1
|
Grape BES1 transcription factor gene VvBES1-3 confers salt tolerance in transgenic Arabidopsis. Gene X 2023; 854:147059. [PMID: 36535462 DOI: 10.1016/j.gene.2022.147059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
BRI1-EMS-Suppressor 1 (BES1) regulates plant growth, development, and stress resistance, and plays a pivotal role in the brassinosteroid (BR) signal transduction pathway. In this study, a total of 12 BES1 genes were identified in the grape (Vitis vinifera) genome. Phylogenetic, structure, and motif sequence analyses of these genes provided insights into their evolutionary characteristics. Hormone-, stress-, and light-responsive and organ-specific cis-acting elements were identified in VvBES1 gene promoters. Microarray data analysis showed that VvBES1 family members exhibit diverse expression patterns in different organs. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of VvBES1 genes differed in response to BR, methyl jasmonate (MeJA), cold (4 °C), NaCl, and polyethylene glycol (PEG) treatments. The expression of VvBES1-3 was 29-fold higher under salt stress than control at 12 h. Moreover, VvBES1-3-overexpessing Arabidopsis thaliana plants showed lower malondialdehyde content, higher proline content, enhanced antioxidant enzyme (catalase, superoxide dismutase, peroxidase) activities, and higher salt-responsive gene expression levels than wild-type plants under salt stress, indicating that VvBES1-3 overexpression enhances salt stress tolerance in transgenic Arabidopsis. These results will contribute to further understanding the functions of BES1 transcription factors in the abiotic stress response.
Collapse
|
2
|
Novel biotechnological strategies to combat biotic stresses: polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Appl Microbiol Biotechnol 2020; 104:2333-2342. [DOI: 10.1007/s00253-020-10396-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 01/26/2023]
|
3
|
Zhang C, Feng C, Wang J, Kong F, Sun W, Wang F. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum. Heliyon 2016; 2:e00110. [PMID: 27441281 PMCID: PMC4946289 DOI: 10.1016/j.heliyon.2016.e00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
Polygalacturonase inhibiting proteins (PGIPs) are major defensive proteins produced by plant cell walls that play a crucial role in pathogen resistance by reducing polygalacturonase (PG) activity. In the present study, a novel PGIP gene was isolated from tobacco (Nicotiana tabacum), hereafter referred as NtPGIP. A full-length NtPGIP cDNA of 1,412 bp with a 186 bp 5'-untranslated region (UTR), and 209 bp 3'-UTR was cloned from tobacco, NtPGIP is predicted to encode a protein of 338 amino acids. The NtPGIP sequence from genomic DNA showed no introns and sequence alignments of NtPGIP's deduced amino acid sequence showed high homology with known PGIPs from other plant species. Moreover, the putative NtPGIP protein was closely clustered with several Solanaceae PGIPs. Further, the expression profile of NtPGIP was examined in tobacco leaves following stimulation with the oomycete Phytophthora nicotianae and other stressors, including salicylic acid (SA), abscisic acid (ABA), salt, and cold treatment. The results showed that all of the treatments up-regulated the expression of NtPGIP at different times. To understand the biochemical activity of NtPGIP gene, a full-length NtPGIP cDNA sequence was subcloned into a pET28a vector and transformed into E. coli BL21 (DE3). Recombinant proteins were successfully induced by 1.0 nmol/L IPTG and the purified proteins effectively inhibited Phytophthora capsici PG activity. The results of this study suggest that NtPGIP may be a new candidate gene with properties that could be exploited in plant breeding.
Collapse
Affiliation(s)
- Chengsheng Zhang
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuanjing Road Four, Qingdao, Shandong 266101, China
| | - Chao Feng
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuanjing Road Four, Qingdao, Shandong 266101, China
| | - Jing Wang
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuanjing Road Four, Qingdao, Shandong 266101, China
| | - Fanyu Kong
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuanjing Road Four, Qingdao, Shandong 266101, China
| | - Wenxiu Sun
- Yangtze University, No.1 Jingzhou, Nanhuan Road, Hubei 434023, China
| | - Fenglong Wang
- Tobacco Pest Integrated Management Key Laboratory of China, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuanjing Road Four, Qingdao, Shandong 266101, China
| |
Collapse
|
4
|
Oliveira MB, Junior ML, Grossi-de-Sá MF, Petrofeza S. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:13-22. [PMID: 26037694 DOI: 10.1016/j.jplph.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 05/27/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen that causes a disease known as white mold, which is a major problem for dry bean (Phaseolus vulgaris L.) and other crops in many growing areas in Brazil. To investigate the role of methyl jasmonate (MeJA) in defending dry bean plants against S. sclerotiorum, we used suppression subtractive hybridization (SSH) of cDNA and identified genes that are differentially expressed during plant-pathogen interactions after treatment. Exogenous MeJA application enhanced resistance to the pathogen, and SSH analyses led to the identification of 94 unigenes, presumably involved in a variety of functions, which were classified into several functional categories, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. Using RT-qPCR, some unigenes were found to be differentially expressed in a time-dependent manner in dry bean plants during the interaction with S. sclerotiorum after MeJA treatment, including the pathogenesis-related protein PR3 (chitinase), PvCallose (callose synthase), PvNBS-LRR (NBS-LRR resistance-like protein), PvF-box (F-box family protein-like), and a polygalacturonase inhibitor protein (PGIP). Based on these expression data, the putative roles of differentially expressed genes were discussed in relation to the disease and MeJA resistance induction. Changes in the activity of the pathogenesis-related proteins β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, and peroxidase in plants after MeJA treatment and following inoculation of the pathogen were also investigated as molecular markers of induced resistance. Foliar application of MeJA induced partial resistance against S. sclerotiorum in plants as well as a consistent increase in pathogenesis-related protein activities. Our findings provide new insights into the physiological and molecular mechanisms of resistance induced by MeJA in the P. vulgaris-S. sclerotiorum pathosystem.
Collapse
Affiliation(s)
- Marília Barros Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74.001-940, Goiânia, GO, Brazil
| | - Murillo Lobo Junior
- Embrapa Arroz e Feijão, Caixa Postal 179, 75375-000 Santo Antônio de Goiás, GO, Brazil
| | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Interação Molecular Planta-Praga, W5 Norte, 70770-900 Brasília, DF, Brazil
| | - Silvana Petrofeza
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74.001-940, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
6
|
Prabhu SA, Wagenknecht M, Melvin P, Gnanesh Kumar BS, Veena M, Shailasree S, Moerschbacher BM, Kini KR. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol Biol Rep 2015; 42:1123-38. [PMID: 25596722 DOI: 10.1007/s11033-015-3850-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022]
Abstract
Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.
Collapse
Affiliation(s)
- Sreedhara Ashok Prabhu
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:146. [PMID: 25852708 PMCID: PMC4367531 DOI: 10.3389/fpls.2015.00146] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 05/20/2023]
Abstract
Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens.
Collapse
Affiliation(s)
- Raviraj M. Kalunke
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
| | - Silvio Tundo
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
| | - Manuel Benedetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
- Giulia De Lorenzo, Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Roma, Italy
| | - Renato D'Ovidio
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
- *Correspondence: Renato D'Ovidio, Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università Degli Studi Della Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Joubert DA, de Lorenzo G, Vivier MA. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis. JOURNAL OF PLANT RESEARCH 2013; 126:267-81. [PMID: 22932820 DOI: 10.1007/s10265-012-0515-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 07/04/2012] [Indexed: 05/10/2023]
Abstract
Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.
Collapse
Affiliation(s)
- D Albert Joubert
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, Stellenbosch 7600, South Africa
| | | | | |
Collapse
|
9
|
Wang X, Zhu X, Tooley P, Zhang X. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. PLANT MOLECULAR BIOLOGY 2013; 81:379-400. [PMID: 23334855 DOI: 10.1007/s11103-013-0007-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/01/2013] [Indexed: 05/10/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant's resistance to disease.
Collapse
Affiliation(s)
- Xiuju Wang
- Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong street, Tai'an, 271018, Shandong, China
| | | | | | | |
Collapse
|
10
|
Prabhu SA, Kini KR, Raj SN, Moerschbacher BM, Shetty HS. Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew. Acta Biochim Biophys Sin (Shanghai) 2012; 44:415-23. [PMID: 22411686 DOI: 10.1093/abbs/gms015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polygalacturonase-inhibitor protein (PGIP) is a defense protein found in plant cell walls. It prevents the degradation of pectin by modulating the endo-polygalacturonase activity. The present study has used heterologous anti-bean PGIP probes to investigate the role of PGIP in pearl millet [Pennisetum glaucum (L) R. Br.] resistance against downy mildew caused by oomycete pathogen Sclerospora graminicola (Sacc.) Schroet. Northern blot analysis using bean pgip2 DNA fragment as probe showed an early and marked induction of transcripts (∼1.2 kb) upon pathogen-inoculation in pearl millet cultivar resistant to downy mildew, with the maximum level observed at 24 and 48 h post-inoculation (h.p.i.). Western blot analysis of pearl millet total cell wall proteins using antibodies against bean PGIP showed the presence of a major band of ∼43 kDa, and several minor ones. The protein accumulation was higher in resistant seedlings than in susceptible seedlings with a differential expression observed only in the case of incompatible interaction. Immunocytochemical localization in epidermal peelings of coleoptiles and tissue-printing showed a similar trend in the PGIP accumulation. PGIP was found to localize in the epidermal as well as in the vascular regions of tissues. Higher accumulation was observed in the stomatal guard cells of resistant cultivar inoculated with the pathogen. PGIP activity of pearl millet total protein extracts when assayed against Aspergillus niger PG displayed differential PG inhibitory activities between the resistant and suceptible cultivars with resistant sample showing the highest inhibition of 16%, post-pathogen treatment. Thus, PGIP appeared to be an important player in pearl millet-S. graminicola interaction leading to host resistance.
Collapse
Affiliation(s)
- S Ashok Prabhu
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Karnataka, India
| | | | | | | | | |
Collapse
|
11
|
Guerrero-González ML, Rodríguez-Kessler M, Rodríguez-Guerra R, González-Chavira M, Simpson J, Sanchez F, Jiménez-Bremont JF. Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. PLANT CELL REPORTS 2011; 30:1465-73. [PMID: 21416283 DOI: 10.1007/s00299-011-1055-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 02/08/2011] [Accepted: 02/24/2011] [Indexed: 05/22/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption; however, bean production is affected by several diseases such as Rhizoctonia root rot. Few bean cultivars have been identified that effectively resist the attack of this fungus. Herein, we used the P. vulgaris Pv-2094 landrace, which is less susceptible to Rhizoctonia root rot, for the construction of a suppressive subtractive hybridization cDNA library in order to isolate plant defense-related genes. Total RNAs obtained after 8 and 16 h from inoculated and non-inoculated roots with R. solani Kühn, were used as the source of the "tester" and the "driver" samples, respectively. A total of 136 unigenes were obtained and classified into 12 functional categories. Six unigenes were selected to analyze for differential expression by qRT-PCR, including a receptor-like kinase (PvRK20-1), an acid phosphatase associated to defense (PA), a pathogenesis related protein (PR1), an ethylene responsive factor (ERF), a polygalacturonase inhibitor protein (PGIP), and an alpha-dioxygenase (α-DOX). These genes were found to be differentially expressed in a time-dependent manner in bean roots during the interaction with R. solani. Data generated from this study will contribute to the understanding of the molecular mechanisms associated with plant defense against root rot in common bean.
Collapse
Affiliation(s)
- M L Guerrero-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055 AP 3-74 Tangamanga, CP 78216, San Luís Potosí, México
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Di C, Li M, Long F, Bai M, Liu Y, Zheng X, Xu S, Xiang Y, Sun Z, An L. Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana. PLANTA 2009; 231:169-178. [PMID: 19885675 DOI: 10.1007/s00425-009-1039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins. To date, no spatial distribution of PGIPs and interaction between PGIPs and nitric oxide (NO) in plant were described. Here, we first reported the full-length cDNA sequence of PGIP of Chorispora bungeana (CbPGIP1). Notably, immunofluorescence localization showed that the CbPGIP was evenly distributed in leaves but it was mainly localized in epidermis and vascular bundle in stems and roots. Further studies indicated that CbPGIP had higher abundance in roots than in stems and leaves. Conversely, the bulk PGIP of C. bungeana showed a higher activity in leaves than in stems and roots. In addition, quantitative real-time polymerase chain reaction demonstrated that CbPGIP1 expression was induced by Stemphylium solani, salicylic acid (SA), 4, -4 degrees C and NO. This is a first report attempting to predict if NO can induce the PGIP expression. Taken together, these findings showed that the gene was spatially regulated and NO and SA might take part in CbPGIP1 expression induced by biotic and abiotic stresses. This study highlighted the potential importance of CbPGIP1 and NO in plant resistance.
Collapse
Affiliation(s)
- Cuixia Di
- Key Laboratory of Arid and Grassland Agroecology (Ministry Education), School of Life Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT. Strangers in the matrix: plant cell walls and pathogen susceptibility. TRENDS IN PLANT SCIENCE 2008; 13:610-7. [PMID: 18824396 DOI: 10.1016/j.tplants.2008.09.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 05/04/2023]
Abstract
Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions. The plant cell wall can be an effective physical barrier to pathogens, but also it is a matrix where many proteins involved in pathogen perception are delivered. By breaching the wall, a pathogen potentially reveals itself to the plant and activates responses, setting off events that might halt or limit its advance.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
15
|
Di C, Zhang M, Xu S, Cheng T, An L. Role of Poly-Galacturonase Inhibiting Protein in Plant Defense. Crit Rev Microbiol 2008; 32:91-100. [PMID: 16809233 DOI: 10.1080/10408410600709834] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins believed to play an important role in the defense against plant pathogen fungals. PGIPs are glycoproteins located in plant cell wall which reduce the hydrolytic activity of polygalacturonases (PGs), limit the growth of plant pathogens, and also elicit defense responses in plant. Furthermore, PGIPs belong to the super family of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. Many of the studies show the PGIP properties, molecular characteristics, and PGIP gene expression induced by some elicitors. Some of the studies review individual PGIP gene expression in different signal transduction pathways. This article summarizes the properties, different signal transduction mechanisms, detecting methods, transgenic plants, and function of PGIP. It also presents PGIP gene expression in different stages of maturity, tissues, and varieties. The review especially reports the particular PGIP gene expression induced by different biotic and abiotic stresses, offers some questions, and prospects the future study, which are needed in order to develop efficient strategies for disease-resistant plants. They may be useful for genetic engineering to obtain transgenic plants with increased tolerance to fungal infection, which decrease the use of insecticide.
Collapse
Affiliation(s)
- Cuixia Di
- State Key Laboratory of Arid Agroecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 2008; 105:859-64. [PMID: 18199833 PMCID: PMC2242701 DOI: 10.1073/pnas.0709813105] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Indexed: 11/18/2022] Open
Abstract
Fruit ripening is characterized by processes that modify texture and flavor but also by a dramatic increase in susceptibility to necrotrophic pathogens, such as Botrytis cinerea. Disassembly of the major structural polysaccharides of the cell wall (CW) is a significant process associated with ripening and contributes to fruit softening. In tomato, polygalacturonase (PG) and expansin (Exp) are among the CW proteins that cooperatively participate in ripening-associated CW disassembly. To determine whether endogenous CW disassembly influences the ripening-regulated increase in necrotropic pathogen susceptibility, B. cinerea susceptibility was assessed in transgenic fruit with suppressed polygalacturonase (LePG) and expansin (LeExp1) expression. Suppression of either LePG or LeExp1 alone did not reduce susceptibility but simultaneous suppression of both dramatically reduced the susceptibility of ripening fruit to B. cinerea, as measured by fungal biomass accumulation and by macerating lesion development. These results demonstrate that altering endogenous plant CW disassembly during ripening influences the course of infection by B. cinerea, perhaps by changing the structure or the accessibility of CW substrates to pathogen CW-degrading enzymes. Recognition of the role of ripening-associated CW metabolism in postharvest pathogen susceptibility may be useful in the design and development of strategies to limit pathogen losses during fruit storage, handling, and distribution.
Collapse
Affiliation(s)
- D. Cantu
- Departments of *Plant Sciences and
| | - A. R. Vicente
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-UNLP) and Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CP 1900, Argentina; and
| | | | - F. M. Dewey
- Viticulture and Enology, University of California, Davis, CA 95616
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | | | | | | |
Collapse
|
17
|
Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JAL. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:392-402. [PMID: 17427809 DOI: 10.1094/mpmi-20-4-0392] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six endopolygalacturonases from Botrytis cinerea (BcPG1 to BcPG6) as well as mutated forms of BcPG1 and BcPG2 were expressed transiently in leaves of Nicotiana benthamiana using agroinfiltration. Expression of BcPG1, BcPG2, BcPG4, BcPG5, and mutant BcPG1-D203A caused symptoms, whereas BcPG3, BcPG6, and mutant BcPG2-D192A caused no symptoms. Expression of BcPG2 caused the most severe symptoms, including wilting and necrosis. BcPG2 previously has been shown to be essential for B. cinerea virulence. The in vivo effect of this enzyme and the inhibition by a polygalacturonase-inhibiting protein (PGIP) was examined by coexpressing Bcpg2 and the Vvpgipl gene from Vitis vinifera in N. benthamiana. Coinfiltration resulted in a substantial reduction of the symptoms inflicted by the activity of BcPG2 in planta, as evidenced by quantifying the variable chlorophyll fluorescence yield. In vitro, however, no interaction between pure VvPGIP1 and pure BcPG2 was detected. Specifically, VvPGIP1 neither inhibited BcPG2 activity nor altered the degradation profile of polygalacturonic acid by BcPG2. Furthermore, using surface plasmon resonance technology, no physical interaction between VvPGIP1 and BcPG2 was detected in vitro. The data suggest that the in planta environment provided a context to support the interaction between BcPG2 and VvPGIP1, leading to a reduction in symptom development, whereas neither of the in vitro assays detected any interaction between these proteins.
Collapse
Affiliation(s)
- Dirk A Joubert
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | | | | | | | | | | | | |
Collapse
|
18
|
Mehli L, Kjellsen TD, Dewey FM, Hietala AM. A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of comonitoring both partners at genomic and mRNA level. THE NEW PHYTOLOGIST 2005; 168:465-74. [PMID: 16219085 DOI: 10.1111/j.1469-8137.2005.01526.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Strawberry Fragaria x ananassa (cv. Korona) was inoculated with Botrytis cinerea by dipping berries in a conidial suspension. Colonization by the pathogen was monitored using real-time PCR, ELISA and ergosterol assays, the first showing the highest sensitivity. The expression of pathogen beta-tubulin and six polygalacturonases (Bcpg1-6) and three host defence genes (polygalacturonase-inhibiting protein (FaPGIP) and two class II chitinases) were monitored using real-time RT-PCR. The maximum transcript levels of the host defence genes occurred at 16 h postinoculation (hpi) at the presumed initial penetration stage. The unique transcript profile of Bcpg2 over the 96-h incubation time and its high transcript levels relative to those of the other Bcpgs at 8-24 hpi suggest that the gene has a specific role in the penetration stage. Bcpg1 was expressed constitutively at a relatively high level in actively growing mycelia throughout the experimental period. Comparison of the transcript profiles indicated that Bcpg1 and Bcpg3-6 were coordinately regulated.
Collapse
Affiliation(s)
- Lisbeth Mehli
- Sør-Trøndelag University College, Faculty of Food Science and Medical Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
19
|
Abstract
Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management.
Collapse
Affiliation(s)
- V Shanmugam
- Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India.
| |
Collapse
|
20
|
Igawa T, Ochiai-Fukuda T, Takahashi-Ando N, Ohsato S, Shibata T, Yamaguchi I, Kimura M. New TAXI-type Xylanase Inhibitor Genes are Inducible by Pathogens and Wounding in Hexaploid Wheat. ACTA ACUST UNITED AC 2004; 45:1347-60. [PMID: 15564518 DOI: 10.1093/pcp/pch195] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TAXI-I (Triticum aestivum xylanase inhibitor I) is a wheat grain protein that inhibits arabinoxylan fragmentation by microbial endo-beta-1,4-xylanases used in the food industry. Although TAXI was speculated to be involved in counterattack against pathogens, there is actually no evidence to support this hypothesis. We have now demonstrated the presence of TAXI family members with isolation of two mRNA species, Taxi-III and Taxi-IV. At the nucleotide sequence level, Taxi-III and Taxi-IV were 91.7% and 92.0% identical, respectively, to Taxi-I, and Taxi-III and Taxi-IV were 96.8% identical. Accumulation of Taxi-III/IV transcripts was most evident in roots and older leaves where transcripts of Taxi-I were negligible. When challenged by fungal pathogens Fusarium graminearum and Erysiphe graminis, the concentrations of Taxi-III/IV transcripts increased significantly. In contrast, the increases in Taxi-I transcripts in response to these pathogens were rather limited. Both Taxi-I and Taxi-III/IV were strongly expressed in wounded leaves. The upstream region of Taxi-III contained W boxes and GCC boxes, which are sufficient to confer pathogen and wound inducibility on promoters. Recombinant TAXI-III protein inhibited Aspergillus niger and Trichoderma sp. xylanases: it was also active against some spelt xylan-induced xylanases of F. graminearum. These features suggest that some, but not all, TAXI-type xylanase inhibitors have a role in plant defense.
Collapse
Affiliation(s)
- Tomoko Igawa
- Laboratory for Remediation Research, Plant Science Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O'Sullivan D, De Lorenzo G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. PLANT PHYSIOLOGY 2004; 135:2424-35. [PMID: 15299124 PMCID: PMC520809 DOI: 10.1104/pp.104.044644] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 05/19/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects.
Collapse
Affiliation(s)
- Renato D'Ovidio
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Capodicasa C, Vairo D, Zabotina O, McCartney L, Caprari C, Mattei B, Manfredini C, Aracri B, Benen J, Knox JP, De Lorenzo G, Cervone F. Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. PLANT PHYSIOLOGY 2004; 135:1294-304. [PMID: 15247378 PMCID: PMC519048 DOI: 10.1104/pp.104.042788] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 05/22/2023]
Abstract
Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis.
Collapse
Affiliation(s)
- Cristina Capodicasa
- Dipartimento di Biologia Vegetale e Laboratorio di Genomica Funzionale e Proteomica, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mehli L, Schaart JG, Kjellsen TD, Tran DH, Salentijn EMJ, Schouten HJ, Iversen TH. A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. THE NEW PHYTOLOGIST 2004; 163:99-110. [PMID: 33873779 DOI: 10.1111/j.1469-8137.2004.01088.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Polygalacturonase-inhibiting proteins (PGIPs) have been demonstrated to play a role in host defence in several plants. • The PGIP now cloned from strawberry (Fragaria × ananassa) showed a high degree of homology to other fruit PGIPs. The gene expression of strawberry PGIP was monitored in healthy leaves, flowers and fruit at different maturity stages. PGIP transcript levels were also analysed following fruit inoculation with the fungal pathogen Botrytis cinerea in strawberry cultivars displaying variation in susceptibility. • Healthy mature berries showed the highest constitutive PGIP gene expression levels compared with leaves, flowers and immature fruit, indicating that the gene is developmentally regulated. Among the cultivars studied ('Elsanta', 'Korona', 'Polka', 'Senga sengana', 'Tenira'), 'Polka' had the highest constitutive expression level of PGIP. After inoculation with B. cinerea, all five cultivars displayed a significant induction of PGIP gene expression, but the differences between them were not statistically significant. • The high induction of the PGIP gene after inoculation with B. cinerea indicates that PGIP has a role in defence of strawberry.
Collapse
Affiliation(s)
- Lisbeth Mehli
- Plantebiosenteret, Department of Biology, NTNU, 7491 Trondheim, Norway
- Present address: Sør-Trøndelag University College, Department of Food Science, Trondheim, Norway
| | - Jan G Schaart
- Plant Research International, Business Unit Biodiversity and Breeding, Post box 16, 6700 AA Wageningen, The Netherlands
| | - Trygve D Kjellsen
- Plantebiosenteret, Department of Biology, NTNU, 7491 Trondheim, Norway
| | - Diem Hong Tran
- Plant Research International, Business Unit Biodiversity and Breeding, Post box 16, 6700 AA Wageningen, The Netherlands
| | - Elma M J Salentijn
- Plant Research International, Business Unit Biodiversity and Breeding, Post box 16, 6700 AA Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Research International, Business Unit Biodiversity and Breeding, Post box 16, 6700 AA Wageningen, The Netherlands
| | | |
Collapse
|
24
|
Faize M, Faize L, Koike N, Ishizaka M, Ishii H. Acibenzolar-s-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. PHYTOPATHOLOGY 2004; 94:604-612. [PMID: 18943485 DOI: 10.1094/phyto.2004.94.6.604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT This study reports the mode of action of acibenzolar-S-methyl (ASM) against Japanese pear scab, caused by Venturia nashicola. Pretreatment of potted Japanese pear trees with ASM reduced scab symptoms and potentiated several lines of plant defense response. This included transcripts encoding polygalacturonase-inhibiting protein (PGIP) that were highly and transiently promoted after scab inoculation of plants pretreated with ASM, suggesting a possible role for defenses involved in direct interaction with the pathogen. The activity of the key enzyme of phenylpropanoid pathway, phenylalanine ammonia lyase (PAL), was enhanced in scab-inoculated leaves pretreated with ASM only 7 days after inoculation, suggesting that it may play a minor role in induced resistance. In this work, salicylic acid (SA) accumulation was enhanced in ASM-treated leaves for the first time, according to an equivalent time course to that of PAL activity. However, a delayed induction of SA accumulation in ASM-treated leaves compared with kinetics of induction of several pathogenesis- related (PR) proteins or their encoding genes suggested that resistance triggered by ASM may be SA-independent. Among these PR proteins, PR-1, chitinase and PR-10 were promoted early by ASM after scab inoculation. Peroxidase, as well as enzymes involved in the oxidative burst such as superoxide dismutase, catalase, and ascorbate peroxidase were weakly activated with ASM treatment alone or pathogen inoculation alone and highly enhanced in ASM pretreated plants upon challenge inoculation, suggesting the occurrence of priming phenomenon during the interaction of Japanese pear-ASM-V. nashicola. An early potentiation of the activity of these enzymes after scab inoculation of leaves pretreated with ASM suggested that active oxygen species may be involved as a signal for the activation of PR proteins or genes.
Collapse
|
25
|
D'Ovidio R, Mattei B, Roberti S, Bellincampi D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:237-44. [PMID: 14871664 DOI: 10.1016/j.bbapap.2003.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 08/07/2003] [Indexed: 10/26/2022]
Abstract
Polygalacturonases (PGs) are produced by fungal pathogens during early plant infection and are believed to be important pathogenicity factors. Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins which reduce the hydrolytic activity of endoPGs and favor the accumulation of long-chain oligogalacturonides (OGs) which are elicitors of a variety of defense responses. PGIPs belong to the superfamily of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. A number of evidence demonstrates that PGIPs efficiently inhibit fungal invasion.
Collapse
Affiliation(s)
- Renato D'Ovidio
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Viterbo, Italy
| | | | | | | |
Collapse
|
26
|
Kemp G, Bergmann CW, Clay R, Van der Westhuizen AJ, Pretorius ZA. Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:955-61. [PMID: 14601663 DOI: 10.1094/mpmi.2003.16.11.955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence for the presence of a polygalacturonase-inhibiting protein (PGIP) from a monocotyledonous cereal is presented. A 40.3-kDa PGIP that was closely associated with the cell wall was acetone-extracted and purified from wheat (Triticum aestivum L.) leaves and stems. Wheat PGIP exhibited a highly selective inhibitory activity against endopolygalacturonase (EPG) from various fungi. Of nine EPG tested, wheat PGIP only inhibited EPG from Cochliobolus sativus, a pathogen of the tribe Poaceae. A short N-terminal amino acid sequence of wheat PGIP shows no similarity to any other characterized PGIP.
Collapse
Affiliation(s)
- Gabré Kemp
- Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | | | | | | | | |
Collapse
|
27
|
Li R, Rimmer R, Yu M, Sharpe AG, Séguin-Swartz G, Lydiate D, Hegedus DD. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. PLANTA 2003; 217:299-308. [PMID: 12783338 DOI: 10.1007/s00425-003-0988-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Accepted: 12/10/2002] [Indexed: 05/24/2023]
Abstract
Plants encode a distinct set of polygalacturonase inhibitory proteins (PGIPs) that function to inhibit polygalacturonase enzymes produced by soft-rot fungal pathogens. We characterized two PGIP-encoding genes ( Bnpgip1 and Bnpgip2) from Brassica napus DH12075 (a double-haploid line derived from a cross between 'Crésor' and 'Westar'). The two proteins exhibit 67.4% identity at the amino acid level and contain 10 imperfect leucine-rich repeats. The pgip genes are present as a small multigene family in B. napus with at least four members. Bnpgip1 and Bnpgip2 are constitutively expressed in roots, stems, flower buds and open flowers. In mature leaf tissue, different levels of induction were observed in response to biotic and abiotic stresses. Bnpgip1 expression was highly responsive to flea beetle feeding and mechanical wounding, weakly responsive to Sclerotinia sclerotiorum infection and exposure to cold but not to dehydration. Conversely, Bnpgip2 expression was strongly induced by S. sclerotiorum infection and to a lesser degree by wounding but not by flea beetle feeding. Application of jasmonic acid to leaves induced both Bnpgip1 and Bnpgip2 gene expression; however, salicylic acid did not activate either gene. Taken together, these results suggest that separate pathways regulate Bnpgip1 and Bnpgip2, and that their roles in plant development or resistance to biotic and abiotic stress differ.
Collapse
Affiliation(s)
- Rugang Li
- Molecular Genetics Section, Agriculture and Agri-Food Canada, 107 Science Place, SK S7N 0X2, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
De Lorenzo G, Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:295-9. [PMID: 12179962 DOI: 10.1016/s1369-5266(02)00271-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are ubiquitous plant cell wall proteins that are directed against fungal polygalacturonases (PGs), which are important pathogenicity factors. The inhibiting activity of PGIPs directly reduces the aggressive potential of PGs. In addition, it causes PGs to form more long-chain oligogalacturonides that are able to induce defense responses, thereby indirectly contributing to the plant defense. Recent evidence demonstrates that PGIPs are efficient defense proteins and limit fungal invasion. PGIPs and the products of many plant resistance genes share a leucine-rich repeat (LRR) structure, which provides specific recognition of pathogen-derived molecules. The high level of polymorphism of both PGIPs and polygalacturonases is an invaluable tool for deciphering the structure, function and evolution of plant LRR proteins and their ligands. Furthermore, information about PGIP structure and evolution paves the way to the development of efficient strategies for crop protection.
Collapse
Affiliation(s)
- Giulia De Lorenzo
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | |
Collapse
|
29
|
Höglund AS, Jones AM, Josefsson LG. An antigen expressed during plant vascular development crossreacts with antibodies towards KLH (keyhole limpet hemocyanin). J Histochem Cytochem 2002; 50:999-1003. [PMID: 12133902 DOI: 10.1177/002215540205000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An antigen present in plant vascular tissue crossreacts with antibodies towards keyhole limpet hemocyanin (KLH). The antigen is present in xylem and vascular cambium, as evidenced by immunocytochemical staining of plant sections. This cell type assignment was confirmed by staining of mesophyll cell cultures from Zinnia elegans L. undergoing tracheary cell differentiation. The strongest staining both in sections and cell cultures occurred in cells and tissues during early stages of differentiation. Although the anti-KLH antibodies can easily be removed by affinity purification, our findings suggest that a certain caution is needed when KLH is used as an immunological carrier for studies in plants.
Collapse
Affiliation(s)
- Anna-Stina Höglund
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
30
|
Flatman R, McLauchlan WR, Juge N, Furniss C, Berrin JG, Hughes RK, Manzanares P, Ladbury JE, O'Brien R, Williamson G. Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat. Biochem J 2002; 365:773-81. [PMID: 11955286 PMCID: PMC1222710 DOI: 10.1042/bj20020168] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 03/26/2002] [Accepted: 04/16/2002] [Indexed: 11/17/2022]
Abstract
We previously reported on the xylanase-inhibiting protein I (XIP-I) from wheat [McLauchlan, Garcia-Conesa, Williamson, Roza, Ravestein and Maat (1999), Biochem. J. 338, 441-446]. In the present study, we show that XIP-I inhibits family-10 and -11 fungal xylanases. The K(i) values for fungal xylanases ranged from 3.4 to 610 nM, but bacterial family-10 and -11 xylanases were not inhibited. Unlike many glycosidase inhibitors, XIP-I was not a slow-binding inhibitor of the Aspergillus niger xylanase. Isothermal titration calorimetry of the XIP-I-A. niger xylanase complex showed the formation of a stoichiometric (1:1) complex with a heat capacity change of -1.38 kJ x mol(-1) x K(-1), leading to a predicted buried surface area of approx. 2200+/-500 A(2) at the complex interface. For this complex with A. niger xylanase (K(i)=320 nM at pH 5.5), titration curves indicated that an observable interaction occurred at pH 4-7, and this was consistent with the pH profile of inhibition of activity. In contrast, the stronger complex between A. nidulans xylanase and XIP-I (K(i)=9 nM) led to an observable interaction across the entire pH range tested (3-9). Using surface plasmon resonance, we show that the differences in the binding affinity of XIP-I for A. niger and A. nidulans xylanase are due to a 200-fold lower dissociation rate k(off) for the latter, with only a small difference in association rate k(on).
Collapse
Affiliation(s)
- Ruth Flatman
- Institute of Food Research, Colney Lane, Norwich NR4 7UA, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. PHYTOCHEMISTRY 2001; 57:929-67. [PMID: 11423142 DOI: 10.1016/s0031-9422(01)00113-3] [Citation(s) in RCA: 1133] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pectin is a family of complex polysaccharides present in all plant primary cell walls. The complicated structure of the pectic polysaccharides, and the retention by plants of the large number of genes required to synthesize pectin, suggests that pectins have multiple functions in plant growth and development. In this review we summarize the current level of understanding of pectin primary and tertiary structure, and describe new methods that may be useful to study localized pectin structure in the plant cell wall. We also discuss progress in our understanding of how pectin is biosynthesized and review the biological activities and possible modes of action of pectic oligosaccharides referred to as oligogalacturonides. We present our view of critical questions regarding pectin structure, biosynthesis, and function that need to be addressed in the coming decade. As the plant community works towards understanding the functions of the tens of thousands of genes expressed by plants, a large number of those genes are likely to be involved in the synthesis, turnover, biological activity, and restructuring of pectin. A combination of genetic, molecular, biochemical and chemical approaches will be necessary to fully understand the function and biosynthesis of pectin.
Collapse
Affiliation(s)
- B L Ridley
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA
| | | | | |
Collapse
|
32
|
James JT, Dubery IA. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. PHYTOCHEMISTRY 2001; 57:149-156. [PMID: 11382229 DOI: 10.1016/s0031-9422(01)00024-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An extracellular endo-polygalacturonase (PGase) [E.C. 3.2.1.15] was isolated from 18-day-old culture filtrates of Verticillium dahliae and partially purified using gel permeation chromatography. The band responsible for PGase activity was electrophoretically characterized as having a molecular mass of approximately 29 500 and an isoelectric point of 5.4. Kinetic studies indicate a Km of 3.3 mg ml(-1) and Vmax of 0.85 micromol reducing units min(-1) ml(-1) with polygalacturonic acid as substrate. Polygalacturonase inhibitor protein (PGIP) in cotton seedlings was induced by 5 mM salicylic acid and immunochemical analysis indicated high levels in the hypocotyl tissues. PGIP was purified from roots and stems using affinity chromatography with endo-PGase from Aspergillus niger as an immobilised ligand. The purified PGIP contained monomeric and dimeric molecules with molecular masses of 34 and 66 kDa respectively. Purified cotton PGIP inhibited endo-polygalacturonase from A. niger in a non-competitive or mixed manner with an inhibition constant. K(I) of 15 nM. The isolated V. dahliae PGase was, however, inhibited in a positive cooperative manner, indicative of allosteric interactions between the enzyme and the inhibitor protein. In addition to reducing the reaction rate, decreased substrate affinity may contribute to the accumulation of elicitor-active oligouronides.
Collapse
Affiliation(s)
- J T James
- Department of Chemistry and Biochemistry, Rand Afrikaans University, Auckland Park, South Africa
| | | |
Collapse
|
33
|
De Lorenzo G, D'Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:313-35. [PMID: 11701868 DOI: 10.1146/annurev.phyto.39.1.313] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant proteins capable of inhibiting fungal endopolygalacturonases (PGs). Plants have evolved different PGIPs with specific recognition abilities against the many PGs produced by fungi. The genes encoding PGIPs are organized into families, and different members of each family may encode proteins with nearly identical characteristics but different specificities and regulation. PGIPs are typically induced by pathogen infection and stress-related signals. The recognition ability of PGIPs resides in their LRR (leucine-rich repeat) structure, where solvent-exposed residues in the beta-strand/beta-turn motifs of the LRRs are determinants of specificity. Manipulation of the primary structure of PGIPs is expected to generate more efficient PGIPs with novel recognition specificities to protect crop plants against pathogens.
Collapse
Affiliation(s)
- G De Lorenzo
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | | |
Collapse
|
34
|
Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM. Transgenic expression of pear PGIP in tomato limits fungal colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:942-50. [PMID: 10975651 DOI: 10.1094/mpmi.2000.13.9.942] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transgenic tomato plants expressing the pear fruit polygalacturonase inhibitor protein (pPGIP) were used to demonstrate that this inhibitor of fungal pathogen endopolygalacturonases (endo-PGs) influences disease development. Transgenic expression of pPGIP resulted in abundant accumulation of the heterologous protein in all tissues and did not alter the expression of an endogenous tomato fruit PGIP (tPGIP). The pPGIP protein was detected, as expected, in the cell wall protein fraction in all transgenic tissues. Despite differential glycosylation in vegetative and fruit tissues, the expressed pPGIP was active in both tissues as an inhibitor of endo-PGs from Botrytis cinerea. The growth of B. cinerea on ripe tomato fruit expressing pPGIP was reduced, and tissue breakdown was diminished by as much as 15%, compared with nontransgenic fruit In transgenic leaves, the expression of pPGIP reduced lesions of macerated tissue approximately 25%, a reduction of symptoms of fungal growth similar to that observed with a B. cinerea strain in which a single endo-PG gene, Bcpg1, had been deleted (A. ten Have, W. Mulder, J. Visser, and J. A. L. van Kan, Mol. Plant-Microbe Interact. 11:1009-1016, 1998). Heterologous expression of pPGIP has demonstrated that PGIP inhibition of fungal PGs slows the expansion of disease lesions and the associated tissue maceration.
Collapse
Affiliation(s)
- A L Powell
- Department of Vegetable Crops University of California, Davis 95616-8631, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Perfect SE, Hughes HB, O'Connell RJ, Green JR. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol 1999; 27:186-98. [PMID: 10441444 DOI: 10.1006/fgbi.1999.1143] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Species of Colletotrichum use diverse strategies for invading host tissue, ranging from intracellular hemibiotrophy to subcuticular intramural necrotrophy. In addition, these pathogens develop a series of specialized infection structures, including germ tubes, appressoria, intracellular hyphae, and secondary necrotrophic hyphae. Colletotrichum species provide excellent models for studying the molecular basis of infection structure differentiation and fungal-plant interactions. In this review we cover the various stages of the infection processes of Colletotrichum species, including spore adhesion and germination, germ tube and appressorium differentiation and functions, and biotrophic and necrotrophic development. The contribution of molecular, biochemical, and immunological approaches to the identification of genes and proteins relevant to each stage of fungal development will be considered. As well as reviewing results from several groups, we also describe our own work on the hemibiotrophic pathogen, C. lindemuthianum.
Collapse
Affiliation(s)
- S E Perfect
- School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
36
|
Mithöfer A, Fliegmann J, Ebel J. Isolation of a French bean (Phaseolus vulgaris L.) homolog to the beta-glucan elicitor-binding protein of soybean (Glycine max L.). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1418:127-32. [PMID: 10209217 DOI: 10.1016/s0005-2736(99)00010-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-affinity membrane-bound beta-glucan elicitor-binding protein has been purified from microsomal preparations of French bean (Phaseolus vulgaris L.) roots. A 5900-fold purification was achieved by affinity chromatography of functionally solubilized membrane proteins. The beta-glucan-binding protein had an apparent molecular mass of 78 kDa when subjected to SDS-PAGE. Western blot analysis showed specific crossreactivity of this French bean protein with an antiserum raised against a synthetic peptide representing an internal 15 amino acid fragment of the beta-glucan-binding protein from soybean. Northern blot analysis with a cDNA probe of the soybean beta-glucan-binding protein gene revealed a crosshybridizing transcript of 2.4 kb in French bean. These results indicate that the beta-glucan-binding proteins of French bean and soybean are conserved homologs involved in beta-glucan elicitor recognition.
Collapse
Affiliation(s)
- A Mithöfer
- Botanisches Institut der Universität, Menzinger Str. 67, D-80638, Munich, Germany.
| | | | | |
Collapse
|
37
|
Hardham AR, Mitchell HJ. Use of molecular cytology to study the structure and biology of phytopathogenic and mycorrhizal fungi. Fungal Genet Biol 1998; 24:252-84. [PMID: 9742205 DOI: 10.1006/fgbi.1998.1055] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular cytology, that is, the in situ localization of selected molecules by labeling with lectins, enzymes, and antibodies, has made a major contribution to our understanding of the structure and biology of fungi and is increasingly becoming an integral part of molecular, genetic, and biochemical studies. The review presented in this article concentrates on recent advances in the application of molecular cytology in investigations of the structure and biology of phytopathogenic and mycorrhizal fungi and of the molecular basis of their infection of host plants. The review examines details of the structure and molecular composition of fungal cell walls revealed by lectin, enzyme, and antibody labeling. Molecular composition is shown to vary according to taxonomic relationships and as a reflection of differences in cell type, location within the cell, and within thickness of the wall. Sites of synthesis and secretion of wall components are also detected through the labeling of selected molecules. In situ labeling of cytoskeletal elements, microtubules and actin microfilaments, has provided much information on the role of these elements in tip growth, organelle distribution, and spore development. Molecular cytology, particularly through the generation of monoclonal antibodies, has also revealed new and exciting information on specialized infection structures formed by fungi in order to infect host plants. The sites of storage and secretion of adhesives and degradative enzymes have been documented, as have surface specializations that may be associated with avoidance of detection by the host. In addition, in situ labeling with enzymes and antibodies has aided studies of the host defense response, including mechanisms of detection of fungal elicitor molecules, changes in wall composition, and the secretion of antifungal compounds. With the increasing production of monoclonal antibodies to fungal molecules, molecular cytology promises to continue to make an important contribution to our understanding of fungal cell structure and function in the future.
Collapse
Affiliation(s)
- A R Hardham
- Research School of Biological Sciences, The Australian National University, Canberra, ACT, 2601, Australia.
| | | |
Collapse
|
38
|
Côté F, Ham KS, Hahn MG, Bergmann CW. Oligosaccharide elicitors in host-pathogen interactions. Generation, perception, and signal transduction. Subcell Biochem 1998; 29:385-432. [PMID: 9594655 DOI: 10.1007/978-1-4899-1707-2_13] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- F Côté
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, Van Roekel JS, Baulcombe DC, Melchers LS, De Lorenzo G, Cervone F. Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:852-60. [PMID: 9304859 DOI: 10.1094/mpmi.1997.10.7.852] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The pgip-1 gene of Phaseolus vulgaris, encoding a polygalacturonase-inhibiting protein (PGIP), PGIP-1 (P. Toubart, A. Desiderio, G. Salvi, F. Cervone, L. Daroda, G. De Lorenzo, C. Bergmann, A. G. Darvill, and P. Albersheim, Plant J. 2:367-373, 1992), was expressed under control of the cauliflower mosaic virus 35S promoter in tomato plants via Agrobacterium tumefaciens-mediated transformation. Transgenic tomato plants with different expression levels of PGIP-1 were used in infection experiments with the pathogenic fungi Fusarium oxysporum f. sp. lycopersici, Botrytis cinerea, and Alternaria solani. No evident enhanced resistance, compared with the resistance of untransformed plants, was observed. The pgip-1 gene was also transiently expressed in Nicotiana benthamiana with potato virus X (PVX) as a vector. PGIP-1 purified from transgenic tomatoes and PGIP-1 in crude protein extracts of PVX-infected N. benthamiana plants were tested with several fungal polygalacturonases (PGs). PGIP-1 from both plant sources exhibited a specificity different from that of PGIP purified from P. vulgaris (bulk bean PGIP). Notably, PGIP-1 was unable to interact with a homogeneous PG from Fusarium moniliforme, as determined by surface plasmon resonance analysis, while the bulk bean PGIP interacted with and inhibited this enzyme. Moreover, PGIP-1 expressed in tomato and N. benthamiana had only a limited capacity to inhibit crude PG preparations from F. oxysporum f. sp. lycopersici, B. cinerea, and A. solani. Differential affinity chromatography was used to separate PGIP proteins present in P. vulgaris extracts. A PGIP-A with specificity similar to that of PGIP-1 was separated from a PGIP-B able to interact with both Aspergillus niger and F. moniliforme PGs. Our data show that PGIPs with different specificities are expressed in P. vulgaris and that the high-level expression of one member (pgip-1) of the PGIP gene family in transgenic plants is not sufficient to confer general, enhanced resistance to fungi.
Collapse
Affiliation(s)
- A Desiderio
- Dipartimento di Biologia Vegetale, Università' di Roma La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ridley BL, Spiro MD, Glushka J, Albersheim P, Darvill A, Mohnen D. A method for biotin labeling of biologically active oligogalacturonides using a chemically stable hydrazide linkage. Anal Biochem 1997; 249:10-9. [PMID: 9193702 DOI: 10.1006/abio.1997.2165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligogalacturonides (oligomers of alpha-1,4-D-galacturonic acid) with degrees of polymerization (DP) between 8 and 16 were labeled with biotin using a rapid and simple two-reaction protocol that yields a stable oligogalacturonide derivative. In the first reaction biotin-x-hydrazide was coupled to the anomeric carbon of the reducing galacturonic acid residue by a hydrazone linkage. Carbohydrate-hydrazone linkages such as these have been widely used to label a variety of biomolecules. However, we show herein that the oligogalacturonide-hydrazone linkage is hydrolyzed in water. In the second reaction the hydrazone linkage was reduced with sodium cyanoborohydride to form a stable hydrazide. The stability of hydrazide-linked oligogalacturonides was confirmed using high-performance anion-exchange chromatography (HPAEC). The biotin and uronic acid content of the HPAEC fractions was determined using quantitative colorimetric microplate assays. Electrospray mass spectrometry and 1H NMR spectroscopy were used to confirm the structure of the HPAEC-purified biotin-derivatized oligogalacturonides. Biotin-derivatized oligogalacturonides will be useful in studies of the biological functions of oligogalacturonides.
Collapse
Affiliation(s)
- B L Ridley
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Rao R, Manzi A, Filippone E, Manfredi P, Spasiano A, Colucci G, Monti LM, Malva C. Synthesis and expression of genes encoding putative insect neuropeptide precursors in tobacco. Gene 1996; 175:1-5. [PMID: 8917068 DOI: 10.1016/0378-1119(96)00112-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuropeptides are the key molecules in a multiplicity of physiological processes and their use in pest control has recently been suggested. Most neuropeptides are produced in the form of a precursor that is cleaved by proteolysis to yield various biologically active peptides. To mimic this structure, a method has been developed for synthesizing genes that code for putative polyneuropeptide precursors. As a model neuropeptide, the 5-amino-acid proctolin, one of the best studied invertebrate neuropeptides, functioning both as a visceral and a skeletal neuromuscular transmitter, was chosen. The synthetic gene was introduced into bacteria and tobacco plants, where it was efficiently transcribed. We present our results as a possible approach for the expression, in a variety of organisms, of synthetic genes coding for a wide repertoire of insect neuropeptides.
Collapse
Affiliation(s)
- R Rao
- Dipartimento di Scienze Agronomiche e Genetica Vegetale, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
The role of polygalacturonase, PGIP and pectin oligomers in fungal infection. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0921-0423(96)80255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Hahn MG. Microbial elicitors and their receptors in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 1996; 34:387-412. [PMID: 15012549 DOI: 10.1146/annurev.phyto.34.1.387] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Elicitors are molecules that stimulate any of a number of defense responses in plants. Research over the past decade has focused on the mechanisms by which plant cells perceive and transduce these biological signals to activate defense responses. Of particular interest has been the identification of specific elicitor-binding proteins that might function as physiological receptors in the signal transduction cascade. The existence of specific high-affinity binding sites has been demonstrated for oligosaccharide, glycopeptide, and peptide elicitors, and candidate elicitor-binding proteins have been identified for several of them. The properties of these binding sites/proteins are consistent with those expected of physiologically important receptors, although experimental verification of the role of these binding proteins as receptors has not yet been obtained. The purification and characterization of specific elicitor-binding proteins is essential for a detailed understanding of the molecular basis for the signal exchange between plant hosts and microbial pathogens that leads to activation of host defenses.
Collapse
Affiliation(s)
- M G Hahn
- Complex Carbohydrate Research Center and Department of Botany, University of Georgia, Athens, Georgia 30602-4712, USA
| |
Collapse
|
45
|
Côté F, Hahn MG. Oligosaccharins: structures and signal transduction. PLANT MOLECULAR BIOLOGY 1994; 26:1379-1411. [PMID: 7858196 DOI: 10.1007/bf00016481] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- F Côté
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712
| | | |
Collapse
|
46
|
Côté F, Hahn MG. Oligosaccharins: structures and signal transduction. PLANT MOLECULAR BIOLOGY 1994; 26:1379-1411. [PMID: 7858196 DOI: 10.1007/978-94-011-0239-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- F Côté
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712
| | | |
Collapse
|
47
|
Accumulation of Pgip, a Leucine-Rich Receptor-Like Protein, Correlates with the Hypersensitive Response in Race-Cultivar Interactions. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-94-011-0177-6_47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
48
|
|