3439-infected rats showed hemorrhagic pneumonia, enteritis with moderate splenomegaly and lymphadenopathy. KETRI 3637-infected rats had the most severe lesions characterized by prominent splenomegaly, lymphadenopathy, hepatomegaly, enlarged adrenal glands, organ congestion, generalized oedemas, gastroenteritis, pneumonia and brain congestion. KETRI 3637-infected Mastomys is a suitable model for studying pathophysiology of HAT.
Collapse
|
23
|
Liu G, Xu J, Wu H, Sun D, Zhang X, Zhu X, Magez S, Shi M. IL-27 Signaling Is Crucial for Survival of Mice Infected with African Trypanosomes via Preventing Lethal Effects of CD4+ T Cells and IFN-γ. PLoS Pathog 2015. [PMID: 26222157 PMCID: PMC4519326 DOI: 10.1371/journal.ppat.1005065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes are extracellular protozoan parasites causing a chronic debilitating disease associated with a persistent inflammatory response. Maintaining the balance of the inflammatory response via downregulation of activation of M1-type myeloid cells was previously shown to be crucial to allow prolonged survival. Here we demonstrate that infection with African trypanosomes of IL-27 receptor-deficient (IL-27R-/-) mice results in severe liver immunopathology and dramatically reduced survival as compared to wild-type mice. This coincides with the development of an exacerbated Th1-mediated immune response with overactivation of CD4+ T cells and strongly enhanced production of inflammatory cytokines including IFN-γ. What is important is that IL-10 production was not impaired in infected IL-27R-/- mice. Depletion of CD4+ T cells in infected IL-27R-/- mice resulted in a dramatically reduced production of IFN-γ, preventing the early mortality of infected IL-27R-/- mice. This was accompanied by a significantly reduced inflammatory response and a major amelioration of liver pathology. These results could be mimicked by treating IL-27R-/- mice with a neutralizing anti-IFN-γ antibody. Thus, our data identify IL-27 signaling as a novel pathway to prevent early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretion of IFN-γ during infection with African trypanosomes. These data are the first to demonstrate the essential role of IL-27 signaling in regulating immune responses to extracellular protozoan infections. Infection with extracellular protozoan parasites, African trypanosomes, is characterized by a persistent inflammatory immune response. It has been recently shown that maintaining the balance of the inflammatory responses via dampening M1-type myeloid cell activation is critical to guarantee control of the parasites and survival of the host. In this study, we demonstrated that IL-27 receptor-deficient (IL-27R-/-) mice infected with African trypanosomes developed an excessive inflammatory response and severe liver immunopathology, resulting in dramatically reduced survival, as compared to infected wild-type mice. The early mortality of infected IL-27R-/- mice was correlated with significantly elevated secretions of inflammatory cytokines, particularly IFN-γ, and enhanced activation of CD4+ Th1 cells. Importantly, IL-10 production was not impaired in infected IL-27R-/- mice. Either depletion of CD4+ T cells, resulting in a dramatically reduced secretion of IFN-γ, or neutralization of IFN-γ, prevented the early mortality of infected IL-27R-/- mice with a significantly reduced inflammatory response and a major amelioration of the liver pathology. Thus, our data identify IL-27 signaling as a novel pathway to prevent the early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretions of IFN-γ during experimental infection with extracellular protozoan parasites African trypanosomes.
Collapse
Affiliation(s)
- Gongguan Liu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Jinjun Xu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Hui Wu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, Guangzhou, China
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Stefan Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
- Structural Biology Research Centre, VIB, Brussels, Belgium
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
25
|
Distinct Contributions of CD4+ and CD8+ T Cells to Pathogenesis of Trypanosoma brucei Infection in the Context of Gamma Interferon and Interleukin-10. Infect Immun 2015; 83:2785-95. [PMID: 25916989 DOI: 10.1128/iai.00357-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
Although gamma interferon (IFN-γ) and interleukin-10 (IL-10) have been shown to be critically involved in the pathogenesis of African trypanosomiasis, the contributions to this disease of CD4(+) and CD8(+) T cells, the major potential producers of the two cytokines, are incompletely understood. Here we show that, in contrast to previous findings, IFN-γ was produced by CD4(+), but not CD8(+), T cells in mice infected with Trypanosoma brucei. Without any impairment in the secretion of IFN-γ, infected CD8(-/-) mice survived significantly longer than infected wild-type mice, suggesting that CD8(+) T cells mediated mortality in an IFN-γ-independent manner. The increased survival of infected CD8(-/-) mice was significantly reduced in the absence of IL-10 signaling. Interestingly, IL-10 was also secreted mainly by CD4(+) T cells. Strikingly, depletion of CD4(+) T cells abrogated the prolonged survival of infected CD8(-/-) mice, demonstrating that CD4(+) T cells mediated protection. Infected wild-type mice and CD8(-/-) mice depleted of CD4(+) T cells had equal survival times, suggesting that the protection mediated by CD4(+) T cells was counteracted by the detrimental effects of CD8(+) T cells in infected wild-type mice. Interestingly, CD4(+) T cells also mediated the mortality of infected mice in the absence of IL-10 signaling, probably via excessive secretion of IFN-γ. Finally, CD4(+), but not CD8(+), T cells were critically involved in the synthesis of IgG antibodies during T. brucei infections. Collectively, these results highlight distinct roles of CD4(+) and CD8(+) T cells in the context of IFN-γ and IL-10 during T. brucei infections.
Collapse
|
26
|
Identification of trans-sialidases as a common mediator of endothelial cell activation by African trypanosomes. PLoS Pathog 2013; 9:e1003710. [PMID: 24130501 PMCID: PMC3795030 DOI: 10.1371/journal.ppat.1003710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Understanding African Trypanosomiasis (AT) host-pathogen interaction is the key to an "anti-disease vaccine", a novel strategy to control AT. Here we provide a better insight into this poorly described interaction by characterizing the activation of a panel of endothelial cells by bloodstream forms of four African trypanosome species, known to interact with host endothelium. T. congolense, T. vivax, and T. b. gambiense activated the endothelial NF-κB pathway, but interestingly, not T. b. brucei. The parasitic TS (trans-sialidases) mediated this NF-κB activation, remarkably via their lectin-like domain and induced production of pro-inflammatory molecules not only in vitro but also in vivo, suggesting a considerable impact on pathogenesis. For the first time, TS activity was identified in T. b. gambiense BSF which distinguishes it from the subspecies T. b. brucei. The corresponding TS were characterized and shown to activate endothelial cells, suggesting that TS represent a common mediator of endothelium activation among trypanosome species with divergent physiopathologies.
Collapse
|
27
|
Kangethe RT, Boulangé AF, Coustou V, Baltz T, Coetzer TH. Trypanosoma brucei brucei oligopeptidase B null mutants display increased prolyl oligopeptidase-like activity. Mol Biochem Parasitol 2012; 182:7-16. [DOI: 10.1016/j.molbiopara.2011.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/07/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023]
|
28
|
|