1
|
Truniger V, Pechar GS, Aranda MA. Advances in Understanding the Mechanism of Cap-Independent Cucurbit Aphid-Borne Yellows Virus Protein Synthesis. Int J Mol Sci 2023; 24:17598. [PMID: 38139425 PMCID: PMC10744285 DOI: 10.3390/ijms242417598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Non-canonical translation mechanisms have been described for many viral RNAs. In the case of several plant viruses, their protein synthesis is controlled by RNA elements in their genomic 3'-ends that are able to enhance cap-independent translation (3'-CITE). The proposed general mechanism of 3'-CITEs includes their binding to eukaryotic translation initiation factors (eIFs) that reach the 5'-end and AUG start codon through 5'-3'-UTR-interactions. It was previously shown that cucurbit aphid-borne yellows virus (CABYV) has a 3'-CITE, which varies in sequence and structure depending on the phylogenetic group to which the isolate belongs, possibly as a result of adaptation to the different geographical regions. In this work, the cap-independent translation mechanisms of two CABYV 3'-CITEs belonging to the Mediterranean (CMTE) and Asian (CXTE) groups, respectively, were studied. In vivo cap-independent translation assays show that these 3'-CITEs require the presence of the CABYV short genomic 5'-UTR with at least 40% adenines in cis and an accessible 5'-end for its activity. Additionally, they suggest that the eIF4E-independent CABYV 3'-CITE activities may not require either eIF4A or the eIF4F complex, but may depend on eIF4G and PABP. By pulling down host proteins using RNA baits containing both 5'- and 3'-CABYV-UTRs, 80 RNA binding proteins were identified. These interacted preferentially with either CMTE, CXTE, or both. One of these proteins, specifically interacting with the RNA containing CMTE, was HSP70.2. Preliminary results suggested that HSP70.2 may be involved in CMTE- but not CXTE-mediated cap-independent translation activity.
Collapse
Affiliation(s)
- Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain; (G.S.P.); (M.A.A.)
| | | | | |
Collapse
|
2
|
Lewicka A, Roman C, Jones S, Disare M, Rice P, Piccirilli J. Crystal structure of a cap-independent translation enhancer RNA. Nucleic Acids Res 2023; 51:8891-8907. [PMID: 37548413 PMCID: PMC10484670 DOI: 10.1093/nar/gkad649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.
Collapse
Affiliation(s)
- Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Christina Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stacey Jones
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Disare
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Nishikawa M, Katsu K, Koinuma H, Hashimoto M, Neriya Y, Matsuyama J, Yamamoto T, Suzuki M, Matsumoto O, Matsui H, Nakagami H, Maejima K, Namba S, Yamaji Y. Interaction of EXA1 and eIF4E Family Members Facilitates Potexvirus Infection in Arabidopsis thaliana. J Virol 2023; 97:e0022123. [PMID: 37199623 PMCID: PMC10308960 DOI: 10.1128/jvi.00221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Katsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Hashimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaro Neriya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toya Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Bera S, Ilyas M, Mikkelsen AA, Simon AE. Conserved Structure Associated with Different 3′CITEs Is Important for Translation of Umbraviruses. Viruses 2023; 15:v15030638. [PMID: 36992347 PMCID: PMC10051134 DOI: 10.3390/v15030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The cap-independent translation of plus-strand RNA plant viruses frequently depends on 3′ structures to attract translation initiation factors that bind ribosomal subunits or bind directly to ribosomes. Umbraviruses are excellent models for studying 3′ cap-independent translation enhancers (3′CITEs), as umbraviruses can have different 3′CITEs in the central region of their lengthy 3′UTRs, and most also have a particular 3′CITE (the T-shaped structure or 3′TSS) near their 3′ ends. We discovered a novel hairpin just upstream of the centrally located (known or putative) 3′CITEs in all 14 umbraviruses. These CITE-associated structures (CASs) have conserved sequences in their apical loops and at the stem base and adjacent positions. In 11 umbraviruses, CASs are preceded by two small hairpins joined by a putative kissing loop interaction (KL). Converting the conserved 6-nt apical loop to a GNRA tetraloop in opium poppy mosaic virus (OPMV) and pea enation mosaic virus 2 (PEMV2) enhanced translation of genomic (g)RNA, but not subgenomic (sg)RNA reporter constructs, and significantly repressed virus accumulation in Nicotiana benthamiana. Other alterations throughout OPMV CAS also repressed virus accumulation and only enhanced sgRNA reporter translation, while mutations in the lower stem repressed gRNA reporter translation. Similar mutations in the PEMV2 CAS also repressed accumulation but did not significantly affect gRNA or sgRNA reporter translation, with the exception of deletion of the entire hairpin, which only reduced translation of the gRNA reporter. OPMV CAS mutations had little effect on the downstream BTE 3′CITE or upstream KL element, while PEMV2 CAS mutations significantly altered KL structures. These results introduce an additional element associated with different 3′CITEs that differentially affect the structure and translation of different umbraviruses.
Collapse
|
5
|
Miras M, Aranda MA, Truniger V. Different RNA Elements Control Viral Protein Synthesis in Polerovirus Isolates Evolved in Separate Geographical Regions. Int J Mol Sci 2022; 23:ijms232012503. [PMID: 36293360 PMCID: PMC9603980 DOI: 10.3390/ijms232012503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022] Open
Abstract
Most plant viruses lack the 5′-cap and 3′-poly(A) structures, which are common in their host mRNAs, and are crucial for translation initiation. Thus, alternative translation initiation mechanisms were identified for viral mRNAs, one of these being controlled by an RNA element in their 3′-ends that is able to enhance mRNA cap-independent translation (3′-CITE). The 3′-CITEs are modular and transferable RNA elements. In the case of poleroviruses, the mechanism of translation initiation of their RNAs in the host cell is still unclear; thus, it was studied for one of its members, cucurbit aphid-borne yellows virus (CABYV). We determined that efficient CABYV RNA translation requires the presence of a 3′-CITE in its 3′-UTR. We showed that this 3′-CITE requires the presence of the 5′-UTR in cis for its eIF4E-independent activity. Efficient virus multiplication depended on 3′-CITE activity. In CABYV isolates belonging to the three phylogenetic groups identified so far, the 3′-CITEs differ, and recombination prediction analyses suggest that these 3′-CITEs have been acquired through recombination with an unknown donor. Since these isolates have evolved in different geographical regions, this may suggest that their respective 3′-CITEs are possibly better adapted to each region. We propose that translation of other polerovirus genomes may also be 3′-CITE-dependent.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
- Correspondence:
| |
Collapse
|
6
|
Pechar GS, Donaire L, Gosalvez B, García‐Almodovar C, Sánchez‐Pina MA, Truniger V, Aranda MA. Editing melon eIF4E associates with virus resistance and male sterility. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2006-2022. [PMID: 35778883 PMCID: PMC9491454 DOI: 10.1111/pbi.13885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 05/20/2023]
Abstract
The cap-binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap-dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single-nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non-transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non-mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild-type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild-type. An RNA-Seq analysis identified critical genes in pollen development that were down-regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E-specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Collapse
Affiliation(s)
- Giuliano S. Pechar
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Blanca Gosalvez
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Carlos García‐Almodovar
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - María Amelia Sánchez‐Pina
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Verónica Truniger
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| |
Collapse
|
7
|
Chen R, Yang M, Tu Z, Xie F, Chen J, Luo T, Hu X, Nie B, He C. Eukaryotic translation initiation factor 4E family member nCBP facilitates the accumulation of TGB-encoding viruses by recognizing the viral coat protein in potato and tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:946873. [PMID: 36003826 PMCID: PMC9393630 DOI: 10.3389/fpls.2022.946873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to their limited coding capacity, plant viruses have to depend on various host factors for successful infection of the host. Loss of function of these host factors will result in recessively inherited resistance, and therefore, these host factors are also described as susceptibility genes or recessive resistance genes. Most of the identified recessive resistance genes are members of the eukaryotic translation initiation factors 4E family (eIF4E) and its isoforms. Recently, an eIF4E-type gene, novel cap-binding protein (nCBP), was reported to be associated with the infection of several viruses encoding triple gene block proteins (TGBps) in Arabidopsis. Here, we, for the first time, report that the knockdown of nCBP in potato (StnCBP) compromises the accumulation of potato virus S (PVS) but not that of potato virus M (PVM) and potato virus X (PVX), which are three potato viruses encoding TGBps. Further assays demonstrated that StnCBP interacts with the coat proteins (CPs) of PVS and PVM but not with that of PVX, and substitution of PVS CP in the PVS infectious clone by PVM CP recovered the virus infection in StnCBP-silenced transgenic plants, suggesting that the recognition of PVS CP is crucial for StnCBP-mediated recessive resistance to PVS. Moreover, the knockdown of nCBP in Nicotiana benthamiana (NbnCBP) by virus-induced gene silencing suppressed PVX accumulation but not PVM, while NbnCBP interacted with the CPs of both PVX and PVM. Our results indicate that the nCBP orthologues in potato and tobacco have conserved function as in Arabidopsis in terms of recessive resistance against TGB-encoding viruses, and the interaction between nCBP and the CP of TGB-encoding virus is necessary but not sufficient to determine the function of nCBP as a susceptibility gene.
Collapse
Affiliation(s)
- Ruhao Chen
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Manhua Yang
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fangru Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiaru Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tao Luo
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinxi Hu
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
9
|
Carino EJ, Scheets K, Miller WA. The RNA of Maize Chlorotic Mottle Virus, an Obligatory Component of Maize Lethal Necrosis Disease, Is Translated via a Variant Panicum Mosaic Virus-Like Cap-Independent Translation Element. J Virol 2020; 94:e01005-20. [PMID: 32847851 PMCID: PMC7592216 DOI: 10.1128/jvi.01005-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) combines with a potyvirus in maize lethal necrosis disease (MLND), a serious emerging disease worldwide. To inform resistance strategies, we characterized the translation initiation mechanism of MCMV. We report that MCMV RNA contains a cap-independent translation element (CITE) in its 3' untranslated region (UTR). The MCMV 3' CITE (MTE) was mapped to nucleotides 4164 to 4333 in the genomic RNA. 2'-Hydroxyl acylation analyzed by primer extension (SHAPE) probing revealed that the MTE is a distinct variant of the panicum mosaic virus-like 3' CITE (PTE). Like the PTE, electrophoretic mobility shift assays (EMSAs) indicated that eukaryotic translation initiation factor 4E (eIF4E) binds the MTE despite the absence of an m7GpppN cap structure, which is normally required for eIF4E to bind RNA. Using a luciferase reporter system, mutagenesis to disrupt and restore base pairing revealed that the MTE interacts with the 5' UTRs of both genomic RNA and subgenomic RNA1 via long-distance kissing stem-loop interaction to facilitate translation. The MTE stimulates a relatively low level of translation and has a weak, if any, pseudoknot, which is present in the most active PTEs, mainly because the MTE lacks the pyrimidine-rich tract that base pairs to a G-rich bulge to form the pseudoknot. However, most mutations designed to form a pseudoknot decreased translation activity. Mutations in the viral genome that reduced or restored translation prevented and restored virus replication, respectively, in maize protoplasts and in plants. In summary, the MTE differs from the canonical PTE but falls into a structurally related class of 3' CITEs.IMPORTANCE In the past decade, maize lethal necrosis disease has caused massive crop losses in East Africa. It has also emerged in China and parts of South America. Maize chlorotic mottle virus (MCMV) infection is required for this disease. While some tolerant maize lines have been identified, there are no known resistance genes that confer immunity to MCMV. In order to improve resistance strategies against MCMV, we focused on how the MCMV genome is translated, the first step of gene expression by all positive-strand RNA viruses. We identified a structure (cap-independent translation element) in the 3' untranslated region of the viral RNA genome that allows the virus to usurp a host translation initiation factor, eIF4E, in a way that differs from host mRNA interactions with the translational machinery. This difference indicates eIF4E may be a soft target for engineering of-or breeding for-resistance to MCMV.
Collapse
Affiliation(s)
- Elizabeth J Carino
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| | - Kay Scheets
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Mackie J, Higgins E, Chambers GA, Tesoriero L, Aldaoud R, Kelly G, Kinoti WM, Rodoni BC, Constable FE. Genome Analysis of Melon Necrotic Spot Virus Incursions and Seed Interceptions in Australia. PLANT DISEASE 2020; 104:1969-1978. [PMID: 32484421 DOI: 10.1094/pdis-04-19-0846-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.
Collapse
Affiliation(s)
- Joanne Mackie
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Ellena Higgins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Grant A Chambers
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Len Tesoriero
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Ramez Aldaoud
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Geoff Kelly
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Wycliff M Kinoti
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Fiona E Constable
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| |
Collapse
|
11
|
[Recessive resistance to plant viruses by the deficiency of eukaryotic translation initiation factor genes.]. Uirusu 2020; 70:61-68. [PMID: 33967115 DOI: 10.2222/jsv.70.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plant viruses, obligate parasitic pathogens, utilize a variety of host plant factors in the process of their infection due to the limited number of genes encoded in their own genomes. The genes encoding these host factors are called susceptibility genes because they are responsible for the susceptibility of plants to viruses. Plants lacking or having mutations in a susceptibility gene essential for the infection of a virus acquire resistance to the virus. Such resistance trait is called recessive resistance because of the recessive inherited characteristics. Recessive resistance is reported to account for about half of the plant viral resistance loci mapped in known cultivated crops. Eukaryotic translation initiation factor (eIF) 4E family genes are well-known susceptibility genes. Although there are many reports about eIF4E-mediated recessive resistance to plant viruses, the mechanistic insight of the resistance is still limited. Here we review focusing on studies that have elucidated the mechanism of eIF4E-mediated recessive resistance.
Collapse
|
12
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
13
|
Kraft JJ, Peterson MS, Cho SK, Wang Z, Hui A, Rakotondrafara AM, Treder K, Miller CL, Miller WA. The 3' Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens 2019; 8:E28. [PMID: 30823456 PMCID: PMC6471432 DOI: 10.3390/pathogens8010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
Many plant viral RNA genomes lack a 5' cap, and instead are translated via a cap-independent translation element (CITE) in the 3' untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host's translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Mariko S Peterson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sung Ki Cho
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA.
| | - Zhaohui Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Alice Hui
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute⁻National Research Institute, 76-009 Bonin, Poland.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus. Sci Rep 2018; 8:13588. [PMID: 30206242 PMCID: PMC6134127 DOI: 10.1038/s41598-018-31739-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Plant potyviruses require eukaryotic translation initiation factors (eIFs) such as eIF4E and eIF(iso)4E to replicate and spread. When Turnip mosaic virus (TuMV) infects a host plant, its viral protein linked to the genome (VPg) needs to interact with eIF4E or eIF(iso)4E to initiate translation. TuMV utilizes BraA.eIF4E.a, BraA.eIF4E.c, BraA.eIF(iso)4E.a, and BraA.eIF(iso)4E.c of Brassica rapa to initiate translation in Arabidopsis thaliana. In this study, the BraA.eIF4E.a, BraA.eIF4E.c, BraA.eIF(iso)4E.a, and BraA.eIF(iso)4E.c genes were cloned and sequenced from eight B. rapa lines, namely, two BraA.eIF4E.a alleles, four BraA.eIF4E.c alleles, four BraA.eIF(iso)4E.a alleles, and two BraA.eIF(iso)4E.c alleles. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses indicated that TuMV VPg could not interact with eIF4E, but only with eIF(iso)4E of B. rapa. In addition, the VPgs of the different TuMV isolates interacted with various eIF(iso)4E copies in B. rapa. In particular, TuMV-UK1/CDN1 VPg only interacted with BraA.eIF(iso)4E.c, not with BraA.eIF(iso)4E.a. Some single nucleotide polymorphisms (SNPs) were identified that may have affected the interaction between eIF(iso)4E and VPg such as the SNP T106C in BraA.eIF(iso)4E.c and the SNP A154C in VPg. Furthermore, a three-dimensional structural model of the BraA.eIF(iso)4E.c-1 protein was constructed to identify the specific conformation of the variable amino acids from BraA.eIF(iso)4E.c. The 36th amino acid in BraA.eIF(iso)4E.c is highly conserved and may play an important role in establishing protein structural stability. The findings of the present study may lay the foundation for future investigations on the co-evolution of TuMV and eIF(iso)4E.
Collapse
|
15
|
Miras M, Rodríguez-Hernández AM, Romero-López C, Berzal-Herranz A, Colchero J, Aranda MA, Truniger V. A Dual Interaction Between the 5'- and 3'-Ends of the Melon Necrotic Spot Virus (MNSV) RNA Genome Is Required for Efficient Cap-Independent Translation. FRONTIERS IN PLANT SCIENCE 2018; 9:625. [PMID: 29868081 PMCID: PMC5954562 DOI: 10.3389/fpls.2018.00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Ana M Rodríguez-Hernández
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain.,Centro de Investigación en Química Aplicada, Consejo Nacional de Ciencia y Tecnología (CONACYT), Saltillo, Mexico
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Jaime Colchero
- Departamento de Física, Edificio CIOyN, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
16
|
Bastet A, Lederer B, Giovinazzo N, Arnoux X, German‐Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S, Lemaire O, Robaglia C, Gallois J. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1569-1581. [PMID: 29504210 PMCID: PMC6097130 DOI: 10.1111/pbi.12896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 05/19/2023]
Abstract
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance-breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof-of-concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans-species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad-spectrum and high durability resistance using recent genome editing techniques.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | | | | - Xavier Arnoux
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Sylvie German‐Retana
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Catherine Reinbold
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Véronique Brault
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Damien Garcia
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)UPR 2357StrasbourgFrance
| | - Samia Djennane
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Sophie Gersch
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Olivier Lemaire
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Christophe Robaglia
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | |
Collapse
|
17
|
Miras M, Truniger V, Querol‐Audi J, Aranda MA. Analysis of the interacting partners eIF4F and 3'-CITE required for Melon necrotic spot virus cap-independent translation. MOLECULAR PLANT PATHOLOGY 2017; 18:635-648. [PMID: 27145354 PMCID: PMC6638222 DOI: 10.1111/mpp.12422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
We have shown previously that the translation of Melon necrotic spot virus (MNSV, family Tombusviridae, genus Carmovirus) RNAs is controlled by a 3'-cap-independent translation enhancer (CITE), which is genetically and functionally dependent on the eukaryotic translation initiation factor (eIF) 4E. Here, we describe structural and functional analyses of the MNSV-Mα5 3'-CITE and its translation initiation factor partner. We first mapped the minimal 3'-CITE (Ma5TE) to a 45-nucleotide sequence, which consists of a stem-loop structure with two internal loops, similar to other I-shaped 3'-CITEs. UV crosslinking, followed by gel retardation assays, indicated that Ma5TE interacts in vitro with the complex formed by eIF4E + eIF4G980-1159 (eIF4Fp20 ), but not with each subunit alone or with eIF4E + eIF4G1003-1092 , suggesting binding either through interaction with eIF4E following a conformational change induced by its binding to eIF4G980-1159 , or through a double interaction with eIF4E and eIF4G980-1159 . Critical residues for this interaction reside in an internal bulge of Ma5TE, so that their mutation abolished binding to eIF4E + eIF4G1003-1092 and cap-independent translation. We also developed an in vivo system to test the effect of mutations in eIF4E in Ma5TE-driven cap-independent translation, showing that conserved amino acids in a positively charged RNA-binding motif around amino acid position 228, implicated in eIF4E-eIF4G binding or belonging to the cap-recognition pocket, are essential for cap-independent translation controlled by Ma5TE, and thus for the multiplication of MNSV.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Jordi Querol‐Audi
- Molecular Biology Institute of Barcelona (IBMB‐CSIC)Parc Científic de Barcelona, Baldiri i Reixac 10Barcelona08028Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| |
Collapse
|
18
|
Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci Rep 2017; 7:39678. [PMID: 28059075 PMCID: PMC5216350 DOI: 10.1038/srep39678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.
Collapse
|
19
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
20
|
Truniger V, Miras M, Aranda MA. Structural and Functional Diversity of Plant Virus 3'-Cap-Independent Translation Enhancers (3'-CITEs). FRONTIERS IN PLANT SCIENCE 2017; 8:2047. [PMID: 29238357 PMCID: PMC5712577 DOI: 10.3389/fpls.2017.02047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 05/12/2023]
Abstract
Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.
Collapse
|
21
|
Fondong VN, Nagalakshmi U, Dinesh-Kumar SP. Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses. PHYTOPATHOLOGY 2016; 106:1231-1239. [PMID: 27392181 DOI: 10.1094/phyto-03-16-0145-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.
Collapse
Affiliation(s)
- Vincent N Fondong
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Ugrappa Nagalakshmi
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| | - Savithramma P Dinesh-Kumar
- First author: Department of Biological Sciences, Delaware State University, Dover; second author: Department of Plant Biology, College of Biological Sciences, University of California, Davis; and third author: Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis
| |
Collapse
|
22
|
Gómez-Aix C, Pascual L, Cañizares J, Sánchez-Pina MA, Aranda MA. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genomics 2016; 17:429. [PMID: 27267368 PMCID: PMC4897865 DOI: 10.1186/s12864-016-2772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3′-untranslated regions. Results Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3’264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. Conclusions Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2772-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Gómez-Aix
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain
| | - Laura Pascual
- Centre for Research in Agricultural Genomics CRAG, CSIC-IRTA-UAB-UB, Campus 10 UAB Bellaterra, 08193, Barcelona, Spain
| | - Joaquín Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) - UPV, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Amelia Sánchez-Pina
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
23
|
Blanco-Pérez M, Pérez-Cañamás M, Ruiz L, Hernández C. Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3´-Translational Enhancer that Communicates with the Corresponding 5´-Region through a Long-Distance RNA-RNA Interaction. PLoS One 2016; 11:e0152593. [PMID: 27043436 PMCID: PMC4820102 DOI: 10.1371/journal.pone.0152593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions.
Collapse
Affiliation(s)
- Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Leticia Ruiz
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
- * E-mail:
| |
Collapse
|
24
|
Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol 2016; 17:11-18. [DOI: 10.1016/j.coviro.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
|
25
|
Kanda T, Ozawa M, Tsukiyama-Kohara K. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals. BMC Vet Res 2016; 12:66. [PMID: 27036295 PMCID: PMC4815274 DOI: 10.1186/s12917-016-0694-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/23/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. RESULTS Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. CONCLUSIONS IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.
Collapse
Affiliation(s)
- Takehiro Kanda
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Makoto Ozawa
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,Transboundary Animal Disease Center, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan. .,Transboundary Animal Disease Center, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.
| |
Collapse
|
26
|
Guiu-Aragonés C, Díaz-Pendón JA, Martín-Hernández AM. Four sequence positions of the movement protein of Cucumber mosaic virus determine the virulence against cmv1-mediated resistance in melon. MOLECULAR PLANT PATHOLOGY 2015; 16:675-84. [PMID: 25470079 PMCID: PMC6638431 DOI: 10.1111/mpp.12225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The resistance to a set of strains of Cucumber mosaic virus (CMV) in the melon accession PI 161375, cultivar 'Songwhan Charmi', is dependent on one recessive gene, cmv1, which confers total resistance, whereas a second set of strains is able to overcome it. We tested 11 strains of CMV subgroups I and II in the melon line SC12-1-99, which carries the gene cmv1, and showed that this gene confers resistance to strains of subgroup II only and that restriction is not related to either viral replication or cell-to-cell movement. This is the first time that a resistant trait has been correlated with CMV subgroups. Using infectious clones of the CMV strains LS (subgroup II) and FNY (subgroup I), we generated rearrangements and viral chimaeras between both strains and established that the determinant of virulence against the gene cmv1 resides in the first 209 amino acids of the movement protein, as this region from FNY is sufficient to confer virulence to the LS clone in the line SC12-1-99. A comparison of the sequences of the strains of both subgroups in this region shows that there are five main positions shared by all strains of subgroup II, which are different from those of subgroup I. Site-directed mutagenesis of the CMV-LS clone to substitute these residues for those of CMV-FNY revealed that a combination of four of these changes [the group 64-68 (SNNLL to HGRIA), and the point mutations R81C, G171T and A195I] was required for a complete gain of function of the LS MP in the resistant melon plant.
Collapse
Affiliation(s)
- Cèlia Guiu-Aragonés
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Juan Antonio Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Montserrat Martín-Hernández
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
27
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
28
|
Serra-Soriano M, Navarro JA, Genoves A, Pallás V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 2015; 124:11-24. [PMID: 25892132 DOI: 10.1016/j.jprot.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Ainhoa Genoves
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
29
|
Gómez-Aix C, García-García M, Aranda MA, Sánchez-Pina MA. Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:387-97. [PMID: 25372121 DOI: 10.1094/mpmi-09-14-0274-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Melon necrotic spot virus (MNSV) (genus Carmovirus, family Tombusviridae) is a single-stranded, positive-sense RNA virus that has become an experimental model for the analysis of cell-to-cell virus movement and translation of uncapped viral RNAs, whereas little is known about its replication. Analysis of the cytopathology after MNSV infection showed the specific presence of modified organelles that resemble mitochondria. Immunolocalization of the glycine decarboxylase complex (GDC) P protein in these organelles confirmed their mitochondrial origin. In situ hybridization and immunolocalization experiments showed the specific localization of positive-sense viral RNA, capsid protein (CP), and double-stranded (ds)RNA in these organelles meaning that replication of the virus takes place in association with them. The three-dimensional reconstructions of the altered mitochondria showed the presence of large, interconnected, internal dilations which appeared to be linked to the outside cytoplasmic environment through pores and/or complex structures, and with lipid bodies. Transient expression of MNSV p29 revealed that its specific target is mitochondria. Our data document the extensive reorganization of host mitochondria induced by MNSV, which provides a protected environment to viral replication, and show that the MNSV p29 protein is the primary determinant of this effect in the host.
Collapse
Affiliation(s)
- Cristina Gómez-Aix
- 1 Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
30
|
Sharma SD, Kraft JJ, Miller WA, Goss DJ. Recruitment of the 40S ribosome subunit to the 3'-untranslated region (UTR) of a viral mRNA, via the eIF4 complex, facilitates cap-independent translation. J Biol Chem 2015; 290:11268-81. [PMID: 25792742 DOI: 10.1074/jbc.m115.645002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3'-BTE) in its 3'-UTR essential for efficient translation initiation at the 5'-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3'-BTE-5'-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3'-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5'-end of the mRNA, where translation initiates. Although 3'-5' interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3'-UTR as the primary site of ribosome recruitment.
Collapse
Affiliation(s)
- Sohani Das Sharma
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| | | | - W Allen Miller
- the Departments of Plant Pathology and Microbiology and Biochemistry, Biophysics, Molecular Biology, and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Dixie J Goss
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| |
Collapse
|
31
|
Abstract
Carmovirus is a genus of small, single-stranded, positive-strand RNA viruses in the Tombusviridae. One member of the carmoviruses, Turnip crinkle virus (TCV), has been used extensively as a model for examining the structure and function of RNA elements in 3'UTR as well as in other regions of the virus. Using a variety of genetic, biochemical and computational methods, a structure for the TCV 3'UTR has emerged where secondary structures and tertiary interactions combine to adopt higher order 3-D structures including an internal, ribosome-binding tRNA-shaped configuration that functions as a 3' cap-independent translation enhancer (3'CITE). The TCV 3'CITE also serves as a scaffold for non-canonical interactions throughout the 3'UTR and extending into the upstream open reading frame, interactions that are significantly disrupted upon binding by the RNA-dependent RNA polymerase. Long-distance interactions that connect elements in the 3'UTR with both the 5' end and the internal ribosome recoding site suggest that 3'UTR of carmoviruses are intimately involved in multiple functions in the virus life cycle. Although carmoviruses share very similar genome organizations, lengths of 5' and 3'UTRs, and structural features at the 3' end, the similarity rapidly breaks down the further removed from the 3' terminus revealing different 3'CITEs and unique virus-specific structural features. This review summarizes 20 years of work dissecting the structure and function of the 3'UTR of TCV and other carmoviruses. The astonishing structural complexity of the 3'UTRs of these simple carmoviruses provides lessons that are likely applicable to many other plant and animal RNA viruses.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, United States.
| |
Collapse
|
32
|
Gao F, Kasprzak WK, Szarko C, Shapiro BA, Simon AE. The 3' untranslated region of Pea Enation Mosaic Virus contains two T-shaped, ribosome-binding, cap-independent translation enhancers. J Virol 2014; 88:11696-712. [PMID: 25100834 PMCID: PMC4178710 DOI: 10.1128/jvi.01433-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Many plant viruses without 5' caps or 3' poly(A) tails contain 3' proximal, cap-independent translation enhancers (3'CITEs) that bind to ribosomal subunits or translation factors thought to assist in ribosome recruitment. Most 3'CITEs participate in a long-distance kissing-loop interaction with a 5' proximal hairpin to deliver ribosomal subunits to the 5' end for translation initiation. Pea Enation Mosaic Virus (PEMV) contains two adjacent 3'CITEs in the center of its 703-nucleotide 3' untranslated region (3'UTR), the ribosome-binding, kissing-loop T-shaped structure (kl-TSS) and eukaryotic translation initiation factor 4E-binding Panicum mosaic virus-like translation enhance (PTE). We now report that PEMV contains a third, independent 3'CITE located near the 3' terminus. This 3'CITE is composed of three hairpins and two pseudoknots, similar to the TSS 3'CITE of the carmovirus Turnip crinkle virus (TCV). As with the TCV TSS, the PEMV 3'TSS is predicted to fold into a T-shaped structure that binds to 80S ribosomes and 60S ribosomal subunits. A small hairpin (kl-H) upstream of the 3'TSS contains an apical loop capable of forming a kissing-loop interaction with a 5' proximal hairpin and is critical for the accumulation of full-length PEMV in protoplasts. Although the kl-H and 3'TSS are dispensable for the translation of a reporter construct containing the complete PEMV 3'UTR in vitro, deleting the normally required kl-TSS and PTE 3'CITEs and placing the kl-H and 3'TSS proximal to the reporter termination codon restores translation to near wild-type levels. This suggests that PEMV requires three 3'CITEs for proper translation and that additional translation enhancers may have been missed if reporter constructs were used in 3'CITE identification. Importance: The rapid life cycle of viruses requires efficient translation of viral-encoded proteins. Many plant RNA viruses contain 3' cap-independent translation enhancers (3'CITEs) to effectively compete with ongoing host translation. Since only single 3'CITEs have been identified for the vast majority of individual viruses, it is widely accepted that this is sufficient for a virus's translational needs. Pea Enation Mosaic Virus possesses a ribosome-binding 3'CITE that can connect to the 5' end through an RNA-RNA interaction and an adjacent eukaryotic translation initiation factor 4E-binding 3'CITE. We report the identification of a third 3'CITE that binds weakly to ribosomes and requires an upstream hairpin to form a bridge between the 3' and 5' ends. Although both ribosome-binding 3'CITEs are critical for virus accumulation in vivo, only the CITE closest to the termination codon of a reporter open reading frame is active, suggesting that artificial constructs used for 3'CITE identification may underestimate the number of CITEs that participate in translation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christine Szarko
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
33
|
Miras M, Sempere RN, Kraft JJ, Miller WA, Aranda MA, Truniger V. Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. THE NEW PHYTOLOGIST 2014; 202:233-246. [PMID: 24372390 PMCID: PMC4337425 DOI: 10.1111/nph.12650] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Many plant viruses depend on functional RNA elements, called 3'-UTR cap-independent translation enhancers (3'-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3'-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3'-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3'-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3'-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise nonsusceptible host.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Raquel N. Sempere
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Jelena J. Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Veronica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
34
|
Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redinbaugh MG. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:867-80. [PMID: 24500307 DOI: 10.1007/s00122-014-2263-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/03/2014] [Indexed: 05/11/2023]
Abstract
Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI. Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Department of Horticulture and Crop Science, The Ohio State University-Ohio Agriculture Research and Development Center (OSU-OARDC), Wooster, OH, 44691, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In the absence of a 5' cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3' untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3' cap-independent translational enhancers (3' CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3' CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5' end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3' CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus's host range.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742;
| | | |
Collapse
|
36
|
Nicholson BL, Zaslaver O, Mayberry LK, Browning KS, White KA. Tombusvirus Y-shaped translational enhancer forms a complex with eIF4F and can be functionally replaced by heterologous translational enhancers. J Virol 2013; 87:1872-83. [PMID: 23192876 PMCID: PMC3554133 DOI: 10.1128/jvi.02711-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 01/03/2023] Open
Abstract
Certain plus-strand RNA plant viruses that are uncapped and nonpolyadenylated rely on RNA elements in their 3' untranslated region, termed 3'-cap-independent translational enhancers (3'CITEs), for efficient translation of their proteins. Here, we have investigated the properties of the Y-shaped class of 3'CITE present in the tombusvirus Carnation Italian ringspot virus (CIRV). While some types of 3'CITE have been found to function through recruitment of translation initiation factors to the viral genome, no trans-acting translation-related factors have yet been identified for the Y-shaped 3'CITE. Our results indicate that the CIRV 3'CITE complexes with eIF4F and eIFiso4F, with the former mediating translation more efficiently than the latter. In nature, some classes of 3'CITE are present in several different viral genera, suggesting that these elements hold a high degree of modularity. Here, we test this concept by engineering chimeric viruses containing heterologous 3'CITEs and show that the Y-shaped class of 3'CITE in CIRV can be replaced by two alternative types of 3'CITE, i.e., a Panicum mosaic virus-like 3'CITE or an I-shaped 3'CITE, without any major loss in in vitro translation or replication efficiency in protoplasts. The heterologous 3'CITEs also mediated whole-plant infections of Nicotiana benthamiana, where distinct symptoms were observed for each of the alternative 3'CITEs and 3'CITE evolution occurred during serial passaging. Our results supply new information on Y-shaped 3'CITE function and provide insights into 3'CITE virus-host compatibilities.
Collapse
Affiliation(s)
| | - Olga Zaslaver
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Laura K. Mayberry
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Karen S. Browning
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J, Wang X, Walsh JA, Sun R. Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:179-88. [PMID: 22996569 DOI: 10.1007/s00122-012-1972-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 08/16/2012] [Indexed: 05/12/2023]
Abstract
The extreme resistance to Turnip mosaic virus observed in the Chinese cabbage (Brassica rapa) line, BP8407, is monogenic and recessive. Bulked segregant analysis was carried out to identify simple sequence repeat and Indel markers linked to this recessive resistance gene, termed recessive Turnip mosaic virus resistance 02 (retr02). Mapping of PCR-specific Indel markers on 239 individuals of a BP8407 × Ji Zao Chun F(2) population, located this resistance gene to a 0.9-cM interval between two Indel markers (BrID10694 and BrID101309) and in scaffold000060 or scaffold000104 on chromosome A04 of the B. rapa genome. Eleven eukaryotic initiation factor 4E (eIF4E) and 14 eukaryotic initiation factor 4G (eIF4G) genes are predicted in the B. rapa genome. A candidate gene, Bra035393 on scaffold000104, was predicted within the mapped resistance locus. The gene encodes the eIF(iso)4E protein. Bra035393 was sequenced in BP8407 and Ji Zao Chun. A polymorphism (A/G) was found in exon 3 between BP8407 and Ji Zao Chun. This gene was analysed in four resistant and three susceptible lines. A correlation was observed between the amino acid substitution (Gly/Asp) in the eIF(iso)4E protein and resistance/susceptibility. eIF(iso)4E has been shown previously to interact with the TuMV genome-linked protein, VPg.
Collapse
Affiliation(s)
- Wei Qian
- Department of Chinese Cabbage, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gao F, Kasprzak W, Stupina VA, Shapiro BA, Simon AE. A ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction. J Virol 2012; 86:9828-42. [PMID: 22761367 PMCID: PMC3446580 DOI: 10.1128/jvi.00677-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/25/2012] [Indexed: 12/23/2022] Open
Abstract
Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5' end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a K(d) (dissociation constant) of 0.52 μM and to 60S subunits with a K(d) of 0.30 μM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (K(d), 0.36 μM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC—Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vera A. Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
39
|
Rodríguez-Hernández AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. MOLECULAR PLANT PATHOLOGY 2012; 13:755-63. [PMID: 22309030 PMCID: PMC6638723 DOI: 10.1111/j.1364-3703.2012.00785.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Efficient and sustainable control of plant viruses may be achieved using genetically resistant crop varieties, although resistance genes are not always available for each pathogen; in this regard, the identification of new genes that are able to confer broad-spectrum and durable resistance is highly desirable. Recently, the cloning and characterization of recessive resistance genes from different plant species has pointed towards eukaryotic translation initiation factors (eIF) of the 4E family as factors required for the multiplication of many different viruses. Thus, we hypothesized that eIF4E may control the susceptibility of melon (Cucumis melo L.) to a broad range of viruses. To test this hypothesis, Cm-eIF4E knockdown melon plants were generated by the transformation of explants with a construct that was designed to induce the silencing of this gene, and the plants from T2 generations were genetically and phenotypically characterized. In transformed plants, Cm-eIF4E was specifically silenced, as identified by the decreased accumulation of Cm-eIF4E mRNA and the appearance of small interfering RNAs derived from the transgene, whereas the Cm-eIF(iso)4E mRNA levels remained unaffected. We challenged these transgenic melon plants with eight agronomically important melon-infecting viruses, and identified that they were resistant to Cucumber vein yellowing virus (CVYV), Melon necrotic spot virus (MNSV), Moroccan watermelon mosaic virus (MWMV) and Zucchini yellow mosaic virus (ZYMV), indicating that Cm-eIF4E controls melon susceptibility to these four viruses. Therefore, Cm-eIF4E is an efficient target for the identification of new resistance alleles able to confer broad-spectrum virus resistance in melon.
Collapse
Affiliation(s)
- Ana M Rodríguez-Hernández
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo, Correos 164, 30100 Espinardo (Murcia), Spain
| | | | | | | | | | | |
Collapse
|
40
|
Gonzalez-Ibeas D, Cañizares J, Aranda MA. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:107-18. [PMID: 21970693 DOI: 10.1094/mpmi-07-11-0193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course. The virus accumulated to higher levels in cotyledons of the resistant variety up to 9 days postinoculation (dpi) but, thereafter, levels increased in the susceptible variety while those in the resistant variety declined. Microarray experiments looking at the early response to infection (1 and 3 dpi), as well as responses after 7 and 15 dpi, revealed more profound transcriptomic changes in resistant plants than susceptible ones. The gene expression profiles revealed deep and extensive transcriptome remodeling in TGR-1551 plants, often involving genes with pathogen response functions. Overall, our data suggested that resistance to WMV in TGR-1551 melon plants is associated with a defense response, which contrasts with the recessive nature of the resistance trait.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Departamento de Biologia del Estres y Patologia Vegetal, Centro de Edafologia y Biologia Aplicada de Segura, Spain
| | | | | |
Collapse
|
41
|
Nicholson BL, White KA. 3' Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr Opin Virol 2011; 1:373-80. [PMID: 22440838 DOI: 10.1016/j.coviro.2011.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/04/2023]
Abstract
Positive-strand RNA plant viruses that are neither 5'-capped nor 3'-polyadenylated use nontraditional mechanisms to recruit ribosomes to the 5'-end of their viral genomes. One strategy employed by some of these viruses involves a type of RNA element, termed the 3' cap-independent translation enhancer (3'CITE), located in or near the 3'-untranslated region of viral RNA genomes. 3'CITEs function to mediate efficient translation of 5'-proximally encoded viral proteins and function by recruiting either translation initiation factors or the 60S ribosomal subunit to the viral RNA. Recent mechanistic and structural studies have revealed important new insights and details of how 3'CITEs are able to facilitate viral translation and allow these viruses to compete efficiently against cellular mRNAs for the host translational machinery.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
42
|
Wang Z, Parisien M, Scheets K, Miller WA. The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. Structure 2011; 19:868-80. [PMID: 21645857 DOI: 10.1016/j.str.2011.03.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/11/2011] [Accepted: 03/13/2011] [Indexed: 01/15/2023]
Abstract
Eukaryotic initiation factor eIF4E performs a key early step in translation by specifically recognizing the m⁷GpppN cap structure at the 5' end of cellular mRNAs. Many viral mRNAs lack a 5' cap and thus bypass eIF4E. In contrast, we reported a cap-independent translation element (PTE) in Pea enation mosaic virus RNA2 that binds and requires eIF4E for translation initiation. To understand how this uncapped RNA is bound tightly by eIF4E, we employ SHAPE probing, phylogenetic comparisons with new PTEs discovered in panico- and carmoviruses, footprinting of the eIF4E binding site, and 3D RNA modeling using NAST, MC-Fold, and MC-Sym to predict a compact, 3D structure of the RNA. We propose that the cap-binding pocket of eIF4E clamps around a pseudoknot, placing a highly SHAPE-reactive guanosine in the pocket in place of the normal m⁷GpppN cap. This reveals a new mechanism of mRNA recognition by eIF4E.
Collapse
Affiliation(s)
- Zhaohui Wang
- Plant Pathology Department, and Biochemistry, Biophysics, and Molecular Biology Department, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
43
|
Mu R, Romero TA, Hanley KA, Dawe AL. Conserved and variable structural elements in the 5' untranslated region of two hypoviruses from the filamentous fungus Cryphonectria parasitica. Virus Res 2011; 161:203-8. [PMID: 21884737 DOI: 10.1016/j.virusres.2011.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
Virulence-attenuating viruses (hypoviruses) of the filamentous fungus Cryphonectria parasitica, the causative agent of chestnut blight, have become a premier model for understanding the molecular biology of mycoviruses. However, a major gap exists in current understanding of structure and function of the untranslated regions (UTRs) of the hypovirus RNA genome, despite considerable evidence that secondary and tertiary UTR structure plays a crucial role in the control of translation and genome replication in other systems. In this study we have used structure prediction software coupled with RNase digestion studies to develop validated structural models for the 5' UTRs of the two best-characterized members of the Hypoviridae, CHV1-EP713 and CHV1-Euro7. These two hypovirus strains exhibit significant variation in virulence attenuation despite sharing >90% sequence identity. Our models reveal highly structured regions in the 5' UTR of both strains, with numerous stem-loops suggestive of internal ribosome entry sites. However, considerable differences in the size and complexity of structural elements exist between the two strains. These data will guide future, mutagenesis-based studies of the structural requirements for hypovirus genome replication and translation.
Collapse
Affiliation(s)
- Rong Mu
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
44
|
González M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, Pujol M, Nuez F, Bendahmane A, Garcia-Mas J, Picó B. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes 2011; 4:289. [PMID: 21834982 PMCID: PMC3163545 DOI: 10.1186/1756-0500-4-289] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. RESULTS A new ethyl methanesulfonate-mutagenized (EMS) melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso)4E). The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS). Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. CONCLUSIONS The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies.
Collapse
Affiliation(s)
- Mireia González
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gonzalez-Ibeas D, Blanca J, Donaire L, Saladié M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda MA. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 2011; 12:393. [PMID: 21812964 PMCID: PMC3163571 DOI: 10.1186/1471-2164-12-393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/03/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. RESULTS We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. CONCLUSION We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - José Blanca
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) - UPV, Camino de Vera s/n, 46022 Valencia, Spain
| | - Livia Donaire
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CIB) - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Montserrat Saladié
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Albert Mascarell-Creus
- Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Ana Cano-Delgado
- Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Cesar Llave
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CIB) - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| |
Collapse
|
46
|
Fernández-Miragall O, Hernández C. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity. PLoS One 2011; 6:e22617. [PMID: 21818349 PMCID: PMC3144232 DOI: 10.1371/journal.pone.0022617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/26/2011] [Indexed: 01/31/2023] Open
Abstract
Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.
Collapse
Affiliation(s)
- Olga Fernández-Miragall
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
47
|
Nieto C, Rodríguez-Moreno L, Rodríguez-Hernández AM, Aranda MA, Truniger V. Nicotiana benthamiana resistance to non-adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:492-501. [PMID: 21255163 DOI: 10.1111/j.1365-313x.2011.04507.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nicotiana benthamiana has been described as non-host for Melon necrotic spot virus (MNSV). We investigated the basis of this resistance using the unique opportunity provided by strain MNSV-264, a recombinant virus that is able to overcome the resistance. Analysis of chimeric MNSV mutants showed that virulence in N. benthamiana is conferred by a 49 nucleotide section of the MNSV-264 3'-UTR, which acts in this host as a cap-independent translational enhancer (3'-CITE). Although the 3'-CITE of non-adapted MNSV-Mα5 is active in susceptible melon, it does not promote efficient translation in N. benthamiana, thus preventing expression of proteins required for virus replication. However, MNSV-Mα5 gains the ability to multiply in N. benthamiana cells if eIF4E from a susceptible melon variety (Cm-eIF4E-S) is supplied in trans. These data show that N. benthamiana resistance to MNSV-Mα5 results from incompatibility between the MNSV-Mα5 3'-CITE and N. benthamiana eIF4E in initiating efficient translation of the viral genome. Therefore, non-host resistance conferred by the inability of a host susceptibility factor to support viral multiplication may be a possible mechanism for this type of resistance to viruses.
Collapse
Affiliation(s)
- Cristina Nieto
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), PO Box 164, 30100 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
48
|
Ashby JA, Stevenson CEM, Jarvis GE, Lawson DM, Maule AJ. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLoS One 2011; 6:e15873. [PMID: 21283665 PMCID: PMC3025909 DOI: 10.1371/journal.pone.0015873] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection. METHODOLOGY/PRINCIPAL FINDINGS To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4E(S) bound to m(7)GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m(7)GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4E(R) and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m(7)GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation. CONCLUSIONS/SIGNIFICANCE The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4E alleles with the potential to convey novel virus resistance phenotypes.
Collapse
Affiliation(s)
- Jamie A. Ashby
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Gavin E. Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - David M. Lawson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J. Maule
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
49
|
Nicholson BL, Wu B, Chevtchenko I, White KA. Tombusvirus recruitment of host translational machinery via the 3' UTR. RNA (NEW YORK, N.Y.) 2010; 16:1402-19. [PMID: 20507975 PMCID: PMC2885689 DOI: 10.1261/rna.2135210] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA viruses recruit the host translational machinery by different mechanisms that depend partly on the structure of their genomes. In this regard, the plus-strand RNA genomes of several different pathogenic plant viruses do not contain traditional translation-stimulating elements, i.e., a 5'-cap structure and a 3'-poly(A) tail, and instead rely on a 3'-cap-independent translational enhancer (3'CITE) located in their 3' untranslated regions (UTRs) for efficient synthesis of viral proteins. We investigated the structure and function of the I-shaped class of 3'CITE in tombusviruses--also present in aureusviruses and carmoviruses--using biochemical and molecular approaches and we determined that it adopts a complex higher-order RNA structure that facilitates translation by binding simultaneously to both eukaryotic initiation factor (eIF) 4F and the 5' UTR of the viral genome. The specificity of 3'CITE binding to eIF4F is mediated, at least in part, through a direct interaction with its eIF4E subunit, whereas its association with the viral 5' UTR relies on complementary RNA-RNA base-pairing. We show for the first time that this tripartite 5' UTR/3'CITE/eIF4F complex forms in vitro in a translationally relevant environment and is required for recruitment of ribosomes to the 5' end of the viral RNA genome by a mechanism that shares some fundamental features with cap-dependent translation. Notably, our results demonstrate that the 3'CITE facilitates the initiation step of translation and validate a molecular model that has been proposed to explain how several different classes of 3'CITE function. Moreover, the virus-host interplay defined in this study provides insights into natural host resistance mechanisms that have been linked to 3'CITE activity.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
50
|
Wang Z, Kraft JJ, Hui AY, Miller WA. Structural plasticity of Barley yellow dwarf virus-like cap-independent translation elements in four genera of plant viral RNAs. Virology 2010; 402:177-86. [PMID: 20392470 DOI: 10.1016/j.virol.2010.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 01/16/2010] [Accepted: 03/16/2010] [Indexed: 01/03/2023]
Abstract
The 3' untranslated regions (UTRs) of many plant viral RNAs contain cap-independent translation elements (3' CITEs). Among the 3' CITEs, the Barley yellow dwarf virus (BYDV)-like translation elements (BTEs) form a structurally variable and widely distributed group. Viruses in three genera were known to harbor 3' BTEs, defined by the presence of a 17-nt consensus sequence. To understand BTE function, knowledge of phylogenetically conserved structure is essential, yet the secondary structure has been determined only for the BYDV BTE. Here we show that Rose spring dwarf-associated luteovirus, and two viruses in a fourth genus, Umbravirus, contain functional BTEs, despite deviating in the 17nt consensus sequence. Structure probing by selective 2'-hydroxyl acylation and primer extension (SHAPE) revealed conserved and highly variable structures in BTEs in all four genera. We conclude that BTEs tolerate striking evolutionary plasticity in structure, while retaining the ability to stimulate cap-independent translation.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|