1
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Yang R, Huang J, Ma H, Li S, Gao X, Liu Y, Shen J, Liao A. Is complement C1q a potential marker for tumor burden and immunodeficiency in multiple myeloma? Leuk Lymphoma 2019; 60:1812-1818. [PMID: 30628497 DOI: 10.1080/10428194.2018.1543883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) patients are immunodeficient. Complement C1q is an important cofactor of both nonspecific and humoral immunity, and it participates in the immunomodulation of multiple tumors. Thus, this study aimed to determine the risk factors and clinical significance of C1q expression in MM patients. In total, 193 MM patients were examined. The mean value of C1q in the patient group (130.46 ± 36.17 mg/L), was lower than that in the control group (anemia and nonmalignant hematologic disease). C1q dynamically changed with different MM stages and was recovered to normal levels when the disease was in remission; however, it decreased again after disease progression. The risk factors of C1q reduction included Durie-Salmon stage and the immunoglobulin type of the disease. In conclusion, C1q appears to be a useful biomarker of tumor burden and a prognostic factor of disease relapse. C1q is a potential marker of the immunodeficiency status in MM patients.
Collapse
Affiliation(s)
- Ronghui Yang
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Jin Huang
- b Department of Radiotherapy , The First Hospital of China Medical University , Shenyang , China
| | - Huanxin Ma
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Shiwen Li
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Xin Gao
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Yingshu Liu
- c Department of Laboratory , Shengjing Hospital of China Medical University , Shenyang , China
| | - Jing Shen
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Aijun Liao
- a Department of Hematology , Shengjing Hospital of China Medical University , Shenyang , China
| |
Collapse
|
4
|
García-Muñoz R, Llorente L. Chronic lymphocytic leukaemia: could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology 2014; 142:536-50. [PMID: 24645778 PMCID: PMC4107664 DOI: 10.1111/imm.12285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance theory in chronic lymphocytic leukaemia (CLL): we suggest that B cells that express B-cell receptors (BCR) that recognize their own BCR epitopes are viewed by immune system as 'dangerous cells'. BCR autonomous signalling may induce constant receptor editing and mistakes in allelic exclusion. The fact that whole BCR recognizes a self-antigen or foreing antigen may be irrelevant in early B cell development. In early B cells, autonomous signalling induced by recognition of the BCR's own epitopes simulates an antigen-antibody engagement. In the bone marrow this interaction is viewed as recognition of self-molecules and induces receptor editing. In mature B cells autonomous signalling by the BCR may promote 'reversible anergy' and also may correct self-reactivity induced by the somatic hypermutation mechanisms in mutated CLL B cells. However, in unmutated CLL B cells, BCR autonomous signalling in addition to self-antigen recognition augments B cell activation, proliferation and genomic instability. We suggest that CLL originates from a coordinated normal immunologic tolerance mechanism to destroy self-reactive B cells. Additional genetic damage induced by tolerance mechanisms may immortalize self-reactive B cells and transform them into a leukemia.
Collapse
Affiliation(s)
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City, México
| |
Collapse
|
5
|
García-Muñoz R, Roldan Galiacho V, Llorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann Hematol 2012; 91:981-96. [PMID: 22526361 PMCID: PMC3368117 DOI: 10.1007/s00277-012-1460-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/26/2012] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Profiling
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/physiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Models, Biological
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/physiology
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/physiology
Collapse
Affiliation(s)
- Ricardo García-Muñoz
- Hematology Department, Hospital San Pedro, c/Piqueras 98, Logroño, La Rioja, 26006, Spain.
| | | | | |
Collapse
|
6
|
Andrianova EP, Krementsugskaia SR, Lugovskaia NN, Mayorova TK, Borisov VV, Eldarov MA, Ravin NV, Folimonov AS, Skryabin KG. Foot and mouth disease virus polyepitope protein produced in bacteria and plants induces protective immunity in guinea pigs. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:339-46. [PMID: 21568869 DOI: 10.1134/s0006297911030072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The goal of this project was to develop an alternative foot and mouth disease (FMD) vaccine candidate based on a recombinant protein consisting of efficient viral epitopes. A recombinant gene was designed that encodes B-cell epitopes of proteins VP1 and VP4 and T-cell epitopes of proteins 2C and 3D. The polyepitope protein (H-PE) was produced in E. coli bacteria or in N. benthamiana plants using a phytovirus expression system. The methods of extraction and purification of H-PE proteins from bacteria and plants were developed. Immunization of guinea pigs with the purified H-PE proteins induced an efficient immune response against foot and mouth disease virus (FMDV) serotype O/Taiwan/99 and protection against the disease. The polyepitope protein H-PE can be used as a basis for developing a new recombinant vaccine against FMD.
Collapse
Affiliation(s)
- E P Andrianova
- Bioengineering Center, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
García-Muñoz R, Anton J, Rodriguez-Otero P, Moreno C, Sanchez-Ibarrola A, Seijo LM, Páramo JA. Common variable immunodeficiency and Evans syndrome complicated by autoimmune hemolysis due to anti-Jka auto-antibodies. Leuk Lymphoma 2008; 49:1220-2. [PMID: 18452064 DOI: 10.1080/10428190801993488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|