1
|
Chen Z, Chen Y, Shi L, Wang L, Li W. Interaction of Phytohormones and External Environmental Factors in the Regulation of the Bud Dormancy in Woody Plants. Int J Mol Sci 2023; 24:17200. [PMID: 38139028 PMCID: PMC10743443 DOI: 10.3390/ijms242417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bud dormancy and release are essential phenomena that greatly assist in adapting to adverse growing conditions and promoting the holistic growth and development of perennial plants. The dormancy and release process of buds in temperate perennial trees involves complex interactions between physiological and biochemical processes influenced by various environmental factors, representing a meticulously orchestrated life cycle. In this review, we summarize the role of phytohormones and their crosstalk in the establishment and release of bud dormancy. External environmental factors, such as light and temperature, play a crucial role in regulating bud germination. We also highlight the mechanisms of how light and temperature are involved in the regulation of bud dormancy by modulating phytohormones. Moreover, the role of nutrient factors, including sugar, in regulating bud dormancy is also discussed. This review provides a foundation for enhancing our understanding of plant growth and development patterns, fostering agricultural production, and exploring plant adaptive responses to adversity.
Collapse
Affiliation(s)
| | | | | | | | - Weixing Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.C.); (Y.C.); (L.S.); (L.W.)
| |
Collapse
|
2
|
Porcher A, Guérin V, Macherel D, Lebrec A, Satour P, Lothier J, Vian A. High Expression of ALTERNATIVE OXIDASE 2 in Latent Axillary Buds Suggests Its Key Role in Quiescence Maintenance in Rosebush. PLANT & CELL PHYSIOLOGY 2023; 64:165-175. [PMID: 36287074 DOI: 10.1093/pcp/pcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Most vegetative axes remain quiescent as dormant axillary buds until metabolic and hormonal signals, driven by environmental changes, trigger bud outgrowth. While the resumption of growth activity is well documented, the establishment and maintenance of quiescence is comparatively poorly understood, despite its major importance in the adaptation of plants to the seasonal cycle or in the establishment of their shape. Here, using the rosebush Rosa hybrida 'Radrazz' as a plant model, we highlighted that the quiescent state was the consequence of an internal and active energy control of buds, under the influence of hormonal factors previously identified in the bud outgrowth process. We found that the quiescent state in the non-growing vegetative axis of dormant axillary buds displayed a low energy state along with a high expression of the ALTERNATIVE OXIDASE 2 (AOX2) and the accumulation of the corresponding protein. Conversely, AOX2 expression and protein amount strongly decreased during bud burst as energy status shifted to a high state, allowing growth. Since AOX2 can deviate electrons from the cytochrome pathway in the mitochondrial respiratory chain, it could drastically reduce the formation of ATP, which would result in a low energy status unfavorable for growth activities. We provide evidence that the presence/absence of AOX2 in quiescent/growing vegetative axes of buds was under hormonal control and thus may constitute the mechanistic basis of both quiescence and sink strength manifestation, two important aspects of budbreak.
Collapse
Affiliation(s)
- Alexis Porcher
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Vincent Guérin
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - David Macherel
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Anita Lebrec
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Pascale Satour
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Jérémy Lothier
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Alain Vian
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| |
Collapse
|
3
|
Kebrom TH, Doust AN. Activation of apoplastic sugar at the transition stage may be essential for axillary bud outgrowth in the grasses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023581. [PMID: 36388483 PMCID: PMC9643854 DOI: 10.3389/fpls.2022.1023581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Shoot branches develop from buds in leaf axils. Once formed from axillary meristems, the buds enter a transition stage before growing into branches. The buds may transition into dormancy if internal and environmental factors limit sucrose supply to the buds. A fundamental question is why sucrose can be limiting at the transition stage for bud outgrowth, whereas new buds continue to be formed. Sucrose is transported to sink tissues through symplastic or apoplastic pathways and a shift from symplastic to apoplastic pathway is common during seed and fruit development. In addition, symplastic connected tissues are stronger sinks than symplastically isolated tissues that rely on sugars effluxed to the apoplast. Recent studies in sorghum, sugarcane, and maize indicate activation of apoplastic sugar in buds that transition to outgrowth but not to dormancy, although the mode of sugar transport during bud formation is still unclear. Since the apoplastic pathway in sorghum buds was specifically activated during bud outgrowth, we posit that sugar for axillary bud formation is most likely supplied through the symplastic pathway. This suggests a key developmental change at the transition stage, which alters the sugar transport pathway of newly-formed buds from symplastic to apoplastic, making the buds a less strong sink for sugars. We suggest therefore that bud outgrowth that relies on overflow of excess sucrose to the apoplast will be more sensitive to internal and environmental factors that enhance the growth of sink tissues and sucrose demand in the parent shoot; whereas bud formation that relies on symplastic sucrose will be less affected by these factors.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
- Center for Computational Systems Biology, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
4
|
Crespel L, Le Bras C, Amoroso T, Dubuc B, Citerne S, Perez-Garcia MD, Sakr S. Involvement of sugar and abscisic acid in the genotype-specific response of rose to far-red light. FRONTIERS IN PLANT SCIENCE 2022; 13:929029. [PMID: 35937351 PMCID: PMC9355296 DOI: 10.3389/fpls.2022.929029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Plant architecture determines yield (fruit or flowers) and product quality in many horticultural species. It results from growth and branching processes and is dependent on genetic and environmental factors such as light quality. Highly significant genotype and light quality effects and their interaction have been demonstrated on the architecture of rose. Far-red (FR) light is known for its favourable effect on plant growth and development. We evaluated the effect of FR on rose growth and development and its interaction with the genotype through architectural, eco-physiological (net photosynthesis rate) and biochemical (sugar and hormone concentrations) approaches. Two cultivars ('The Fairy' - TF - and Knock Out® Radrazz - KO) with contrasting architectures were grown in a climate chamber under FR or in the absence of FR at an average photosynthetic photon flux density (400-700 nm) of 181.7 ± 12.8 μmol m-2 s-1 for 16 h. A significant effect of FR on the architecture of TF was demonstrated, marked by greater stem elongation, shoot branching and flowering, while KO remained insensitive to FR, supporting a genotype x FR interaction. The response of TF to FR was associated with improved photosynthetic capabilities, while KO exhibited an elevated level of abscisic acid (ABA) in its leaves. FR-dependent ABA accumulation might inhibit photosynthesis and prevent the increased plant carbon status required for growth. From a practical perspective, these findings argue in favour of a better reasoning of the choice of the cultivars grown in lighted production systems. Further investigations will be necessary to better understand these genotype-specific responses to FR and to unravel their molecular determinants.
Collapse
Affiliation(s)
- Laurent Crespel
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Camille Le Bras
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Thomas Amoroso
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
- ASTREDHOR, Institut des professionnels du végétal, Paris, France
| | - Bénédicte Dubuc
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Soulaiman Sakr
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
5
|
Zhang D, Cai W, Zhang X, Li W, Zhou Y, Chen Y, Mi Q, Jin L, Xu L, Yu X, Li Y. Different pruning level effects on flowering period and chlorophyll fluorescence parameters of Loropetalum chinense var. rubrum. PeerJ 2022; 10:e13406. [PMID: 35573179 PMCID: PMC9104088 DOI: 10.7717/peerj.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 01/14/2023] Open
Abstract
"Pruning" is a simple and efficient way to control the flowering period, but it is rarely used in perennial woody ornamental plants. In this paper, Loropetalum chinense var. rubrum was pruned in different degrees, and the relationship between pruning intensity and flowering number, and flowering time and chlorophyll fluorescence parameters were compared. After statistics, it was found that pruning could advance blossoms of L. chinense var. rubrum; also, light and heavy cutting could both obtain a larger number of flowers. In addition, through correlation analysis, it was found that during the flowering period, the Rfd parameter of the unpruned treatment had a very significant positive correlation with the number of flowers FN, which was 0.81. In other pruning treatment groups, Rfd and FN also presented a certain positive correlation, indicating that the Rfd parameter can be used to predict the number of flowers during the flowering process of L. chinense var. rubrum. The research results provided a new idea for the regulation of the flowering period of L. chinense var. rubrum and other woody ornamental plants and laid the foundation for the diversified application of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Damao Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Wenqi Cai
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xia Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Weidong Li
- Hunan Key Laboratory of Innovation and Comprehensive Utilization, Changsha, China
| | - Yi Zhou
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
| | - Yaqian Chen
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
| | - Qiulin Mi
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
| | - Lanting Jin
- Hunan Agricultural University, College of Oriental Science & Technology, Changsha, China
| | - Lu Xu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xiaoying Yu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yanlin Li
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China,Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China,Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| |
Collapse
|
6
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
7
|
Liu L, Zheng J. Identification and expression analysis of the sucrose synthase gene family in pomegranate ( Punica granatum L.). PeerJ 2022; 10:e12814. [PMID: 35047243 PMCID: PMC8757371 DOI: 10.7717/peerj.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sucrose synthase (SUS, EC 2.4.1.13) is one of the major enzymes of sucrose metabolism in higher plants. It has been associated with C allocation, biomass accumulation, and sink strength. The SUS gene families have been broadly explored and characterized in a number of plants. The pomegranate (Punica granatum) genome is known, however, it lacks a comprehensive study on its SUS genes family. METHODS PgSUS genes were identified from the pomegranate genome using a genome-wide search method. The PgSUS gene family was comprehensively analyzed by physicochemical properties, evolutionary relationship, gene structure, conserved motifs and domains, protein structure, syntenic relationships, and cis-acting elements using bioinformatics methods. The expression pattern of the PgSUS gene in different organs and fruit development stages were assayed with RNA-seq obtained from the NCBI SRA database as well as real-time quantitative polymerase chain reaction (qPCR). RESULTS Five pomegranate SUS genes, located on four different chromosomes, were divided into three subgroupsaccording to the classification of other seven species. The PgSUS family was found to be highly conserved during evolution after studying the gene structure, motifs, and domain analysis. Furthermore, the predicted PgSUS proteins showed similar secondary and tertiary structures. Syntenic analysis demonstrated that four PgSUS genes showed syntenic relationships with four species, with the exception of PgSUS2. Predictive promoter analysis indicated that PgSUS genes may be responsive to light, hormone signaling, and stress stimulation. RNA-seq analysis revealed that PgSUS1/3/4 were highly expressed in sink organs, including the root, flower, and fruit, and particularly in the outer seed coats. qPCR analysis showed also that PgSUS1, PgSUS3, and PgSUS4 were remarkably expressed during fruit seed coat development. Our results provide a systematic overview of the PgSUS gene family in pomegranate, developing the framework for further research and use of functional PgSUS genes.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
8
|
Decapitation Experiments Combined with the Transcriptome Analysis Reveal the Mechanism of High Temperature on Chrysanthemum Axillary Bud Formation. Int J Mol Sci 2021; 22:ijms22189704. [PMID: 34575868 PMCID: PMC8469267 DOI: 10.3390/ijms22189704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023] Open
Abstract
Temperature is an important factor that largely affects the patterns of shoot branching in plants. However, the effect and mechanism of temperature on axillary bud development in chrysanthemum remains poorly defined. The purpose of the present study is to investigate the effect of high temperature on the axillary bud growth and the mechanism of axillary bud formation in chrysanthemum. Decapitation experiments combined with the transcriptome analysis were designed. Results showed that the axillary bud length was significantly inhibited by high temperature. Decapitation of primary shoot (primary decapitation) resulted in slower growth of axillary buds (secondary buds) under 35 °C. However, secondary decapitation resulted in complete arrest of tertiary buds at high temperature. These results demonstrated that high temperature not only inhibited axillary bud formation but also retarded bud outgrowth in chrysanthemum. Comparative transcriptome suggested differentially expressed gene sets and identified important modules associated with bud formation. This research helped to elucidate the regulatory mechanism of high temperature on axillary bud growth, especially bud formation in chrysanthemum. Meanwhile, in-depth studies of this imperative temperature signaling can offer the likelihood of vital future applications in chrysanthemum breeding and branching control.
Collapse
|
9
|
Zhao X, Wen B, Li C, Tan Q, Liu L, Chen X, Li L, Fu X. Overexpression of the Peach Transcription Factor Early Bud-Break 1 Leads to More Branches in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:681283. [PMID: 34220902 PMCID: PMC8247907 DOI: 10.3389/fpls.2021.681283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is an important adaptive trait that determines plant architecture. In a previous study, the Early bud-break 1 (EBB1) gene in peach (Prunus persica var. nectarina) cultivar Zhongyou 4 was transformed into poplar (Populus trichocarpa). PpEBB1-oe poplar showed a more branched phenotype. To understand the potential mechanisms underlying the EBB1-mediated branching, transcriptomic and proteomics analyses were used. The results showed that a large number of differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with light response, sugars, brassinosteroids (BR), and nitrogen metabolism were significantly enriched in PpEBB1-oe poplar. In addition, contents of sugars, BR, and amino acids were measured. Results showed that PpEBB1 significantly promoted the accumulation of fructose, glucose, sucrose, trehalose, and starch. Contents of brassinolide (BL), castasterone (CS), and 6-deoxocathasterone (6-deoxoCS) were all significantly changed with overexpressing PpEBB1. Various types of amino acids were measured and four of them were significantly improved in PpEBB1-oe poplar, including aspartic acid (Asp), arginine (Arg), cysteine (Cys), and tryptohpan (Trp). Taken together, shoot branching is a process controlled by a complex regulatory network, and PpEBB1 may play important roles in this process through the coordinating multiple metabolic pathways involved in shoot branching, including light response, phytohormones, sugars, and nitrogen.
Collapse
Affiliation(s)
- Xuehui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Chen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Li Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- Ling Li,
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- *Correspondence: Xiling Fu,
| |
Collapse
|
10
|
Mallet J, Laufs P, Leduc N, Le Gourrierec J. Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. FRONTIERS IN PLANT SCIENCE 2021; 12:770363. [PMID: 35173747 PMCID: PMC8841825 DOI: 10.3389/fpls.2021.770363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is highly dependent on environmental factors. While many species show some light dependence for branching, the rosebush shows a strict requirement for light to allow branching, making this species an excellent model to further understand how light impinges on branching. Here, in the first part, we provide a review of the current understanding of how light may modulate the complex regulatory network of endogenous factors like hormones (SL, IAA, CK, GA, and ABA), nutrients (sugar and nitrogen), and ROS to control branching. We review the regulatory contribution of microRNAs (miRNAs) to branching in different species, highlighting the action of such evolutionarily conserved factors. We underline some possible pathways by which light may modulate miRNA-dependent regulation of branching. In the second part, we exploit the strict light dependence of rosebush for branching to identify putative miRNAs that could contribute to the photocontrol of branching. For this, we first performed a profiling of the miRNAs expressed in early light-induced rosebush buds and next tested whether they were predicted to target recognized regulators of branching. Thus, we identified seven miRNAs (miR156, miR159, miR164, miR166, miR399, miR477, and miR8175) that could target nine genes (CKX1/6, EXPA3, MAX4, CYCD3;1, SUSY, 6PFK, APX1, and RBOHB1). Because these genes are affecting branching through different hormonal or metabolic pathways and because expression of some of these genes is photoregulated, our bioinformatic analysis suggests that miRNAs may trigger a rearrangement of the regulatory network to modulate branching in response to light environment.
Collapse
Affiliation(s)
- Julie Mallet
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nathalie Leduc
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - José Le Gourrierec
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- *Correspondence: José Le Gourrierec,
| |
Collapse
|
11
|
Sugar Transporter, CmSWEET17, Promotes Bud Outgrowth in Chrysanthemum Morifolium. Genes (Basel) 2019; 11:genes11010026. [PMID: 31878242 PMCID: PMC7017157 DOI: 10.3390/genes11010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that 20 mM sucrose promotes the upper axillary bud outgrowth in two-node stems of Chrysanthemum morifolium. In this study, we aimed to screen for potential genes involved in this process. Quantitative reverse transcription (qRT)-PCR analysis of sugar-related genes in the upper axillary bud of plants treated with 20 mM sucrose revealed the specific expression of the gene CmSWEET17. Expression of this gene was increased in the bud, as well as the leaves of C. morifolium, following exogenous sucrose treatment. CmSWEET17 was isolated from C. morifolium and a subcellular localization assay confirmed that the protein product was localized in the cell membrane. Overexpression of CmSWEET17 promoted upper axillary bud growth in the two-node stems treatment as compared with the wild-type. In addition, the expression of auxin transporter genes CmAUX1, CmLAX2, CmPIN1, CmPIN2, and CmPIN4 was upregulated in the upper axillary bud of CmSWEET17 overexpression lines, while indole-3-acetic acid content decreased. The results suggest that CmSWEET17 could be involved in the process of sucrose-induced axillary bud outgrowth in C. morifolium, possibly via the auxin transport pathway.
Collapse
|
12
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
13
|
Wang M, Ogé L, Voisine L, Perez-Garcia MD, Jeauffre J, Hibrand Saint-Oyant L, Grappin P, Hamama L, Sakr S. Posttranscriptional Regulation of RhBRC1 ( Rosa hybrida BRANCHED1) in Response to Sugars is Mediated via its Own 3' Untranslated Region, with a Potential Role of RhPUF4 (Pumilio RNA-Binding Protein Family). Int J Mol Sci 2019; 20:ijms20153808. [PMID: 31382685 PMCID: PMC6695800 DOI: 10.3390/ijms20153808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/07/2023] Open
Abstract
The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene of BRC1 in Rosa hybrida) is a main branching regulator whose posttranscriptional regulation in response to sugar was investigated through its 3'UTR. Transformed Rosa calluses containing a construction composed of the CaMV35S promoter, the green fluorescent protein (GFP) reporter gene, and the 3'UTR of RhBRC1 (P35S:GFP::3'UTRRhBRC1) were obtained and treated with various combinations of sugars and with sugar metabolism effectors. The results showed a major role of the 3'UTR of RhBRC1 in response to sugars, involving glycolysis/the tricarboxylic acid cycle (TCA) and the oxidative pentose phosphate pathway (OPPP). In Rosa vegetative buds, sequence analysis of the RhBRC1 3'UTR identified six binding motifs specific to the Pumilio/FBF RNA-binding protein family (PUF) and probably involved in posttranscriptional regulation. RhPUF4 was highly expressed in the buds of decapitated plants and in response to sugar availability in in-vitro-cultured buds. RhPUF4 was found to be close to AtPUM2, which encodes an Arabidopsis PUF protein. In addition, sugar-dependent upregulation of RhPUF4 was also found in Rosa calluses. RhPUF4 expression was especially dependent on the OPPP, supporting its role in OPPP-dependent posttranscriptional regulation of RhBRC1. These findings indicate that the 3'UTR sequence could be an important target in the molecular regulatory network of RhBRC1 and pave the way for investigating new aspects of RhBRC1 regulation.
Collapse
Affiliation(s)
- Ming Wang
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | - Laurent Ogé
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | - Linda Voisine
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | | | - Julien Jeauffre
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | | | - Philippe Grappin
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | - Latifa Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49000 Angers, France.
| |
Collapse
|
14
|
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S. BRANCHED1: A Key Hub of Shoot Branching. FRONTIERS IN PLANT SCIENCE 2019; 10:76. [PMID: 30809235 PMCID: PMC6379311 DOI: 10.3389/fpls.2019.00076] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/17/2019] [Indexed: 05/20/2023]
Abstract
Shoot branching is a key process for plant growth and fitness. Newly produced axes result from axillary bud outgrowth, which is at least partly mediated through the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms, it is influenced by endogenous (phytohormones and nutrients) and exogenous (light) inputs, which involve so-far only partly identified molecular networks. This review highlights the central role of BRC1 in shoot branching and its responsiveness to different stimuli, and emphasizes the different knowledge gaps that should be addressed in the near future.
Collapse
Affiliation(s)
- Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marie-Anne Le Moigne
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jessica Bertheloot
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Crespel
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sabine Demotes-Mainard
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, UPR2357, Université de Strasbourg, Strasbourg, France
| | - Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
15
|
Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum ( Dendranthema grandiflorum 'Jinba'). Int J Mol Sci 2018; 19:ijms19061590. [PMID: 29843424 PMCID: PMC6032274 DOI: 10.3390/ijms19061590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022] Open
Abstract
Single-flower cut Chrysanthemum (Dendranthema grandiflorum 'Jinba') holds a unique status in global floriculture industry. However, the extensive axillary bud outgrowth presents a major drawback. Shade is an environment cue that inhibits shoot branching. Present study was aimed at investigating the effect of ratio of red to far-red light (R:FR) in regulating the lateral bud outgrowth of Chrysanthemum and the detailed mechanism. Results showed that the fate of axillary buds at specific positions in stem exhibited difference in response to R:FR. Decreasing R:FR resulted in elevation of abscisic acid (ABA) accumulation in axillary buds. Expression of ABA, indole-3-acetic acid (IAA) and strigolactones (SL) -related metabolism and signal transduction genes was significantly changed in response to low R:FR. In addition, low R:FR caused the re-distribution of sucrose across the whole plant, driving more sucrose towards bottom buds. Our results indicate that low R:FR not always inhibits bud outgrowth, rather its influence depends on the bud position in the stem. ABA, SL and auxin pathways were involved in the process. Interestingly, sucrose also appears to be involved in the process which is necessary to pay attention in the further studies. The present study also lays the foundation for developing methods to regulate axillary bud outgrowth in Chrysanthemum.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Liangjun Zhao
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Corot A, Roman H, Douillet O, Autret H, Perez-Garcia MD, Citerne S, Bertheloot J, Sakr S, Leduc N, Demotes-Mainard S. Cytokinins and Abscisic Acid Act Antagonistically in the Regulation of the Bud Outgrowth Pattern by Light Intensity. FRONTIERS IN PLANT SCIENCE 2017; 8:1724. [PMID: 29067031 PMCID: PMC5641359 DOI: 10.3389/fpls.2017.01724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Bud outgrowth is a key process in the elaboration of yield and visual quality in rose crops. Although light intensity is well known to affect bud outgrowth, little is known on the mechanisms involved in this regulation. The objective of this work was to test if the control of bud outgrowth pattern along the stem by photosynthetic photon flux density (PPFD) is mediated by sugars, cytokinins and/or abscisic acid in intact rose plants. Rooted cuttings of Rosa hybrida 'Radrazz' were grown in growth chambers under high PPFD (530 μmol m-2 s-1) until the floral bud visible stage. Plants were then either placed under low PPFD (90 μmol m-2 s-1) or maintained under high PPFD. Bud outgrowth inhibition by low PPFD was associated with lower cytokinin and sugar contents and a higher abscisic acid content in the stem. Interestingly, cytokinin supply to the stem restored bud outgrowth under low PPFD. On the other hand, abscisic acid supply inhibited outgrowth under high PPFD and antagonized bud outgrowth stimulation by cytokinins under low PPFD. In contrast, application of sugars did not restore bud outgrowth under low PPFD. These results suggest that PPFD regulation of bud outgrowth in rose involves a signaling pathway in which cytokinins and abscisic acid play antagonistic roles. Sugars can act as nutritional and signaling compounds and may be involved too, but do not appear as the main regulator of the response to PPFD.
Collapse
Affiliation(s)
- Adrien Corot
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | - Hanaé Roman
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | - Odile Douillet
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | - Hervé Autret
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin Centre de Versailles-Grignon (IJPB), INRA, Agro-ParisTech, CNRS, Versailles, France
| | - Jessica Bertheloot
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | - Nathalie Leduc
- IRHS, Université d’Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, Beaucouzé, France
| | | |
Collapse
|
17
|
Roman H, Girault T, Le Gourrierec J, Leduc N. In silico analysis of 3 expansin gene promoters reveals 2 hubs controlling light and cytokinins response during bud outgrowth. PLANT SIGNALING & BEHAVIOR 2017; 12:e1284725. [PMID: 28263675 PMCID: PMC5351728 DOI: 10.1080/15592324.2017.1284725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bud outgrowth is under the intricate control of environmental and endogenous factors. In a recent paper, 1 we demonstrated that light perceived by Rosa buds triggers cytokinins (CK) synthesis within 3 hours in the adjacent node followed by their transport to the bud. There, CK control expression of a set of major genes (strigolactones-, auxin-, sugar sink strength-, cells division and elongation-related genes) leading to bud outgrowth in light. Conversely, under dark condition, CK accumulation and transport to the bud are repressed and no bud outgrowth occurs. In this paper, we show that the 3 expansin genes RhEXPA1,2,3 are under the control of both light and CK during bud outgrowth. In silico analysis of promoter sequences highlights 2 regions enriched in light and CK cis-regulatory elements as well as a specific cis-element in pRhEXPA3, potentially responsible for the expression patterns observed in response to CK and light.
Collapse
Affiliation(s)
- Hanaé Roman
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - Tiffanie Girault
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - José Le Gourrierec
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
| | - Nathalie Leduc
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, Beaucouzé cedex, France
- CONTACT Nathalie Leduc IRHS, Campus du Végétal, 42 rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
18
|
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. FRONTIERS IN PLANT SCIENCE 2015; 5:741. [PMID: 25628627 PMCID: PMC4292231 DOI: 10.3389/fpls.2014.00741] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TEOSINTE BRANCHED1, CYCLOIDEA, PCF transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.
Collapse
Affiliation(s)
- Catherine Rameau
- Institut Jean-Pierre Bourgin, INRA, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
- Institut Jean-Pierre Bourgin, AgroParisTech, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | | | - Nathalie Leduc
- UMR1345 IRHS, Université d’Angers, SFR 4207 QUASAV, Angers, France
| | - Bruno Andrieu
- UMR1091 EGC, INRA, Thiverval-Grignon, France
- UMR1091 EGC, AgroParisTech, Thiverval-Grignon, France
| | | | - Soulaiman Sakr
- UMR1345 IRHS, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
19
|
Leduc N, Roman H, Barbier F, Péron T, Huché-Thélier L, Lothier J, Demotes-Mainard S, Sakr S. Light Signaling in Bud Outgrowth and Branching in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:223-50. [PMID: 27135502 PMCID: PMC4844300 DOI: 10.3390/plants3020223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future.
Collapse
Affiliation(s)
- Nathalie Leduc
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Hanaé Roman
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - François Barbier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Thomas Péron
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Lydie Huché-Thélier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Jérémy Lothier
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Sabine Demotes-Mainard
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Soulaiman Sakr
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| |
Collapse
|
20
|
Demotes-Mainard S, Bertheloot J, Boumaza R, Huché-Thélier L, Guéritaine G, Guérin V, Andrieu B. Rose bush leaf and internode expansion dynamics: analysis and development of a model capturing interplant variability. FRONTIERS IN PLANT SCIENCE 2013; 4:418. [PMID: 24167509 PMCID: PMC3807087 DOI: 10.3389/fpls.2013.00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/01/2013] [Indexed: 05/13/2023]
Abstract
Rose bush architecture, among other factors, such as plant health, determines plant visual quality. The commercial product is the individual plant and interplant variability may be high within a crop. Thus, both mean plant architecture and interplant variability should be studied. Expansion is an important feature of architecture, but it has been little studied at the level of individual organs in rose bushes. We investigated the expansion kinetics of primary shoot organs, to develop a model reproducing the organ expansion of real crops from non-destructive input variables. We took interplant variability in expansion kinetics and the model's ability to simulate this variability into account. Changes in leaflet and internode dimensions over thermal time were recorded for primary shoot expansion, on 83 plants from three crops grown in different climatic conditions and densities. An empirical model was developed, to reproduce organ expansion kinetics for individual plants of a real crop of rose bush primary shoots. Leaflet or internode length was simulated as a logistic function of thermal time. The model was evaluated by cross-validation. We found that differences in leaflet or internode expansion kinetics between phytomer positions and between plants at a given phytomer position were due mostly to large differences in time of organ expansion and expansion rate, rather than differences in expansion duration. Thus, in the model, the parameters linked to expansion duration were predicted by values common to all plants, whereas variability in final size and organ expansion time was captured by input data. The model accurately simulated leaflet and internode expansion for individual plants (RMSEP = 7.3 and 10.2% of final length, respectively). Thus, this study defines the measurements required to simulate expansion and provides the first model simulating organ expansion in rosebush to capture interplant variability.
Collapse
Affiliation(s)
- Sabine Demotes-Mainard
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Jessica Bertheloot
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Rachid Boumaza
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Lydie Huché-Thélier
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Gaëlle Guéritaine
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Vincent Guérin
- Institut National de la Recherche Agronomique, UMR1345 IRHSBeaucouzé, France
- Agrocampus-Ouest, UMR1345 IRHSAngers, France
- Université d'Angers, UMR1345 IRHSAngers, France
- SFR4207 QUASAVAngers, France
| | - Bruno Andrieu
- Institut National de la Recherche Agronomique, UMR1091 EGCThiverval-Grignon, France
- AgroParisTech, UMR1091 EGCThiverval-Grignon, France
| |
Collapse
|
21
|
Dubois A, Carrere S, Raymond O, Pouvreau B, Cottret L, Roccia A, Onesto JP, Sakr S, Atanassova R, Baudino S, Foucher F, Le Bris M, Gouzy J, Bendahmane M. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics 2012; 13:638. [PMID: 23164410 PMCID: PMC3518227 DOI: 10.1186/1471-2164-13-638] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/06/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. RESULTS Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. CONCLUSIONS The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy.
Collapse
Affiliation(s)
- Annick Dubois
- Reproduction et Développement des Plantes UMR INRA-CNRS- Université Lyon 1-ENSL, Ecole Normale Supérieure, 46 allée d'Italie, Lyon Cedex 07 69364, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|