1
|
Shao Z, Zheng C, Postma JA, Gao Q, Zhang J. More N fertilizer, more maize, and less alfalfa: maize benefits from its higher N uptake per unit root length. FRONTIERS IN PLANT SCIENCE 2024; 15:1338521. [PMID: 38384755 PMCID: PMC10879570 DOI: 10.3389/fpls.2024.1338521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Root plasticity is fundamental to soil nutrient acquisition and maximizing production. Different soil nitrogen (N) levels affect root development, aboveground dry matter accumulation, and N uptake. This phenotypic plasticity is well documented for single plants and specific monocultures but is much less understood in intercrops in which species compete for the available nutrients. Consequently, the study tested whether the plasticity of plant roots, biomass and N accumulation under different N levels in maize/alfalfa intercropping systems differs quantitatively. Maize and alfalfa were intercropped for two consecutive years in large soil-filled rhizoboxes and fertilized with 6 different levels of N fertilizer (0, 75, 150, 225, 270, and 300 kg ha-1). Root length, root surface area, specific root length, N uptake and yield were all increased in maize with increasing fertilizer level, whereas higher N rates were supraoptimal. Alfalfa had an optimal N rate of 75-150 kg ha-1, likely because the competition from maize became more severe at higher rates. Maize responded more strongly to the fertilizer treatment in the second year when the alfalfa biomass was much larger. N fertilization contributes more to maize than alfalfa growth via root plasticity responses. Our results suggest that farmers can maximize intercropping yield and economic return by optimizing N fertilizer management.
Collapse
Affiliation(s)
- Zeqiang Shao
- College of Resource and Environment Engineering, Jilin Institute of Chemical Technology, Jilin, China
- College of Resources and Environmental Sciences, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun, China
| | - Congcong Zheng
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Johannes Auke Postma
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Qiang Gao
- College of Resources and Environmental Sciences, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun, China
| | - Jinjing Zhang
- College of Resources and Environmental Sciences, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun, China
| |
Collapse
|
2
|
Jiang X, Song M, Qiao Y, Liu M, Ma L, Fu S. Long-term water use efficiency and non-structural carbohydrates of dominant tree species in response to nitrogen and water additions in a warm temperate forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1025162. [PMID: 36420022 PMCID: PMC9676439 DOI: 10.3389/fpls.2022.1025162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) deposition tends to accompany precipitation in temperate forests, and vegetation productivity is mostly controlled by water and N availability. Many studies showed that tree species response to precipitation or N deposition alone influences, while the N deposition and precipitation interactive effects on the traits of tree physiology, especially in non-structural carbohydrates (NSCs) and long-term water use efficiency (WUE), are still unclear. In this study, we measured carbon stable isotope (δ13C), total soluble sugar and starch content, total phenols, and other physiological traits (e.g., leaf C:N:P stoichiometry, lignin, and cellulose content) of two dominant tree species (Quercus variabilis Blume and Liquidambar formosana Hance) under canopy-simulated N deposition and precipitation addition to analyze the changes of long-term WUE and NSC contents and to explain the response strategies of dominant trees to abiotic environmental changes. This study showed that N deposition decreased the root NSC concentrations of L. formosana and the leaf lignin content of Q. variabilis. The increased precipitation showed a negative effect on specific leaf area (SLA) and a positive effect on leaf WUE of Q. variabilis, while it increased the leaf C and N content and decreased the leaf cellulose content of L. formosana. The nitrogen-water interaction reduced the leaf lignin and total phenol content of Q. variabilis and decreased the leaf total phenol content of L. formosana, but it increased the leaf C and N content of L. formosana. Moreover, the response of L. formosana to the nitrogen-water interaction was greater than that of Q. variabilis, highlighting the differences between the two dominant tree species. The results showed that N deposition and precipitation obviously affected the tree growth strategies by affecting the NSC contents and long-term WUE. Canopy-simulated N deposition and precipitation provide a new insight into the effect of the nitrogen-water interaction on tree growth traits in a temperate forest ecosystem, enabling a better prediction of the response of dominant tree species to global change.
Collapse
Affiliation(s)
- Xiyan Jiang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengya Song
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yaqi Qiao
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengzhou Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Lei Ma
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, College of Geography and Environmental Science, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Cheng L, Zhang B, Zhang H, Li J. Biomass, Carbon and Nitrogen Partitioning and Water Use Efficiency Differences of Five Types of Alpine Grasslands in the Northern Tibetan Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13026. [PMID: 36293622 PMCID: PMC9602644 DOI: 10.3390/ijerph192013026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: Grassland covers most areas of the northern Tibetan Plateau along with important global terrestrial carbon (C) and nitrogen (N) pools, so there is a need to better understand the different alpine grassland growth associated with ecosystem C, N storage and water use efficiency (WUE). (2) Methods: The plant biomass and C, N concentrations, stocks and vegetation WUE of five kinds of alpine grassland types were investigated in northern Tibetan Plateau. (3) Results: The results showed that there were significant differences among five types of alpine grasslands in aboveground biomass (AGB), belowground biomass (BGB), total biomass (TB) and root:shoot (R/S) ratio while the highest value of different indices was shown in alpine meadow type (AM). The AGB and BGB partitioning results significantly satisfied the allometric biomass partitioning theory. The C, N concentrations and C/N of the vegetation in AGB and BGB showed significant grassland type differences. The highest C, N stocks of BGB were in AM which was almost six or seven times more than the C, N stocks of AGB in alpine desert type (AD). There were significant differences in δ13C and intrinsic water use efficiency (WUEi) under five alpine grassland types while the highest mean values of foliar δ13C and WUEi were in AD. Significant negative correlations were found between WUEi and C, N concentrations, C/N of AGB and soil water content (SWC) while the correlation with BGB C/N was not significant. For AGB, BGB, TB and R/S, there were positive correlations with C, N concentrations of AGB, BGB and SWC while it had significant negative correlations with C/N of BGB. (4) Conclusions: With regard to its types, it is suggested that the AM or AS may be an actively growing grassland type in the northern Tibetan Plateau.
Collapse
Affiliation(s)
- Liping Cheng
- College of Tourism and Management, Pingdingshan University, Pingdingshan 467000, China
| | - Beibei Zhang
- College of Tourism and Management, Pingdingshan University, Pingdingshan 467000, China
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jiajia Li
- College of Tourism and Management, Pingdingshan University, Pingdingshan 467000, China
| |
Collapse
|
4
|
Pascoalini S, Tognella M, Falqueto A, Soares M. Photosynthetic efficiency of young Rhizophora mangle L. in a mangrove in southeastern Brazil. PHOTOSYNTHETICA 2022; 60:337-349. [PMID: 39650100 PMCID: PMC11558604 DOI: 10.32615/ps.2022.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 12/11/2024]
Abstract
The study proposes to evaluate the photosynthetic plasticity of Rhizophora mangle L. in four mangrove sites distributed along with the Great Vitória Estuarine System. The variation in organic matter content, which implies the higher essential nutrient availability, contributed to better energy flux performance related to electron transport. Furthermore, salinity damaged the reaction centers (RC), since the site with the highest salinity showed changes in the number and size of active photosynthetic RC and in the specific energy flows per active RC (absorption flux, trapped energy flux, and dissipated energy flux), but the plasticity of the species in response to salt stress was confirmed by the increase of performance index for energy conservation (PITotal), net photosynthetic rate (P N), and the water-use efficiency (WUE). Also, the results showed that the luminous intensity available compromises the functionality of PSII, in turn, it increases WUE. The results indicate the effect of the chlorophyll a content, which provides more substrate for light absorption, on the electron flow and PITotal is related to P N and WUE. The study indicates the ecological plasticity of R. mangle to the conditions of the evaluated area.
Collapse
Affiliation(s)
- S.S. Pascoalini
- Department of Oceanography and Ecology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - M.M.P. Tognella
- Department of Oceanography and Ecology, Federal University of Espírito Santo, Vitória, ES, Brazil
- Department of Agricultural and Biological Sciences, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - A.R. Falqueto
- Department of Agricultural and Biological Sciences, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - M.L.G. Soares
- Department of Biological Oceanography, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Impacts of Canopy and Understory Nitrogen Additions on Stomatal Conductance and Carbon Assimilation of Dominant Tree Species in a Temperate Broadleaved Deciduous Forest. Ecosystems 2021. [DOI: 10.1007/s10021-020-00595-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Li H, Yang Y, Wang H, Liu S, Jia F, Su Y, Li S, He F, Feng C, Niu M, Wang J, Liu C, Yin W, Xia X. The Receptor-Like Kinase ERECTA Confers Improved Water Use Efficiency and Drought Tolerance to Poplar via Modulating Stomatal Density. Int J Mol Sci 2021; 22:ijms22147245. [PMID: 34298865 PMCID: PMC8303786 DOI: 10.3390/ijms22147245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Poplar is one of the most important tree species in the north temperate zone, but poplar plantations are quite water intensive. We report here that CaMV 35S promoter-driven overexpression of the PdERECTA gene, which is a member of the LRR-RLKs family from Populus nigra × (Populus deltoides × Populus nigra), improves water use efficiency and enhances drought tolerance in triploid white poplar. PdERECTA localizes to the plasma membrane. Overexpression plants showed lower stomatal density and larger stomatal size. The abaxial stomatal density was 24-34% lower and the stomatal size was 12-14% larger in overexpression lines. Reduced stomatal density led to a sharp restriction of transpiration, which was about 18-35% lower than the control line, and instantaneous water use efficiency was around 14-63% higher in overexpression lines under different conditions. These phenotypic changes led to increased drought tolerance. PdERECTA overexpression plants not only survived longer after stopping watering but also performed better when supplied with limited water, as they had better physical and photosynthesis conditions, faster growth rate, and higher biomass accumulation. Taken together, our data suggest that PdERECTA can alter the development pattern of stomata to reduce stomatal density, which then restricts water consumption, conferring enhanced drought tolerance to poplar. This makes PdERECTA trees promising candidates for establishing more water use efficient plantations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xinli Xia
- Correspondence: ; Tel.: +86-010-6233-6400
| |
Collapse
|
7
|
Zhang H, Yuan F, Wu J, Jin C, Pivovaroff AL, Tian J, Li W, Guan D, Wang A, McDowell NG. Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. TREE PHYSIOLOGY 2021; 41:190-205. [PMID: 33313912 DOI: 10.1093/treephys/tpaa120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/25/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrogen (N) deposition has been observed to impact plant structure and functional traits in terrestrial ecosystems. Although the effect of N deposition on plant water use has been well-evaluated in laboratories and in experimental forests, the linkages between water and carbon relations under N deposition are unclear. Here, we report on hydraulics, gas exchange and carbon reserves of two broad-leaved tree species (Quercus mongolica and Fraxinus mandshurica) in mature temperate forests after a seven-year experiment with different levels of N addition (control (CK), low (23 kg N ha-1 yr-1), medium (46 kg N ha-1 yr-1) and high (69 kg N ha-1 yr-1)). We investigated variation in hydraulic traits (xylem-specific hydraulic conductivity (Ks), native percentage loss of conductivity (PLC) and leaf water potential), xylem anatomy (vessel diameter and density), gas exchange (maximum net photosynthesis rate and stomatal conductance) and carbon reserves (soluble sugars, starch and total nonstructural carbohydrates (NSC)) with different N addition levels. We found that medium N addition significantly increased Ks and vessel diameter compared to control, but accompanied increasing PLC and decreasing leaf water potential, suggesting that N addition results in a greater hydraulic efficiency and higher risk of embolism. N addition promoted photosynthetic capacity via increasing foliar N concentration but did not change stomatal conductance. In addition, we found increase in foliar soluble sugar concentration and decrease in starch concentration with N addition, and positive correlations between hydraulic traits (vessel diameter and PLC) and soluble sugars. These coupled responses of tree hydraulics and carbon metabolism are consistent with a regulatory role of carbohydrates in maintaining hydraulic integrity. Our study provides an important insight into the relationship of plant water transport and carbon dynamics under increasing N deposition.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jinyuan Tian
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
8
|
Robust leaf trait relationships across species under global environmental changes. Nat Commun 2020; 11:2999. [PMID: 32532992 PMCID: PMC7293315 DOI: 10.1038/s41467-020-16839-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies show coordinated relationships between plant leaf traits and their capacity to predict ecosystem functions. However, how leaf traits will change within species and whether interspecific trait relationships will shift under future environmental changes both remain unclear. Here, we examine the bivariate correlations between leaf economic traits of 515 species in 210 experiments which mimic climate warming, drought, elevated CO2, and nitrogen deposition. We find divergent directions of changes in trait-pairs between species, and the directions mostly do not follow the interspecific trait relationships. However, the slopes in the logarithmic transformed interspecific trait relationships hold stable under environmental changes, while only their elevations vary. The elevation changes of trait relationship are mainly driven by asymmetrically interspecific responses contrary to the direction of the leaf economic spectrum. These findings suggest robust interspecific trait relationships under global changes, and call for linking within-species responses to interspecific coordination of plant traits. It is unclear whether rapid global change will lead to unexpected trait combinations. In this global meta-analysis on vascular plants, Cui et al. show that, although within-species responses do not always follow the leaf economic spectrum, the slopes of interspecific trait relationships are robust to rapid environmental change.
Collapse
|
9
|
Abstract
Stable hydraulic conductivity in forest trees maintains healthy tree crowns and contributes to productivity in forest ecosystems. Drought conditions break down this relationship, but the mechanisms are poorly known and may depend on drought severity. To increase the understanding of changes in hydraulic conductivity during drought, we determined hydraulic parameters in Populus euphratica Oliv. (P. euphratica) in naturally arid conditions and in a simulated severe drought using a high-pressure flow meter. The results showed that leaf-specific hydraulic conductance (LSC) of leaf blades was less variable in mild drought, and increased significantly in severe drought. Plants attempted to maintain stability in leaf blade LSC under moderate water stress. In extreme drought, LSC was enhanced by increasing hydraulic conductance in plant parts with less hydraulic limitation, decreasing it in other parts, and decreasing leaf area; this mechanism protected the integrity of water transport in portions of tree crowns, and induced scorched branches and partial mortality in other parts of crowns. We conclude that limitation in water supply and elastic regulation of hydraulic characteristics may drive the mortality of tree branches as a result of severe drought. Evaluation of adaptive water transport capacity in riparian plants in arid areas provides a scientific basis for riparian forest restoration.
Collapse
|
10
|
Hu Y, Zhao P, Zhu L, Zhao X, Ni G, Ouyang L, Schäfer KVR, Shen W. Responses of sap flux and intrinsic water use efficiency to canopy and understory nitrogen addition in a temperate broadleaved deciduous forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:325-336. [PMID: 30121032 DOI: 10.1016/j.scitotenv.2018.08.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Increasing atmospheric nitrogen (N) deposition could profoundly impact structure and functioning of forest ecosystems. Therefore, we conducted a two-year (2014-2015) experiment to assess the responses of tree sap flux density (Js) and intrinsic water use efficiency (WUEi) of dominant tree species (Liquidambar formosana, Quercus acutissima and Quercus variabilis) to increased N deposition at a manipulative experiment with canopy and understory N addition in a deciduous broadleaved forest. Five treatments were administered including N addition of 25 kg ha-1 year-1 and 50 kg ha-1 year-1 onto canopy (C25 and C50) and understory (U25 and U50), and control treatment (CK, without N addition). Our results showed neither canopy nor understory N addition had an impact on leaf N content and C:N ratio (P > 0.05). Due to the distinct influencing ways, canopy and understory N addition generated different impacts on Js and WUEi of the dominant tree species. Canopy N addition increased WUEi of Q. variabilis, whereas understory addition treatment had a minimal impact on WUEi. Both N additions did not exert impacts on WUEi of L. formosana and Q. acutissima. Canopy N addition exerted negative impacts on Js and its sensitivity to micrometeorological factors of Q. acutissima and Q. variabilis in 2014, while understory addition showed no effect. Neither canopy nor understory N addition had an influence on Js of L. formosana in 2014. Probably owing to the increased soil acidification as the experiment proceeded, Js of L. formosana and Q. variabilis was decreased by understory N addition while canopy addition had a minimal effect in 2015. Thus, the traditional understory addition approach could not fully reflect the effects of increased N deposition on the canopy-associated transpiration process indicated by the different responses of Js and WUEi to canopy and understory N addition, and exaggerated its influences induced by the variation of soil chemical properties.
Collapse
Affiliation(s)
- Yanting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China.
| | - Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Xiuhua Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Karina V R Schäfer
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA; Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| |
Collapse
|
11
|
Capdeville C, Abdallah K, Buffan-Dubau E, Lin C, Azemar F, Lambs L, Fromard F, Rols JL, Leflaive J. Limited impact of several years of pretreated wastewater discharge on fauna and vegetation in a mangrove ecosystem. MARINE POLLUTION BULLETIN 2018; 129:379-391. [PMID: 29680563 DOI: 10.1016/j.marpolbul.2018.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
It was hypothesized that mangroves, tropical wetlands, could be used for the finishing treatment of domestic wastewaters. Our aim was to determine if a nutrient-stressed mangrove could tolerate long-term discharges of pretreated wastewater (PW). Since 2008, in an in situ experimental system set up in Mayotte Island (Indian Ocean), domestic PW are discharged into two impacted areas (675 m2) dominated by different species of mangrove trees. Anthropogenic inputs during > 4.5 years led to an increase in vegetation growth associated with an increase in leaf pigment content, leaf surface and tree productivity. A marked increase in tree mortality was observed. There was no effect on crabs and meiofauna densities, but significant modifications of community structures. These effects may be directly linked to PW inputs, or indirectly to the modifications of the environment associated with higher tree growth. However, our results indicate that there was no major dysfunction the ecosystem.
Collapse
Affiliation(s)
- C Capdeville
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - K Abdallah
- Syndicat Intercommunal d'Eau et d'Assainissement de Mayotte, France
| | - E Buffan-Dubau
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - C Lin
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - F Azemar
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - L Lambs
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - F Fromard
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - J L Rols
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - J Leflaive
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
12
|
Chowdhury R, Favas PJC, Jonathan MP, Venkatachalam P, Raja P, Sarkar SK. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. MARINE POLLUTION BULLETIN 2017; 124:1078-1088. [PMID: 28187966 DOI: 10.1016/j.marpolbul.2017.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (Igeo) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals.
Collapse
Affiliation(s)
- Ranju Chowdhury
- Department of Marine Science, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700019, West Bengal, India.
| | - Paulo J C Favas
- University of Trás-os-Montes e Alto Douro, UTAD, School of Life Sciences and the Environment, Quinta de Prados, 5000-801 Vila Real, Portugal; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M P Jonathan
- Centro Interdisciplinario de Investigaciones Estudios sobre Medio, Ambiente Desarrollo (CIIEMAD), Instituto Polit'ecnicoNacional (IPN), Calle de Junio de Barrio la Laguna Ticom'an C.P., Del. Gustavo A. Madero, Mexico, D.F., Mexico
| | | | - P Raja
- ICAR-Indian Institute of Soil & Water Conservation, Fernhill, Udhagamandalam 643004, Tamil Nadu, India
| | - Santosh Kumar Sarkar
- Department of Marine Science, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700019, West Bengal, India
| |
Collapse
|
13
|
Kelleway JJ, Cavanaugh K, Rogers K, Feller IC, Ens E, Doughty C, Saintilan N. Review of the ecosystem service implications of mangrove encroachment into salt marshes. GLOBAL CHANGE BIOLOGY 2017; 23:3967-3983. [PMID: 28544444 DOI: 10.1111/gcb.13727] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change.
Collapse
Affiliation(s)
- Jeffrey J Kelleway
- Department of Environmental Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kyle Cavanaugh
- Department of Geography, University of California, Los Angeles, CA, USA
| | - Kerrylee Rogers
- School of Earth and Environmental Science, University of Wollongong, Wollongong, NSW, Australia
| | - Ilka C Feller
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Emilie Ens
- Department of Environmental Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cheryl Doughty
- Department of Geography, University of California, Los Angeles, CA, USA
| | - Neil Saintilan
- Department of Environmental Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
14
|
Nguyen HT, Meir P, Wolfe J, Mencuccini M, Ball MC. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship. PLANT, CELL & ENVIRONMENT 2017; 40:1021-1038. [PMID: 27362496 DOI: 10.1111/pce.12788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m-2 s-1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.
Collapse
Affiliation(s)
- Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Patrick Meir
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Joe Wolfe
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
- ICREA at CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
15
|
Chen J, Shen ZJ, Lu WZ, Liu X, Wu FH, Gao GF, Liu YL, Wu CS, Yan CL, Fan HQ, Zhang YH, Zheng HL, Tsai CJ. Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh. TREE PHYSIOLOGY 2017; 37:82-97. [PMID: 28173596 DOI: 10.1093/treephys/tpw097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhi-Jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Wei-Zhi Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, China
| | - Xiang Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Fei-Hua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Gui-Feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Yi-Ling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chun-Sheng Wu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Hang-Qing Fan
- Guangxi Mangrove Research Center, Beihai, Guangxi, China
| | - Yi-Hui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | | |
Collapse
|
16
|
Dong T, Duan B, Zhang S, Korpelainen H, Niinemets Ü, Li C. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata. TREE PHYSIOLOGY 2016; 36:807-817. [PMID: 27122365 DOI: 10.1093/treephys/tpw025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
We employed the warm temperate conifer Cunninghamia lanceolata (Lamb.) Hook. as a model of plantation forest species to investigate ecophysiological responses to root treatments (control (0%), and ∼25, 50 or 75% of the initial root mass) under well-watered and water-limited conditions. Our results indicated that total root dry mass accumulation was negatively associated with the severity of root pruning, but there was evidence of multiple compensatory responses. The plants exhibited higher instantaneous and long-term (assessed by carbon isotope composition, δ(13)C) water-use efficiency in pruning treatments, especially under low water availability. Root pruning also increased the fine root/total root mass ratio, specific root length and fine root vitality in both water availability treatments. As a result of the compensatory responses, under well-watered conditions, height, stem dry mass accumulation, leaf/fine root biomass ratio (L/FR), transpiration rate, photosynthetic capacity and photosynthetic nitrogen-use efficiency (EN) were the highest under 25% pruning. Yet, all these traits except L/FR and foliage nitrogen content were severely reduced under 75% pruning. Drought negatively affected growth and leaf gas exchange rates, and there was a greater negative effect on growth, water potential, gas exchange and EN when >25% of total root biomass was removed. The stem/aboveground mass ratio was the highest under 25% pruning in both watering conditions. These results indicate that the responses to root severance are related to the excision intensity and soil moisture content. A moderate root pruning proved to be an effective means to improve stem dry mass accumulation.
Collapse
Affiliation(s)
- Tingfa Dong
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, College of life Sciences, China West Normal University, Nanchong 637002, Sichuan, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
17
|
Feller IC, Dangremond EM, Devlin DJ, Lovelock CE, Proffitt CE, Rodriguez W. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA. Ecology 2015; 96:2960-72. [DOI: 10.1890/14-1853.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Nguyen HT, Stanton DE, Schmitz N, Farquhar GD, Ball MC. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. ANNALS OF BOTANY 2015; 115:397-407. [PMID: 25600273 PMCID: PMC4332612 DOI: 10.1093/aob/mcu257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 11/25/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. METHODS Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50% seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. KEY RESULTS Avicennia marina seedlings failed to grow in 0-5% seawater, whereas maximal growth occurred in 50-75% seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50-75% seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. CONCLUSIONS The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain.
Collapse
Affiliation(s)
- Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia and Institute of Botany, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Daniel E Stanton
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia and Institute of Botany, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Nele Schmitz
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia and Institute of Botany, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Graham D Farquhar
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia and Institute of Botany, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia and Institute of Botany, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
19
|
Drenovsky RE, Khasanova A, James JJ. Trait convergence and plasticity among native and invasive species in resource-poor environments. AMERICAN JOURNAL OF BOTANY 2012; 99:629-39. [PMID: 22434772 DOI: 10.3732/ajb.1100417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PREMISE OF STUDY Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. METHODS We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use efficiency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use efficiency. KEY RESULTS Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. CONCLUSIONS Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.
Collapse
Affiliation(s)
- Rebecca E Drenovsky
- Biology Department, John Carroll University 20700 North Park Blvd., University Heights, Ohio 44118, USA.
| | | | | |
Collapse
|
20
|
Han Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. TREE PHYSIOLOGY 2011; 31:976-984. [PMID: 21467050 DOI: 10.1093/treephys/tpr016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydraulic limitations associated with increasing tree height result in reduced foliar stomatal conductance (g(s)) and light-saturated photosynthesis (A(max)). However, it is unclear whether the decline in A(max) is attributable to height-related modifications in foliar nitrogen concentration (N), to mesophyll conductance (g(m)) or to biochemical capacity for photosynthesis (maximum rate of carboxylation, V(cmax)). Simultaneous measurements of gas exchange and chlorophyll fluorescence were made to determine g(m) and V(cmax) in four height classes of Pinus densiflora Sieb. & Zucc. trees. As the average height of growing trees increased from 3.1 to 13.7 m, g(m) decreased from 0.250 to 0.107 mol m(-2) s(-1), and the CO(2) concentration from the intercellular space (C(i)) to the site of carboxylation (C(c)) decreased by an average of 74 µmol mol(-1). Furthermore, V(cmax) estimated from C(c) increased from 68.4 to 112.0 µmol m(-2) s(-1) with the increase in height, but did not change when it was calculated based on C(i). In contrast, A(max) decreased from 14.17 to 10.73 µmol m(-2) s(-1). Leaf dry mass per unit area (LMA) increased significantly with tree height as well as N on both a dry mass and an area basis. All of these parameters were significantly correlated with tree height. In addition, g(m) was closely correlated with LMA and g(s), indicating that increased diffusive resistance for CO(2) may be the inevitable consequence of morphological adaptation. Foliar N per unit area was positively correlated with V(cmax) based on C(c) but negatively with A(max), suggesting that enhancement of photosynthetic capacity is achieved by allocating more N to foliage in order to minimize the declines in A(max). Increases in the N cost associated with carbon gain because of the limited water available to taller trees lead to a trade-off between water use efficiency and photosynthetic nitrogen use efficiency. In conclusion, the height-related decrease in photosynthetic performance appears to result mainly from diffusive resistances rather than biochemical limitations.
Collapse
Affiliation(s)
- Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Ibaraki 305-8687, Japan.
| |
Collapse
|
21
|
Abstract
Using a broad definition of trees, the evolutionary origins of trees in a nutritional context is considered using data from the fossil record and molecular phylogeny. Trees are first known from the Late Devonian about 380 million years ago, originated polyphyletically at the pteridophyte grade of organization; the earliest gymnosperms were trees, and trees are polyphyletic in the angiosperms. Nutrient transporters, assimilatory pathways, homoiohydry (cuticle, intercellular gas spaces, stomata, endohydric water transport systems including xylem and phloem-like tissue) and arbuscular mycorrhizas preceded the origin of trees. Nutritional innovations that began uniquely in trees were the seed habit and, certainly (but not necessarily uniquely) in trees, ectomycorrhizas, cyanobacterial, actinorhizal and rhizobial (Parasponia, some legumes) diazotrophic symbioses and cluster roots.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at SCRI (Scottish Crop Research Institute), Invergowrie, Dundee, UK.
| | | |
Collapse
|