1
|
Pang Y, Liao Q, Peng H, Qian C, Wang F. CO 2 mesophyll conductance regulated by light: a review. PLANTA 2023; 258:11. [PMID: 37289402 DOI: 10.1007/s00425-023-04157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Light quality and intensity regulate plant mesophyll conductance, which has played an essential role in photosynthesis by controlling leaf structural and biochemical properties. Mesophyll conductance (gm), a crucial physiological factor influencing the photosynthetic rate of leaves, is used to describe the resistance of CO2 from the sub-stomatal cavity into the chloroplast up to the carboxylation site. Leaf structural and biochemical components, as well as external environmental factors such as light, temperature, and water, all impact gm. As an essential factor of plant photosynthesis, light affects plant growth and development and plays a vital role in regulating gm as well as determining photosynthesis and yield. This review aimed to summarize the mechanisms of gm response to light. Both structural and biochemical perspectives were combined to reveal the effects of light quality and intensity on the gm, providing a guide for selecting the optimal conditions for intensifying photosynthesis in plants.
Collapse
Affiliation(s)
- Yadan Pang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
| | - Honggui Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Chun Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China.
| |
Collapse
|
2
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
3
|
Guard-Cell-Specific Expression of Phototropin2 C-Terminal Fragment Enhances Leaf Transpiration. PLANTS 2021; 11:plants11010065. [PMID: 35009069 PMCID: PMC8747280 DOI: 10.3390/plants11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Phototropins (phot1 and phot2) are plant-specific blue light receptors that mediate chloroplast movement, stomatal opening, and phototropism. Phototropin is composed of the N-terminus LOV1 and LOV2 domains and the C-terminus Ser/Thr kinase domain. In previous studies, 35-P2CG transgenic plants expressing the phot2 C-terminal fragment–GFP fusion protein (P2CG) under the control of 35S promoter showed constitutive phot2 responses, including chloroplast avoidance response, stomatal opening, and reduced hypocotyl phototropism regardless of blue light, and some detrimental growth phenotypes. In this study, to exclude the detrimental growth phenotypes caused by the ectopic expression of P2C and to improve leaf transpiration, we used the PHOT2 promoter for the endogenous expression of GFP-fused P2C (GP2C) (P2-GP2C) and the BLUS1 promoter for the guard-cell-specific expression of GP2C (B1-GP2C), respectively. In P2-GP2C plants, GP2C expression induced constitutive phototropin responses and a relatively dwarf phenotype as in 35-P2CG plants. In contrast, B1-GP2C plants showed the guard-cell-specific P2C expression that induced constitutive stomatal opening with normal phototropism, chloroplast movement, and growth phenotype. Interestingly, leaf transpiration was significantly improved in B1-GP2C plants compared to that in P2-GP2C plants and WT. Taken together, this transgenic approach could be applied to improve leaf transpiration in indoor plants.
Collapse
|
4
|
Fujii Y, Ogasawara Y, Takahashi Y, Sakata M, Noguchi M, Tamura S, Kodama Y. The cold-induced switch in direction of chloroplast relocation occurs independently of changes in endogenous phototropin levels. PLoS One 2020; 15:e0233302. [PMID: 32437457 PMCID: PMC7241815 DOI: 10.1371/journal.pone.0233302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
When exposed to fluctuating light intensity, chloroplasts move towards weak light (accumulation response), and away from strong light (avoidance response). In addition, cold treatment (5°C) induces the avoidance response even under weak-light conditions (cold-avoidance response). These three responses are mediated by the phototropin (phot), which is a blue-light photoreceptor and has also been reported to act as a thermosensory protein that perceives temperature variation. Our previous report indicated that cold-induced changes in phot biochemical activity initiate the cold-avoidance response. In this study, we further explored the induction mechanism of the cold-avoidance response in the liverwort Marchantia polymorpha and examined the relationship between changes in the amount of phot and the induction of the cold-avoidance response. The switch between the accumulation and avoidance responses occurs at a so-called 'transitional' light intensity. Our physiological experiments revealed that a cold-mediated decrease in the transitional light intensity leads to the induction of the cold-avoidance response. While artificial overexpression of phot decreased the transitional light intensity as much as cold treatment did, the amount of endogenous phot was not increased by cold treatment in wild-type M. polymorpha. Taken together, these findings show that the cold-avoidance response is initiated by a cold-mediated reduction of the transitional light intensity, independent of the amount of endogenous phot. This study provides a clue to understanding the mechanism underlying the switch in direction of chloroplast relocation in response to light and temperature.
Collapse
Affiliation(s)
- Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuka Ogasawara
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Faculty of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Yamato Takahashi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Agricultural Science, Utsunomiya University, Tochigi, Japan
| | - Momoko Sakata
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Minoru Noguchi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Agricultural Science, Utsunomiya University, Tochigi, Japan
| | - Saori Tamura
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Agricultural Science, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Graduate School of Agricultural Science, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
5
|
Liscum E, Nittler P, Koskie K. The continuing arc toward phototropic enlightenment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1652-1658. [PMID: 31907539 PMCID: PMC7242014 DOI: 10.1093/jxb/eraa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 05/20/2023]
Abstract
Phototropism represents a simple physiological mechanism-differential growth across the growing organ of a plant-to respond to gradients of light and maximize photosynthetic light capture (in aerial tissues) and water/nutrient acquisition (in roots). The phototropin blue light receptors, phot1 and phot2, have been identified as the essential sensors for phototropism. Additionally, several downstream signal/response components have been identified, including the phot-interacting proteins NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and PHYTOCHROME SUBSTRATE 4 (PKS4). While the structural and photochemical properties of the phots are quite well understood, much less is known about how the phots signal through downstream regulators. Recent advances have, however, provided some intriguing clues. It appears that inactive receptor phot1 is found dispersed in a monomeric form at the plasma membrane in darkness. Upon light absorption dimerizes and clusters in sterol-rich microdomains where it is signal active. Additional studies showed that the phot-regulated phosphorylation status of both NPH3 and PKS4 is linked to phototropic responsiveness. While PKS4 can function as both a positive (in low light) and a negative (in high light) regulator of phototropism, NPH3 appears to function solely as a key positive regulator. Ultimately, it is the subcellular localization of NPH3 that appears crucial, an aspect regulated by its phosphorylation status. While phot1 activation promotes dephosphorylation of NPH3 and its movement from the plasma membrane to cytoplasmic foci, phot2 appears to modulate relocalization back to the plasma membrane. Together these findings are beginning to illuminate the complex biochemical and cellular events, involved in adaptively modifying phototropic responsiveness under a wide varying range of light conditions.
Collapse
Affiliation(s)
- Emmanuel Liscum
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Correspondence:
| | - Patrick Nittler
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Katelynn Koskie
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Sakata M, Kimura S, Fujii Y, Sakai T, Kodama Y. Relationship between relocation of phototropin to the chloroplast periphery and the initiation of chloroplast movement in Marchantia polymorpha. PLANT DIRECT 2019; 3:e00160. [PMID: 31468027 PMCID: PMC6710648 DOI: 10.1002/pld3.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 05/02/2023]
Abstract
The blue-light photoreceptor kinase phototropin (phot) mediates chloroplast movement in response to light and temperature. Phot predominantly localizes at the plasma membrane, but also resides in the cytosol and the chloroplast periphery. Although the phot localized to the chloroplast periphery is thought to mediate chloroplast movement, the localization mechanism is unknown. In this study, we found that chloroplast movement does not occur in 0-day-old gemma cells of the liverwort Marchantia polymorpha but that the movement is induced in 1-day-old gemmaling cells. Along with this physiological change, the subcellular localization of phot also changed: In 0-day-old gemma cells, phot localized at the plasma membrane and the cytosol, but in 1-day-old gemmaling cells, the phot disappeared from the cytosol and appeared at the chloroplast periphery. When the relocalization was tracked using a photoconvertible fluorescent protein, the cytosolic phot relocated to the plasma membrane, and the plasma membrane-resident phot relocated to the chloroplast periphery. The blue-light-dependent activation of phot kinase activity enhanced this relocalization. Mutated phot deficient in blue-light reception or kinase activity had a severely reduced ability to localize at the chloroplast periphery. These findings suggest that photoactivated phot localizes at the chloroplast periphery to initiate chloroplast movement.
Collapse
Affiliation(s)
- Momoko Sakata
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
| | - Shun Kimura
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
| | - Yuta Fujii
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Takamasa Sakai
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| |
Collapse
|
7
|
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:89-94. [PMID: 29107827 PMCID: PMC5826749 DOI: 10.1016/j.pbi.2017.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
While fast plant movements are spectacular but rare, almost all plants exhibit relatively slow, growth-mediated tropic movements that are key to their survival in the natural world. In this brief review, we discuss recent insights into the molecular mechanisms underlying phototropism, gravitropism, hydrotropism, and autostraightening. Careful molecular genetic and physiological studies have helped confirm the importance of lateral auxin gradients in gravitropic and phototropic responses. However, auxin signaling does not explain all tropisms: recent work has shown that abscisic acid signaling mediates root hydrotropism and has implicated mechanosensing in autostraightening, the organ straightening process recently modeled as a proprioceptive response. The interactions between distinct tropic signaling pathways and other internal and external sensory processes are also now being untangled.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christopher J Brooks
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
8
|
Petersen J, Inoue SI, Kelly SM, Sullivan S, Kinoshita T, Christie JM. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1. J Biol Chem 2017; 292:13843-13852. [PMID: 28663371 PMCID: PMC5566536 DOI: 10.1074/jbc.m117.799643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Indexed: 01/14/2023] Open
Abstract
Phototropins (phots) are plasma membrane–associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light–absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A′α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A′α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation.
Collapse
Affiliation(s)
- Jan Petersen
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | | | - Sharon M Kelly
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Stuart Sullivan
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Toshinori Kinoshita
- the Division of Biological Science, Graduate School of Science and.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - John M Christie
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom,
| |
Collapse
|
9
|
A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 2016; 537:563-566. [PMID: 27626383 DOI: 10.1038/nature19358] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
In plants and algae, light serves both as the energy source for photosynthesis and a biological signal that triggers cellular responses via specific sensory photoreceptors. Red light is perceived by bilin-containing phytochromes and blue light by the flavin-containing cryptochromes and/or phototropins (PHOTs), the latter containing two photosensory light, oxygen, or voltage (LOV) domains. Photoperception spans several orders of light intensity, ranging from far below the threshold for photosynthesis to values beyond the capacity of photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death, processes prevented by enhanced thermal dissipation via high-energy quenching (qE), a key photoprotective response. Here we show the existence of a molecular link between photoreception, photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (light-harvesting complex stress-related protein 3) in high light intensities. This control requires blue-light perception by LOV domains on PHOT, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. Mutants deficient in the PHOT gene display severely reduced fitness under excessive light conditions, indicating that the sensing, utilization, and dissipation of light is a concerted process that plays a vital role in microalgal acclimation to environments of variable light intensities.
Collapse
|
10
|
GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci U S A 2016; 113:4218-23. [PMID: 27035938 DOI: 10.1073/pnas.1513093113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.
Collapse
|
11
|
Kong SG, Wada M. Molecular basis of chloroplast photorelocation movement. JOURNAL OF PLANT RESEARCH 2016; 129:159-66. [PMID: 26794773 DOI: 10.1007/s10265-016-0788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/03/2016] [Indexed: 05/05/2023]
Abstract
Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research Center for Live-Protein Dynamics, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
12
|
Takemiya A, Shimazaki KI. Arabidopsis phot1 and phot2 phosphorylate BLUS1 kinase with different efficiencies in stomatal opening. JOURNAL OF PLANT RESEARCH 2016; 129:167-74. [PMID: 26780063 DOI: 10.1007/s10265-015-0780-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/24/2015] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, phototropins (phot1 and phot2), light-activated receptor kinases, redundantly regulate various photoresponses such as phototropism, chloroplast photorelocation movement, stomatal opening, and leaf flattening. However, it is still unclear how phot1 and phot2 signals are integrated into a common target and regulate physiological responses. In the present study, we provide evidence that phot1 and phot2 phosphorylate BLUE LIGHT SIGNALING1 (BLUS1) kinase as a common substrate in stomatal opening. Biochemical analysis revealed that the recombinant phot2 protein directly phosphorylated BLUS1 in vitro in a blue light-dependent manner, as reported for phot1. BLUS1 phosphorylation was observed in both phot1 and phot2 mutants, and phot2 mutant exhibited higher phosphorylation of BLUS1 than did phot1 mutant. Transgenic plants expressing phot1-GFP (P1G) and phot2-GFP (P2G) at a similar level under the PHOT2 promoter demonstrated that P1G initiated higher phosphorylation of BLUS1 than P2G, suggesting that phot1 phosphorylates BLUS1 more efficiently. Similarly, P1G mediated a higher activation of the plasma membrane H(+)-ATPase and stomatal opening than P2G, indicating that the phosphorylation status of BLUS1 is a key determinant of physiological response. Together, these findings provide insights into the signal integration and different properties of phot1 and phot2 signaling.
Collapse
Affiliation(s)
- Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
13
|
Liscum E. Blue Light-Induced Intracellular Movement of Phototropins: Functional Relevance or Red Herring? FRONTIERS IN PLANT SCIENCE 2016; 7:827. [PMID: 27375670 PMCID: PMC4899458 DOI: 10.3389/fpls.2016.00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Emmanuel Liscum
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
- *Correspondence: Emmanuel Liscum
| |
Collapse
|
14
|
Takemiya A, Doi A, Yoshida S, Okajima K, Tokutomi S, Shimazaki KI. Reconstitution of an Initial Step of Phototropin Signaling in Stomatal Guard Cells. PLANT & CELL PHYSIOLOGY 2016; 57:152-159. [PMID: 26707730 DOI: 10.1093/pcp/pcv180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Phototropins are light-activated receptor kinases that mediate a wide range of blue light responses responsible for the optimization of photosynthesis. Despite the physiological importance of phototropins, it is still unclear how they transduce light signals into physiological responses. Here, we succeeded in reproducing a primary step of phototropin signaling in vitro using a physiological substrate of phototropin, the BLUS1 (BLUE LIGHT SIGNALING1) kinase of guard cells. When PHOT1 and BLUS1 were expressed in Escherichia coli and the resulting recombinant proteins were incubated with ATP, white and blue light induced phosphorylation of BLUS1 but red light and darkness did not. Site-directed mutagenesis of PHOT1 and BLUS1 revealed that the phosphorylation was catalyzed by phot1 kinase. Similar to stomatal blue light responses, the BLUS1 phosphorylation depended on the fluence rate of blue light and was inhibited by protein kinase inhibitors, K-252a and staurosporine. In contrast to the result in vivo, BLUS1 was not dephosphorylated in vitro, suggesting the involvement of a protein phosphatase in the response in vivo. phot1 with a C-terminal kinase domain but devoid of the N-terminal domain, constitutively phosphorylated BLUS1 without blue light, indicating that the N-terminal domain has an autoinhibitory action and prevents substrate phosphorylation. The results provide the first reconstitution of a primary step of phototropin signaling and a clue for understanding the molecular nature of this process.
Collapse
Affiliation(s)
- Atsushi Takemiya
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Ayaka Doi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Sayumi Yoshida
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Koji Okajima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-851 Japan Present address: Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa, 223-8522 Japan.
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-851 Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
15
|
Kashojiya S, Yoshihara S, Okajima K, Tokutomi S. The linker between LOV2-Jα and STK plays an essential role in the kinase activation by blue light in Arabidopsis phototropin1, a plant blue light receptor. FEBS Lett 2015; 590:139-47. [PMID: 26763121 DOI: 10.1002/1873-3468.12028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/07/2022]
Abstract
Phototropin (phot), a blue light receptor in plants, is composed of several domains: LOV1, LOV2, and a serine/threonine kinase (STK). LOV2 is the main regulator of light activation of STK. However, the detailed mechanism remains unclear. In this report, we focused on the linker region between LOV2 and STK excluding the Jα-helix. Spectroscopy and a kinase assay for the substituents in the linker region of Arabidopsis phot1 LOV2-STK indicated that the linker is involved in the activation of STK. A putative module in the middle of the linker would be critical for intramolecular signaling and/or regulation of STK.
Collapse
Affiliation(s)
- Sachiko Kashojiya
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Shizue Yoshihara
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Koji Okajima
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
16
|
Guillier C, Gamm M, Lucchi G, Truntzer C, Pecqueur D, Ducoroy P, Adrian M, Héloir MC. Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew-Infected Grapevine Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1227-1236. [PMID: 26106900 DOI: 10.1094/mpmi-05-15-0115-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola-infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.
Collapse
Affiliation(s)
- Christelle Guillier
- 1 CNRS, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Magdalena Gamm
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Géraldine Lucchi
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Caroline Truntzer
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Delphine Pecqueur
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Patrick Ducoroy
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Marielle Adrian
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Marie-Claire Héloir
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| |
Collapse
|
17
|
Łabuz J, Hermanowicz P, Gabryś H. The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:238-49. [PMID: 26398808 DOI: 10.1016/j.plantsci.2015.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 05/04/2023]
Abstract
Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Preuten T, Blackwood L, Christie JM, Fankhauser C. Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? THE NEW PHYTOLOGIST 2015; 206:1038-1050. [PMID: 25643813 DOI: 10.1111/nph.13299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/16/2014] [Indexed: 05/05/2023]
Abstract
The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.
Collapse
Affiliation(s)
- Tobias Preuten
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Lisa Blackwood
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
19
|
Christie JM, Blackwood L, Petersen J, Sullivan S. Plant flavoprotein photoreceptors. PLANT & CELL PHYSIOLOGY 2015; 56:401-13. [PMID: 25516569 PMCID: PMC4357641 DOI: 10.1093/pcp/pcu196] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lisa Blackwood
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jan Petersen
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Sullivan
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
20
|
Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2014; 166:411-27. [PMID: 25096976 PMCID: PMC4149725 DOI: 10.1104/pp.114.245100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/02/2014] [Indexed: 05/18/2023]
Abstract
Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Mika Terai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Hidenori Tsuboi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Katsuyuki T Yamato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Masamitsu Wada
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| |
Collapse
|
21
|
Aggarwal C, Banaś AK, Kasprowicz-Maluśki A, Borghetti C, Labuz J, Dobrucki J, Gabryś H. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3263-76. [PMID: 24821953 PMCID: PMC4071840 DOI: 10.1093/jxb/eru172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Carolina Borghetti
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Labuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jerzy Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
22
|
Sharma S, Kharshiing E, Srinivas A, Zikihara K, Tokutomi S, Nagatani A, Fukayama H, Bodanapu R, Behera RK, Sreelakshmi Y, Sharma R. A dominant mutation in the light-oxygen and voltage2 domain vicinity impairs phototropin1 signaling in tomato. PLANT PHYSIOLOGY 2014; 164:2030-2044. [PMID: 24515830 PMCID: PMC3982760 DOI: 10.1104/pp.113.232306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/09/2014] [Indexed: 05/29/2023]
Abstract
In higher plants, blue light (BL) phototropism is primarily controlled by the phototropins, which are also involved in stomatal movement and chloroplast relocation. These photoresponses are mediated by two phototropins, phot1 and phot2. Phot1 mediates responses with higher sensitivity than phot2, and phot2 specifically mediates chloroplast avoidance and dark positioning responses. Here, we report the isolation and characterization of a Nonphototropic seedling1 (Nps1) mutant of tomato (Solanum lycopersicum). The mutant is impaired in low-fluence BL responses, including chloroplast accumulation and stomatal opening. Genetic analyses show that the mutant locus is dominant negative in nature. In dark-grown seedlings of the Nps1 mutant, phot1 protein accumulates at a highly reduced level relative to the wild type and lacks BL-induced autophosphorylation. The mutant harbors a single glycine-1484-to-alanine transition in the Hinge1 region of a phot1 homolog, resulting in an arginine-to-histidine substitution (R495H) in a highly conserved A'α helix proximal to the light-oxygen and voltage2 domain of the translated gene product. Significantly, the R495H substitution occurring in the Hinge1 region of PHOT1 abolishes its regulatory activity in Nps1 seedlings, thereby highlighting the functional significance of the A'α helix region in phototropic signaling of tomato.
Collapse
|
23
|
Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. PLANT & CELL PHYSIOLOGY 2014; 55:497-506. [PMID: 24334375 DOI: 10.1093/pcp/pct184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:522-30. [PMID: 24333784 DOI: 10.1016/j.bbabio.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Plants are photosynthetic organisms that have evolved unique systems to adapt fluctuating environmental light conditions. In addition to well-known movement responses such as phototropism, stomatal opening, and nastic leaf movements, chloroplast photorelocation movement is one of the essential cellular responses to optimize photosynthetic ability and avoid photodamage. For these adaptations, chloroplasts accumulate at the areas of cells illuminated with low light (called accumulation response), while they scatter from the area illuminated with strong light (called avoidance response). Plant-specific photoreceptors (phototropin, phytochrome, and/or neochrome) mediate these dynamic directional movements in response to incident light position and intensity. Several factors involved in the mechanisms underlying the processes from light perception to actin-based movements have also been identified through molecular genetic approach. This review aims to discuss recent findings in the field relating to how chloroplasts move at molecular levels. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
|
25
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
26
|
Kong SG, Arai Y, Suetsugu N, Yanagida T, Wada M. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. THE PLANT CELL 2013; 25:572-90. [PMID: 23404888 PMCID: PMC3608779 DOI: 10.1105/tpc.113.109694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 05/20/2023]
Abstract
Phototropins (phot1 and phot2 in Arabidopsis thaliana) relay blue light intensity information to the chloroplasts, which move toward weak light (the accumulation response) and away from strong light (the avoidance response). Chloroplast-actin (cp-actin) filaments are vital for mediating these chloroplast photorelocation movements. In this report, we examine in detail the cp-actin filament dynamics by which the chloroplast avoidance response is regulated. Although stochastic dynamics of cortical actin fragments are observed on the chloroplasts, the basic mechanisms underlying the disappearance (including severing and turnover) of the cp-actin filaments are regulated differently from those of cortical actin filaments. phot2 plays a pivotal role in the strong blue light-induced severing and random motility of cp-actin filaments, processes that are therefore essential for asymmetric cp-actin formation for the avoidance response. In addition, phot2 functions in the bundling of cp-actin filaments that is induced by dark incubation. By contrast, the function of phot1 is dispensable for these responses. Our findings suggest that phot2 is the primary photoreceptor involved in the rapid reorganization of cp-actin filaments that allows chloroplasts to change direction rapidly and control the velocity of the avoidance movement according to the light's intensity and position.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshiyuki Arai
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshio Yanagida
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamitsu Wada
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
- Address correspondence to
| |
Collapse
|
27
|
Kong SG, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. PLANT & CELL PHYSIOLOGY 2013; 54:80-92. [PMID: 23161859 DOI: 10.1093/pcp/pcs151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplasts change their position to adapt cellular activities to fluctuating environmental light conditions. Phototropins (phot1 and phot2 in Arabidopsis) are plant-specific blue light photoreceptors that perceive changes in light intensity and direction, and mediate actin-based chloroplast photorelocation movements. Both phot1 and phot2 regulate the chloroplast accumulation response, while phot2 is mostly responsible for the regulation of the avoidance response. Although it has been widely accepted that distinct intracellular localizations of phototropins are implicated in the specificity, the mechanism underlying the phot2-specific avoidance response has remained elusive. In this study, we examined the relationship of the phot2 localization pattern to the chloroplast photorelocation movement. First, the fusion of a nuclear localization signal with phot2, which effectively reduced the amount of phot2 in the cytoplasm, retained the activity for both the accumulation and avoidance responses, indicating that membrane-localized phot2 but not cytoplasmic phot2 is functional to mediate the responses. Importantly, some fractions of phot2, and of phot1 to a lesser extent, were localized on the chloroplast outer membrane. Moreover, the deletion of the C-terminal region of phot2, which was previously shown to be defective in blue light-induced Golgi localization and avoidance response, affected the localization pattern on the chloroplast outer membrane. Taken together, these results suggest that dynamic phot2 trafficking from the plasma membrane to the Golgi apparatus and the chloroplast outer membrane might be involved in the avoidance response.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, 812-8581 Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kozuka T, Suetsugu N, Wada M, Nagatani A. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2013; 54:69-79. [PMID: 23054390 DOI: 10.1093/pcp/pcs134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Light is one of the most important environmental factors regulating the growth and development of leaves. As the primary photosynthetic organs, leaves have a laminar structure in many dicotyledonous plants. The regulation of leaf flatness is a key mechanism for the efficient absorption of light under low light conditions. In the present study, we demonstrated that phytochrome B (phyB) promoted the development of curled leaves. Wild-type leaves gently curled downwards under white light, whereas the phyB-deficient mutant (phyB) constitutively exhibited flatter leaves. In the wild type, leaf flattening was promoted by end-of-day far-red light (EODFR) treatment, which rapidly eliminates the active Pfr phytochrome. Interestingly, the curled-leaf phenotype in a phototropin-deficient mutant was almost completely suppressed by the phyB mutation as well as by EODFR. Thus, phototropin promotes leaf flattening by suppressing the leaf-curling activity of phyB. We examined the downstream components of phyB and phototropin to assess their antagonistic regulation of leaf flatness further. Consequently, we found that a phototropin signaling transducer, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), was required to promote leaf flattening in phyB. The present study provides new insights into a mechanism in which leaf flatness is regulated in response to different light environmental cues.
Collapse
Affiliation(s)
- Toshiaki Kozuka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | |
Collapse
|
29
|
Kong SG, Kagawa T, Wada M, Nagatani A. A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement. PLANT & CELL PHYSIOLOGY 2013; 54:57-68. [PMID: 23012349 DOI: 10.1093/pcp/pcs132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropins (phot1 and phot2), plant-specific blue light receptor kinases, mediate a range of physiological responses in Arabidopsis, including phototropism, chloroplast photorelocation movement, stomatal opening and leaf flattening. Phototropins consist of two photoreceptive domains at their N-terminus, LOV1 (light, oxygen or voltage 1) and LOV2, and a serine/threonine kinase domain at their C-terminus. Here, we determined the molecular moiety for the membrane association of phototropins using the yeast CytoTrap and Arabidopsis protoplast systems. We then examined the physiological significance of the membrane association of phototropins. This detailed study with serial deletions narrowed down the association domain to a relatively small part of the C-terminal domain of phototropin. The functional analysis of phot2 deletion mutants in the phot2-deficient Adiantum and Arabidopsis mutants revealed that the ability to mediate the chloroplast avoidance response correlated well with phot2's membrane association, especially with the Golgi apparatus. Taken together, our data suggest that a small part of the C-terminal domain of phototropins is necessary not only for membrane association but also for the physiological activities that elicit phototropin-specific responses.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.
| | | | | | | |
Collapse
|
30
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
31
|
Suetsugu N, Wada M. Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. ACTA ACUST UNITED AC 2012; 54:8-23. [DOI: 10.1093/pcp/pcs165] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Okajima K, Kashojiya S, Tokutomi S. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J Biol Chem 2012; 287:40972-81. [PMID: 23066024 DOI: 10.1074/jbc.m112.406512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391-3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.
Collapse
Affiliation(s)
- Koji Okajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
33
|
Aihara Y, Yamamoto T, Okajima K, Yamamoto K, Suzuki T, Tokutomi S, Tanaka K, Nagatani A. Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamydomonas phototropin. J Biol Chem 2012; 287:9901-9909. [PMID: 22291022 PMCID: PMC3322977 DOI: 10.1074/jbc.m111.324723] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/26/2012] [Indexed: 11/06/2022] Open
Abstract
Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin.
Collapse
Affiliation(s)
- Yusuke Aihara
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo 060-0815, Japan, and
| | - Koji Okajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Kazuhiko Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomomi Suzuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoru Tokutomi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo 060-0815, Japan, and
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,.
| |
Collapse
|
34
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Kozuka T, Kong SG, Doi M, Shimazaki KI, Nagatani A. Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis. THE PLANT CELL 2011; 23:3684-95. [PMID: 21972260 PMCID: PMC3229143 DOI: 10.1105/tpc.111.085852] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/24/2011] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.
Collapse
Affiliation(s)
- Toshiaki Kozuka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sam-Geun Kong
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Michio Doi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
37
|
Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement. MOLECULAR PLANT 2011; 4:771-81. [PMID: 21772030 DOI: 10.1093/mp/ssr061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
38
|
Inoue SI, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki KI. Functional analyses of the activation loop of phototropin2 in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:117-28. [PMID: 21427282 PMCID: PMC3091063 DOI: 10.1104/pp.111.175943] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/17/2011] [Indexed: 05/18/2023]
Abstract
Phototropins (phot1 and phot2) are autophosphorylating blue-light receptor kinases that mediate blue-light responses such as phototropism, chloroplast accumulation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Only phot2 induces the chloroplast avoidance response under strong blue light. The serine (Ser) residues of the kinase activation loop in phot1 are autophosphorylated by blue light, and autophosphorylation is essential for the phot1-mediated responses. However, the role of autophosphorylation in phot2 remains to be determined. In this study, we substituted the conserved residues of Ser-761 and Ser-763 with alanine (S761A S763A) in the phot2 activation loop and analyzed their function by investigating the phot2-mediated responses after the transformation of phot1 phot2 double mutant with this mutant phot2 gene. Transgenic plants expressing the mutant phot2 protein exhibited impaired responses in chloroplast movement, stomatal opening, phototropic bending, leaf flattening, and plant growth; and those expressing phot2 with S761D S763D mutations showed the normal responses. Substitution of both Ser-761 and Ser-763 with alanine in phot2 did not significantly affect the kinase activity in planta. From these results, we conclude that phosphorylation of Ser-761 and Ser-763 in the activation loop may be a common primary step for phot2-mediated responses.
Collapse
|
39
|
Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 2010; 107:16715-20. [PMID: 20733070 DOI: 10.1073/pnas.1011190107] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show that the level of interaction is correlated with the level of WCC repression in constant light and that even light-insensitive VVD is sufficient partly to regulate photoadaptation in vivo. We provide evidence that a functional GFP-VVD fusion protein accumulates in the nucleus on light induction but that nuclear localization of VVD does not require light. Constitutively expressed VVD alone is sufficient to change the dynamics of photoadaptation. Thus, our results demonstrate a direct molecular connection between two of the most essential light signaling components in Neurospora, VVD and WCC, illuminating a previously uncharacterized process for light-sensitive eukaryotic cells.
Collapse
|
40
|
Tseng TS, Briggs WR. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. THE PLANT CELL 2010; 22:392-402. [PMID: 20139163 PMCID: PMC2845423 DOI: 10.1105/tpc.109.066423] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 05/20/2023]
Abstract
Phototropins (phot) sense blue light through the two N-terminal chromophore binding LOV domains and activate the C-terminal kinase domain. The resulting phototropin autophosphorylation is essential for biological activity. We identified the A1 subunit of Ser/Thr protein phosphatase 2A (PP2A) as interacting with full-length phot2 in yeast and also interacting with phot2 in an in vitro protein binding assay. Phenotypic characterizations of a phot1-5 rcn1-1 (for root curling in n-naphthylphthalamic acid1) double mutant, in which phot2 is the only functional phototropin and PP2A activity is reduced, showed enhanced phototropic sensitivity and enhanced blue light-induced stomatal opening, suggesting that PP2A activity is involved in regulating phot2 function. When treated with cantharidin, a chemical inhibitor of PP2A, the phot1-5 mutant exhibited enhanced phot2-mediated phototropic responses like those of the phot1-5 rcn1-1 double mutant. Immunoblot analysis to examine phot2 endogenous phosphorylation levels and in vitro phosphorylation assays of phot2 extracted from plants during dark recovery from blue light exposure confirmed that phot2 is more slowly dephosphorylated in the reduced PP2A activity background than in the wild-type PP2A background, suggesting that phosphorylated phot2 is a substrate of PP2A activity. While reduced PP2A activity enhanced the activity of phot2, it did not enhance either phot1 dephosphorylation or the activity of phot1 in mediating phototropism or stomatal opening.
Collapse
|
41
|
Sullivan S, Kaiserli E, Tseng TS, Christie JM. Subcellular localization and turnover of Arabidopsis phototropin 1. PLANT SIGNALING & BEHAVIOR 2010; 5:184-6. [PMID: 20173419 PMCID: PMC2884130 DOI: 10.4161/psb.5.2.11082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 05/05/2023]
Abstract
We reported recently that internalization of the plant blue light receptor phototropin 1 (phot1) from the plasma membrane in response to irradiation is reliant on receptor autophosphorylation. Pharmacological interference and co-immunoprecipitation analyses also indicated that light-induced internalization of phot1 involves clathrin-dependent processes. Here, we describe additional pharmacological studies that impact the subcellular localization and trafficking of Arabidopsis phot1. Alterations in the microtububle cytoskeleton led to dramatic differences in phot1 localization and function. Likewise, inhibition of phosphatidic acid (PA) signaling was found to impair phot1 localization and function. However, action of PA inhibition on phot1 function may be attributed to pleiotropic effects on cell growth. While phot1 kinase activation is necessary to stimulate its internalization, autophosphorylation is not required for phot1 turnover in response to prolonged blue light irradiation. The implications of these findings in regard to phot1 localization and function are discussed.
Collapse
Affiliation(s)
- Stuart Sullivan
- Plant Science Group, Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | | | | | | |
Collapse
|
42
|
Pfeifer A, Mathes T, Lu Y, Hegemann P, Kottke T. Blue Light Induces Global and Localized Conformational Changes in the Kinase Domain of Full-Length Phototropin. Biochemistry 2010; 49:1024-32. [DOI: 10.1021/bi9016044] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Anna Pfeifer
- Department of Chemistry, Biophysical Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tilo Mathes
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Yinghong Lu
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Tilman Kottke
- Department of Chemistry, Biophysical Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Institute of Structural Biology and Biophysics 2, Research Center Jülich, 52425 Jülich, Germany
| |
Collapse
|
43
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
44
|
Zhang Y, McCormick S. AGCVIII kinases: at the crossroads of cellular signaling. TRENDS IN PLANT SCIENCE 2009; 14:689-695. [PMID: 19818674 DOI: 10.1016/j.tplants.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functionality and regulation of AGCVIII kinases. Specifically, we question the view that activities of AGCVIII kinases, like their animal counterparts, are regulated by a common regulator, 3-phosphoinositide-dependent protein kinase-1 (PDK1). Instead, increasing evidence suggests that Ca(2+) and phospholipids regulate AGCVIII kinases, by altering their activities or by affecting their subcellular localization. As AGCVIII kinases are at the crossroads of plant cellular signaling, they and the signaling networks in which they participate are keys to a better understanding of plant development and of interactions with their environment.
Collapse
Affiliation(s)
- Yan Zhang
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | | |
Collapse
|
45
|
Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:69-74. [PMID: 18930433 DOI: 10.1016/j.pbi.2008.09.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 05/20/2023]
Abstract
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Collapse
Affiliation(s)
- Emilie Demarsy
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, Switzerland.
| | | |
Collapse
|
46
|
|
47
|
Aihara Y, Tabata R, Suzuki T, Shimazaki KI, Nagatani A. Molecular basis of the functional specificities of phototropin 1 and 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:364-75. [PMID: 18643969 DOI: 10.1111/j.1365-313x.2008.03605.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.
Collapse
Affiliation(s)
- Yusuke Aihara
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
48
|
Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. PLANT PHYSIOLOGY 2008; 148:829-42. [PMID: 18715957 PMCID: PMC2556824 DOI: 10.1104/pp.108.123075] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/04/2008] [Indexed: 05/18/2023]
Abstract
Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.
Collapse
|
49
|
Kong SG, Nagatani A. Where and how does phototropin transduce light signals in the cell? PLANT SIGNALING & BEHAVIOR 2008; 3:275-7. [PMID: 19704653 PMCID: PMC2634201 DOI: 10.4161/psb.3.4.5239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 05/22/2023]
Abstract
Light plays pivotal roles as an important environmental signal in plant growth and development. In Arabidopsis, phototropin 1 (phot1) and 2 (phot2) are the photoreceptors that mediate phototropism, chloroplast relocation, stomatal opening and leaf flattening, in response to blue light. However, little is known about how phototropins transduce the signals after the light is perceived. Changes induced by blue light in terms of intracellular localization patterns of phot2 in Arabidopsis were examined. Phot2 distributed uniformly in the plasma membrane under dark conditions. Upon irradiation with blue light, some of the phot2 associated with the Golgi apparatus. It was also shown that the kinase domain, but not the photosensory domain, is required for a plasma membrane and Golgi localization. Furthermore a kinase fragment, lacking the photosensory domain, constitutively triggered physiological responses in planta. Thus, the plasma membrane and the Golgi apparatus appear to be the most likely sites for the initial step of phot2 signal transduction. The Golgi apparatus facilitates vesicle trafficking and delivery of membrane proteins to the required locations in the cell. Therefore, this study implicates the regulation of vesicle trafficking by the Golgi apparatus as a mechanism by which phot2 elicits its cellular responses.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Division of Photobiology; National Institute for Basic Biology; Okazaki, Japan
| | - Akira Nagatani
- Laboratory of Plant Physiology; Department of Botany; Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
50
|
Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci U S A 2008; 105:5626-31. [PMID: 18378899 DOI: 10.1073/pnas.0709189105] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phototropins are autophosphorylating protein kinases of plant-specific blue light receptors. They regulate various blue light responses, including phototropism, chloroplast movements, hypocotyl growth inhibition, leaf flattening, and stomatal opening. However, the physiological role of autophosphorylation remains unknown. Here, we identified phosphorylation sites of Ser or Thr in the N terminus, Hinge1 region, kinase domain, and C terminus in Arabidopsis phototropin1 (phot1) by liquid chromatography-tandem mass spectrometry in vivo. We substituted these Ser or Thr residues with Ala in phot1 and analyzed their functions by inspecting the phot1-mediated responses of stomatal opening, phototropism, chloroplast accumulation, and leaf flattening after the transformation of the phot1 phot2 double mutant. Among these sites, we found that autophosphorylation of Ser-851 in the activation loop of the kinase domain was required for the responses mentioned above, whereas the phosphorylation of the other Ser and Thr, except those in the activation loop, was not. Ser-849 in the loop may have an additional role in the responses. Immunological analysis revealed that Ser-851 was phosphorylated rapidly by blue light in a fluence-dependent manner and dephosphorylated gradually upon darkness. We conclude that autophosphorylation of Ser-851 is a primary step that mediates signaling between photochemical reaction and physiological events.
Collapse
|