1
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Yu J, Lei S, Fang S, Tai N, Yu W, Yang Z, Gu L, Wang H, Du X, Zhu B, Cai M. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091875. [PMID: 37176933 PMCID: PMC10181067 DOI: 10.3390/plants12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Interspecific hybridization and accompanying backcross between crops and relatives have been recognized as a powerful method to broaden genetic diversity and transfer desirable adaptive traits. Crosses between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18), which formed allotetraploid Raphanobrassica (RRCC, 2n = 36), initiated the construction of resynthetic allopolyploids. However, these progenies from the backcrosses between Raphanobrassica and the two diploid parents have not been well deciphered. Herein, thousands of backcrosses using both Raphanobrassica and the two diploid parents as pollen donors were employed. Several hybrids with expected (2n = 27) and unexpected chromosome numbers (2n = 26 and 2n = 36) were obtained. Fluorescence in situ hybridization (FISH) analysis with R-genome-specific sequences as probes demonstrated that the genome structures of the two expected hybrids were RRC and CCR, and the genome structures of the three unexpected hybrids were RRRC, CCCR, and RRC' (harbouring an incomplete C genome). The unexpected hybrids with extra R or C genomes showed similar phenotypic characteristics to their expected hybrids. FISH analysis with C-genome-specific sequences as probes demonstrated that the unexpected allotetraploid hybrids exhibited significantly more intergenomic chromosome pairings than the expected hybrids. The expected and unexpected hybrids provide not only novel germplasm resources for the breeding of radish and B. oleracea but also very important genetic material for genome dosage analysis.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Shaolin Lei
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Niufang Tai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ziwei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
3
|
Tomaszewska P, Vorontsova MS, Renvoize SA, Ficinski SZ, Tohme J, Schwarzacher T, Castiblanco V, de Vega JJ, Mitchell RAC, Heslop-Harrison JS(P. Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species. ANNALS OF BOTANY 2023; 131:87-108. [PMID: 34874999 PMCID: PMC9904353 DOI: 10.1093/aob/mcab147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Tohme
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | - J S (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
He J, Yu Z, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Wang Z, Chen F, Wang H. An Eruption of LTR Retrotransposons in the Autopolyploid Genomes of Chrysanthemum nankingense (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030315. [PMID: 35161296 PMCID: PMC8839533 DOI: 10.3390/plants11030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 05/09/2023]
Abstract
Whole genome duplication, associated with the induction of widespread genetic changes, has played an important role in the evolution of many plant taxa. All extant angiosperm species have undergone at least one polyploidization event, forming either an auto- or allopolyploid organism. Compared with allopolyploidization, however, few studies have examined autopolyploidization, and few studies have focused on the response of genetic changes to autopolyploidy. In the present study, newly synthesized C. nankingense autotetraploids (Asteraceae) were employed to characterize the genome shock following autopolyploidization. Available evidence suggested that the genetic changes primarily involved the loss of old fragments and the gain of novel fragments, and some novel sequences were potential long terminal repeat (LTR) retrotransposons. As Ty1-copia and Ty3-gypsy elements represent the two main superfamilies of LTR retrotransposons, the dynamics of Ty1-copia and Ty3-gypsy were evaluated using RT-PCR, transcriptome sequencing, and LTR retrotransposon-based molecular marker techniques. Additionally, fluorescence in situ hybridization(FISH)results suggest that autopolyploidization might also be accompanied by perturbations of LTR retrotransposons, and emergence retrotransposon insertions might show more rapid divergence, resulting in diploid-like behaviour, potentially accelerating the evolutionary process among progenies. Our results strongly suggest a need to expand the current evolutionary framework to include a genetic dimension when seeking to understand genomic shock following autopolyploidization in Asteraceae.
Collapse
|
6
|
Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, Lee H, Chawla HS, Anderson R, Bancroft I, Raman H, Lim YP, Robbens S, Jiang L, Liu S, Barker MS, Schranz ME, Wang X, King GJ, Pires JC, Chalhoub B, Snowdon RJ, Batley J, Edwards D. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2488-2500. [PMID: 34310022 PMCID: PMC8633514 DOI: 10.1111/pbi.13674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 05/26/2023]
Abstract
Plant genomes demonstrate significant presence/absence variation (PAV) within a species; however, the factors that lead to this variation have not been studied systematically in Brassica across diploids and polyploids. Here, we developed pangenomes of polyploid Brassica napus and its two diploid progenitor genomes B. rapa and B. oleracea to infer how PAV may differ between diploids and polyploids. Modelling of gene loss suggests that loss propensity is primarily associated with transposable elements in the diploids while in B. napus, gene loss propensity is associated with homoeologous recombination. We use these results to gain insights into the different causes of gene loss, both in diploids and following polyploidization, and pave the way for the application of machine learning methods to understanding the underlying biological and physical causes of gene presence/absence.
Collapse
Affiliation(s)
- Philipp E. Bayer
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Armin Scheben
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVICAustralia
| | - Yuxuan Yuan
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | | | - HueyTyng Lee
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Harmeet Singh Chawla
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Robyn Anderson
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | | | - Harsh Raman
- NSW Department of Primary IndustriesWagga Wagga Agricultural Institute, PMBWagga WaggaNSWAustralia
| | - Yong Pyo Lim
- Department of HorticultureChungnam National UniversityDaejeonSouth Korea
| | | | - Lixi Jiang
- Institute of crop scienceDepartment of Agronomy and Plant BreedingZhejiang UniversityHangzhouChina
| | - Shengyi Liu
- Chinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Michael S. Barker
- Department of Ecology & Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | - M. Eric Schranz
- Biosystematics GroupWageningen University and Research CenterWageningenThe Netherlands
| | - Xiaowu Wang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences (IVF, CAAS)BeijingChina
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - J. Chris Pires
- Division of Biological SciencesBond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Boulos Chalhoub
- Institute of crop scienceDepartment of Agronomy and Plant BreedingZhejiang UniversityHangzhouChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Jacqueline Batley
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological Sciences and the Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
7
|
Roslinsky V, Falk KC, Gaebelein R, Mason AS, Eynck C. Development of B. carinata with super-high erucic acid content through interspecific hybridization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3167-3181. [PMID: 34269830 PMCID: PMC8440251 DOI: 10.1007/s00122-021-03883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Disomic alien chromosome addition Brassica carinata lines with super-high erucic acid content were developed through interspecific hybridization with B. juncea and characterized using molecular, cytological and biochemical techniques. Brassica carinata [A.] Braun (BBCC, 2n = 34) is a climate-resilient oilseed. Its seed oil is high in erucic acid (> 40%), rendering it well suited for the production of biofuel and other bio-based applications. To enhance the competitiveness of B. carinata with high erucic B. napus (HEAR), lines with super-high erucic acid content were developed through interspecific hybridization. To this end, a fad2B null allele from Brassica juncea (AABB, 2n = 36) was introgressed into B. carinata, resulting in a B. carinata fad2B mutant with erucic acid levels of over 50%. Subsequently, the FAE allele from B. rapa spp. yellow sarson (AA, 2n = 20) was transferred to the fad2B B. carinata line, yielding lines with erucic acid contents of up to 57.9%. Molecular analysis using the Brassica 90 K Illumina Infinium™ SNP genotyping array identified these lines as disomic alien chromosome addition lines, with two extra A08 chromosomes containing the BrFAE gene. The alien chromosomes from B. rapa were clearly distinguished by molecular cytogenetics in one of the addition lines. Analysis of microspore-derived offspring and hybrids from crosses with a CMS B. carinata line showed that the transfer rate of the A08 chromosome into male gametes was over 98%, resulting in almost completely stable transmission of an A08 chromosome copy into the progeny. The increase in erucic acid levels was accompanied by changes in the proportions of other fatty acids depending on the genetic changes that were introduced in the interspecific hybrids, providing valuable insights into erucic acid metabolism in Brassica.
Collapse
Affiliation(s)
- Vicky Roslinsky
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Kevin C Falk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Roman Gaebelein
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Breeding, INRES, University of Bonn, Bonn, Germany
| | - Christina Eynck
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Katche E, Gaebelein R, Idris Z, Vasquez-Teuber P, Lo YT, Nugent D, Batley J, Mason AS. Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes. THE NEW PHYTOLOGIST 2021; 230:1242-1257. [PMID: 33476056 DOI: 10.1111/nph.17225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Roman Gaebelein
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany
| |
Collapse
|
9
|
Liu B, Iwata-Otsubo A, Yang D, Baker RL, Liang C, Jackson SA, Liu S, Ma J, Zhao M. Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:34-48. [PMID: 33098166 DOI: 10.1111/tpj.15037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In comparison with retrotransposons, DNA transposons make up a smaller proportion of most plant genomes. However, these elements are often proximal to genes to affect gene expression depending on the activity of the transposons, which is largely reflected by the activity of the transposase genes. Here, we show that three AT-rich introns were retained in the TNP2-like transposase genes of the Bot1 (Brassica oleracea transposon 1) CACTA transposable elements in Brassica oleracea, but were lost in the majority of the Bot1 elements in Brassica rapa. A recent burst of transposition of Bot1 was observed in B. oleracea, but not in B. rapa. This burst of transposition is likely related to the activity of the TNP2-like transposase genes as the expression values of the transposase genes were higher in B. oleracea than in B. rapa. In addition, distinct populations of small RNAs (21, 22 and 24 nt) were detected from the Bot1 elements in B. oleracea, but the vast majority of the small RNAs from the Bot1 elements in B. rapa are 24 nt in length. We hypothesize that the different activity of the TNP2-like transposase genes is likely associated with the three introns, and intron loss is likely reverse transcriptase mediated. Furthermore, we propose that the Bot1 family is currently undergoing silencing in B. oleracea, but has already been silenced in B. rapa. Taken together, our data provide new insights into the differentiation of transposons and their role in the asymmetric evolution of these two closely related Brassica species.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Robert L Baker
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
10
|
Liu Z, Fan M, Yue EK, Li Y, Tao RF, Xu HM, Duan MH, Xu JH. Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next-generation sequencing data. HORTICULTURE RESEARCH 2020; 7:145. [PMID: 32922817 PMCID: PMC7459127 DOI: 10.1038/s41438-020-00367-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/22/2020] [Accepted: 06/19/2020] [Indexed: 06/02/2023]
Abstract
Brassica oleracea comprises various economically important vegetables and presents extremely diverse morphological variations. They provide a rich source of nutrition for human health and have been used as a model system for studying polyploidization. Transposable elements (TEs) account for nearly 40% of the B. oleracea genome and contribute greatly to genetic diversity and genome evolution. Although the proliferation of TEs has led to a large expansion of the B. oleracea genome, little is known about the population dynamics and evolutionary activity of TEs. A comprehensive mobilome profile of 45,737 TE loci was obtained from resequencing data from 121 diverse accessions across nine B. oleracea morphotypes. Approximately 70% (32,195) of the loci showed insertion polymorphisms between or within morphotypes. In particular, up to 1221 loci were differentially fixed among morphotypes. Further analysis revealed that the distribution of the population frequency of TE loci was highly variable across different TE superfamilies and families, implying a diverse expansion history during host genome evolution. These findings provide better insight into the evolutionary dynamics and genetic diversity of B. oleracea genomes and will potentially serve as a valuable resource for molecular markers and association studies between TE-based genomic variations and morphotype-specific phenotypic differentiation.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Yu Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Hai-Ming Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., 310021 Hangzhou, People’s Republic of China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Breeding Systems in Diploid and Polyploid Hawthorns (Crataegus): Evidence from Experimental Pollinations of C. monogyna, C. subsphaerica, and Natural Hybrids. FORESTS 2019. [DOI: 10.3390/f10121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Objectives: Polyploidisation and frequent hybridisation play an important role in speciation processes and evolutionary history and have a large impact on reproductive systems in the genus Crataegus. Reproductive modes in selected diploid and polyploid taxa in eastern Slovakia were investigated and analysed for the first time. Materials and Methods: Diploid, triploid, and tetraploid hawthorns were tested for self-pollination, self-compatibility, and self-fertilisation. Pollination experiments were performed within and between diploid and triploid species to determine the possibilities and directions of pollen transfer under natural conditions. Seeds from crossing experiments and open pollinations were analysed using the flow cytometric seed screen method. Results: These experiments demonstrated that sexual reproduction, cross-pollination, and self-incompatibility are typical of the diploid species Crataegus monogyna and C. kyrtostyla. Seeds produced by self-fertile tetraploid C. subsphaerica were derived from both meiotically reduced and unreduced megagametophytes. Conclusions: Experimental results concerning triploid C. subsphaerica and C. laevigata × C. subsphaerica are ambiguous but suggest that seeds are almost exclusively created through apomixis, although a few sexually generated seeds were observed. In the genus Crataegus, pseudogamy is a common feature of polyploid taxa, as in all cases pollination is essential for regular seed development. Research Highlights: We suggest that all studied Crataegus taxa produce reduced pollen irrespective of ploidy level. Moreover, we emphasise that triploids produce apparently aneuploid pollen grains as a result of irregular meiosis. They are also capable of utilising pollen from 2x, 3x, or 4x donors for pseudogamous formation of endosperm.
Collapse
|
12
|
Levin DA. Plant speciation in the age of climate change. ANNALS OF BOTANY 2019; 124:769-775. [PMID: 31250895 PMCID: PMC6868396 DOI: 10.1093/aob/mcz108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Species diversity is likely to undergo a sharp decline in the next century. Perhaps as many as 33 % of all plant species may expire as a result of climate change. All parts of the globe will be impacted, and all groups of organisms will be affected. Hundreds of species throughout the world have already experienced local extinction. PERSPECTIVES While thousands of species may become extinct in the next century and beyond, species formation will still occur. I consider which modes of plant species formation are likely to prevail in the next 500 years. I argue that speciation primarily will involve mechanisms that produce reproductively isolated lineages within less (often much less) than 100 generations. I will not especially consider the human element in promoting species formation, because it will continue and because the conclusions presented here are unaffected by it. The impact of climate change may be much more severe and widespread. CONCLUSIONS The most common modes of speciation likely to be operative in the next 500 years ostensibly will be auto- and allopolyploidy. Polyploid species or the antecedents thereof can arise within two generations. Moreover, polyploids often have broader ecological tolerances, and are likely to be more invasive than are their diploid relatives. Polyploid species may themselves spawn additional higher level polyploids either through crosses with diploid species or between pre-existing polyploids. The percentage of polyploid species is likely to exceed 50 % within the next 500 years vs. 35 % today. The stabilized hybrid derivatives (homoploid hybrid speciation) could emerge within a hundred generations after species contact, as could speciation involving chromosomal rearrangements (and perhaps number), but the number of such events is likely to be low. Speciation involving lineage splitting will be infrequent because the formation of substantive pre- and post-zygotic barriers typically takes many thousands of years.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, USA
| |
Collapse
|
13
|
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. ANNALS OF BOTANY 2019; 124:209-220. [PMID: 30868165 PMCID: PMC6758578 DOI: 10.1093/aob/mcz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Collapse
Affiliation(s)
- Terezie Mandáková
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Japan
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Centre for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, China
| | - Martin A Lysak
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Karol Marhold
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Catoni M, Jonesman T, Cerruti E, Paszkowski J. Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling. Nucleic Acids Res 2019; 47:1311-1320. [PMID: 30476196 PMCID: PMC6379663 DOI: 10.1093/nar/gky1196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time. Analysing the DNA copy number variation in hypomethylated Arabidopsis lines, we have now for the first time witnessed the mobilization of novel Pack-TYPE elements related to the CACTA transposon family, over several plant generations. Remarkably, these elements can insert into genes as closely spaced direct repeats and they frequently undergo incomplete excisions, resulting in the deletion of one of the end sequences. These properties suggest a mechanism of efficient acquisition of genic DNA residing between neighbouring Pack-TYPE transposons and its subsequent mobilization. Our work documents crucial steps in the formation of in vivo novel Pack-TYPE transposons, and thus the possible mechanism of gene shuffling mediated by this type of mobile element.
Collapse
Affiliation(s)
- Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Thomas Jonesman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Elisa Cerruti
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
15
|
Liu Q, Li X, Zhou X, Li M, Zhang F, Schwarzacher T, Heslop-Harrison JS. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC PLANT BIOLOGY 2019; 19:226. [PMID: 31146681 PMCID: PMC6543597 DOI: 10.1186/s12870-019-1769-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/09/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Repetitive DNA motifs - not coding genetic information and repeated millions to hundreds of times - make up the majority of many genomes. Here, we identify the nature, abundance and organization of all the repetitive DNA families in oats (Avena sativa, 2n = 6x = 42, AACCDD), a recognized health-food, and its wild relatives. RESULTS Whole-genome sequencing followed by k-mer and RepeatExplorer graph-based clustering analyses enabled assessment of repetitive DNA composition in common oat and its wild relatives' genomes. Fluorescence in situ hybridization (FISH)-based karyotypes are developed to understand chromosome and repetitive sequence evolution of common oat. We show that some 200 repeated DNA motifs make up 70% of the Avena genome, with less than 20 families making up 20% of the total. Retroelements represent the major component, with Ty3/Gypsy elements representing more than 40% of all the DNA, nearly three times more abundant than Ty1/Copia elements. DNA transposons are about 5% of the total, while tandemly repeated, satellite DNA sequences fit into 55 families and represent about 2% of the genome. The Avena species are monophyletic, but both bioinformatic comparisons of repeats in the different genomes, and in situ hybridization to metaphase chromosomes from the hexaploid species, shows that some repeat families are specific to individual genomes, or the A and D genomes together. Notably, there are terminal regions of many chromosomes showing different repeat families from the rest of the chromosome, suggesting presence of translocations between the genomes. CONCLUSIONS The relatively small number of repeat families shows there are evolutionary constraints on their nature and amplification, with mechanisms leading to homogenization, while repeat characterization is useful in providing genome markers and to assist with future assemblies of this large genome (c. 4100 Mb in the diploid). The frequency of inter-genomic translocations suggests optimum strategies to exploit genetic variation from diploid oats for improvement of the hexaploid may differ from those used widely in bread wheat.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoyu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangying Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd., Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
16
|
Perumal S, Waminal NE, Lee J, Lee J, Choi BS, Kim HH, Grandbastien MA, Yang TJ. Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution. Sci Rep 2017; 7:17986. [PMID: 29269833 PMCID: PMC5740159 DOI: 10.1038/s41598-017-18048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Decoding complete genome sequences is prerequisite for comprehensive genomics studies. However, the currently available reference genome sequences of Brassica rapa (A genome), B. oleracea (C) and B. napus (AC) cover 391, 540, and 850 Mbp and represent 80.6, 85.7, and 75.2% of the estimated genome size, respectively, while remained are hidden or unassembled due to highly repetitive nature of these genome components. Here, we performed the first comprehensive genome-wide analysis using low-coverage whole-genome sequences to explore the hidden genome components based on characterization of major repeat families in the B. rapa and B. oleracea genomes. Our analysis revealed 10 major repeats (MRs) including a new family comprising about 18.8, 10.8, and 11.5% of the A, C and AC genomes, respectively. Nevertheless, these 10 MRs represented less than 0.7% of each assembled reference genome. Genomic survey and molecular cytogenetic analyses validates our insilico analysis and also pointed to diversity, differential distribution, and evolutionary dynamics in the three Brassica species. Overall, our work elucidates hidden portions of three Brassica genomes, thus providing a resource for understanding the complete genome structures. Furthermore, we observed that asymmetrical accumulation of the major repeats might be a cause of diversification between the A and C genomes.
Collapse
Affiliation(s)
- Sampath Perumal
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.,Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jonghoon Lee
- Joeun Seed, Goesan-Gun, Chungcheongbuk-Do, 28051, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13558, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
17
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
18
|
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS(P. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. ANNALS OF BOTANY 2017; 120:183-194. [PMID: 28854567 PMCID: PMC5737848 DOI: 10.1093/aob/mcx079] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Polyploidy or whole-genome duplication is now recognized as being present in almost all lineages of higher plants, with multiple rounds of polyploidy occurring in most extant species. The ancient evolutionary events have been identified through genome sequence analysis, while recent hybridization events are found in about half of the world's crops and wild species. Building from this new paradigm for understanding plant evolution, the papers in this Special Issue address questions about polyploidy in ecology, adaptation, reproduction and speciation of wild and cultivated plants from diverse ecosystems. Other papers, including this review, consider genomic aspects of polyploidy. APPROACHES Discovery of the evolutionary consequences of new, evolutionarily recent and ancient polyploidy requires a range of approaches. Large-scale studies of both single species and whole ecosystems, with hundreds to tens of thousands of individuals, sometimes involving 'garden' or transplant experiments, are important for studying adaptation. Molecular studies of genomes are needed to measure diversity in genotypes, showing ancestors, the nature and number of polyploidy and backcross events that have occurred, and allowing analysis of gene expression and transposable element activation. Speciation events and the impact of reticulate evolution require comprehensive phylogenetic analyses and can be assisted by resynthesis of hybrids. In this Special Issue, we include studies ranging in scope from experimental and genomic, through ecological to more theoretical. CONCLUSIONS The success of polyploidy, displacing the diploid ancestors of almost all plants, is well illustrated by the huge angiosperm diversity that is assumed to originate from recurrent polyploidization events. Strikingly, polyploidization often occurred prior to or simultaneously with major evolutionary transitions and adaptive radiation of species, supporting the concept that polyploidy plays a predominant role in bursts of adaptive speciation. Polyploidy results in immediate genetic redundancy and represents, with the emergence of new gene functions, an important source of novelty. Along with recombination, gene mutation, transposon activity and chromosomal rearrangement, polyploidy and whole-genome duplication act as drivers of evolution and divergence in plant behaviour and gene function, enabling diversification, speciation and hence plant evolution.
Collapse
Affiliation(s)
- Karine Alix
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- For correspondence. E-mail
| | - Pierre R. Gérard
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
19
|
Sochorová J, Coriton O, Kuderová A, Lunerová J, Chèvre AM, Kovařík A. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. ANNALS OF BOTANY 2017; 119:13-26. [PMID: 27707747 PMCID: PMC5218374 DOI: 10.1093/aob/mcw187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. METHODS We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. KEY RESULTS Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH ('Darmor', 'Yudal' and 'Asparagus kale') harboured the same number (12 per diploid set) of loci. In B. napus 'Darmor', the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus 'Darmor'. In contrast, B. napus 'Yudal' showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus 'Asparagus kale' showed an intermediate pattern to 'Darmor' and 'Yudal'. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar ('Norin 9') showed co-dominance. CONCLUSIONS The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion.
Collapse
Affiliation(s)
- Jana Sochorová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Olivier Coriton
- Institut National de la Recherche Agronomique (INRA), UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu cedex, France
| | - Alena Kuderová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Jana Lunerová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Anne-Marie Chèvre
- Institut National de la Recherche Agronomique (INRA), UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu cedex, France
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| |
Collapse
|
20
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
21
|
Chen X, Ge X, Wang J, Tan C, King GJ, Liu K. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. FRONTIERS IN PLANT SCIENCE 2015; 6:836. [PMID: 26500672 PMCID: PMC4598586 DOI: 10.3389/fpls.2015.00836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/23/2015] [Indexed: 05/25/2023]
Abstract
Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 10(5)), 2.16% CHG (2.7 × 10(5)), and 1.68% CHH loci (1.05 × 10(5)) (where H = A, T, or C). Our sampling of DNA methylation in B. rapa indicated that 52.4% of CG sites were present as (5m)CG, with 31.8% of CHG and 8.3% of CHH. It was found that genic regions of single copy genes had significantly higher methylation compared to those of two or three copy genes. Differences in degree of genic DNA methylation were observed in a hierarchical relationship corresponding to the relative age of the three ancestral subgenomes, primarily accounted by single-copy genes. RNA-seq analysis revealed that overall the level of transcription was negatively correlated with mean gene methylation content and depended on copy number or was associated with the different subgenomes. These results provide new insights into the role epigenetic variation plays in polyploid genome evolution, and suggest an alternative mechanism for duplicate gene loss.
Collapse
Affiliation(s)
- Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
22
|
Identification, characterization and diversification of non-autonomous hAT transposons and unknown insertions in Brassica. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0324-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Buchmann JP, Löytynoja A, Wicker T, Schulman AH. Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mob DNA 2014; 5:24. [PMID: 25206928 PMCID: PMC4158355 DOI: 10.1186/1759-8753-5-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023] Open
Abstract
Background CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes. Results We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries. Conclusions We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.
Collapse
Affiliation(s)
- Jan P Buchmann
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Present address: Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Center, University of Sydney, Sydney NSW 2006, Australia
| | - Ari Löytynoja
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Biotechnology and Food Research, MTT Agrifood Research Finland, Myllytie 1, FIN-31600 Jokioinen, Finland
| |
Collapse
|
24
|
Park KC, Park NI, Lee SI, Kim KS, Chang YS, Kim NS. A new active CACTA element and transposition activity in ecotype differentiation of Arabidopsis. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee TH, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. ANNALS OF BOTANY 2013; 112:545-59. [PMID: 23828319 PMCID: PMC3718217 DOI: 10.1093/aob/mct128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes. METHODS The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues. KEY RESULTS BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity. CONCLUSIONS A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.
Collapse
Affiliation(s)
- David J. Bertioli
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
| | - Bruna Vidigal
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | - Stephan Nielen
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | | | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Changsoo Kim
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Guillermo Seijo
- Plant Cytogenetic and Evolution Laboratory, Instituto de Botánica del Nordeste and Faculty of Exact and Natural Sciences, National University of the Northeast, Corrientes, Argentina
| | | | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Ana C. G. Araujo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- For correspondence. E-mail
| |
Collapse
|
26
|
Sarilar V, Palacios PM, Rousselet A, Ridel C, Falque M, Eber F, Chèvre AM, Joets J, Brabant P, Alix K. Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. THE NEW PHYTOLOGIST 2013; 198:593-604. [PMID: 23384044 DOI: 10.1111/nph.12156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/19/2012] [Indexed: 05/02/2023]
Abstract
The role played by whole-genome duplication (WGD) in evolution and adaptation is particularly well illustrated in allopolyploids, where WGD is concomitant with interspecific hybridization. This 'Genome Shock', usually accompanied by structural and functional modifications, has been associated with the activation of transposable elements (TEs). However, the impact of allopolyploidy on TEs has been studied in only a few polyploid species, and not in Brassica, which has been marked by recurrent polyploidy events. Here, we developed sequence-specific amplification polymorphism (SSAP) markers for three contrasting TEs, and compared profiles between resynthesized Brassica napus allotetraploids and their diploid Brassica progenitors. To evaluate restructuring at TE insertion sites, we scored changes in SSAP profiles and analysed a large set of differentially amplified SSAP bands. No massive structural changes associated with the three TEs surveyed were detected. However, several transposition events, specific to the youngest TE originating from the B. oleracea genome, were identified. Our study supports the hypothesis that TE responses to allopolyploidy are highly specific. The changes observed in SSAP profiles lead us to hypothesize that they may partly result from changes in DNA methylation, questioning the role of epigenetics during the formation of a new allopolyploid genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- CNRS, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Paulina Martinez Palacios
- Université Paris-Sud, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Agnès Rousselet
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Céline Ridel
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Frédérique Eber
- INRA, UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu Cedex, France
| | | | - Johann Joets
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Philippe Brabant
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Karine Alix
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
27
|
Shi J, Huang S, Fu D, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species. PLoS One 2013; 8:e59988. [PMID: 23555856 PMCID: PMC3610691 DOI: 10.1371/journal.pone.0059988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.
Collapse
Affiliation(s)
- Jiaqin Shi
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shunmou Huang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Yu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guihua Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
28
|
Zhang X, Ge X, Shao Y, Sun G, Li Z. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PLoS One 2013; 8:e56346. [PMID: 23468861 PMCID: PMC3585313 DOI: 10.1371/journal.pone.0056346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023] Open
Abstract
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.
Collapse
Affiliation(s)
- Xueli Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan, People’s Republic of China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, Canada
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
29
|
Characterization and evolutionary analysis of Brassica species-diverged sequences containing simple repeat units. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Howell EC, Armstrong S. Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus. Methods Mol Biol 2013; 990:25-34. [PMID: 23559199 DOI: 10.1007/978-1-62703-333-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have developed a sequential procedure with fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) that enables us to distinguish between the A and C genomes in Brassica napus and to identify certain individual chromosomes or chromosome groups within a genome. Our modified GISH technique uses a repetitive sequence in addition to the whole genome in the blocking DNA, and it is effective on meiotic and mitotic cells present in the anther material that we use.
Collapse
Affiliation(s)
- Elaine C Howell
- School of Biosciences, The University of Birmingham, Birmingham, UK
| | | |
Collapse
|
31
|
Lee SI, Park KC, Ha MW, Kim KS, Jang YS, Kim NS. CACTA transposon-derived Ti-SCARs for cultivar fingerprinting in rapeseed. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0190-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Amoah S, Kurup S, Rodriguez Lopez CM, Welham SJ, Powers SJ, Hopkins CJ, Wilkinson MJ, King GJ. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC PLANT BIOLOGY 2012; 12:193. [PMID: 23082790 PMCID: PMC3507869 DOI: 10.1186/1471-2229-12-193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/09/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC) provides selective targeting of 5 mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. RESULTS We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose-response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose-response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP) profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. CONCLUSIONS The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.
Collapse
Affiliation(s)
| | - Smita Kurup
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Carlos Marcelino Rodriguez Lopez
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Sue J Welham
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | - Clare J Hopkins
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael J Wilkinson
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Graham J King
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Current address: Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
33
|
Wang J, Hopkins CJ, Hou J, Zou X, Wang C, Long Y, Kurup S, King GJ, Meng J. Promoter variation and transcript divergence in Brassicaceae lineages of FLOWERING LOCUS T. PLoS One 2012; 7:e47127. [PMID: 23071733 PMCID: PMC3469537 DOI: 10.1371/journal.pone.0047127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/10/2012] [Indexed: 02/02/2023] Open
Abstract
Brassica napus (AACC, 2n = 38), an oil crop of world-wide importance, originated from interspecific hybridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18), and has six FLOWERING LOCUS T (FT) paralogues. Two located on the homeologous chromosomes A2 and C2 arose from a lineage distinct from four located on A7 and C6. A set of three conserved blocks A, B and C, which were found to be essential for FT activation by CONSTANS (CO) in Arabidopsis, was identified within the FT upstream region in B. napus and its progenitor diploids. However, on chromosome C2, insertion of a DNA transposable element (TE) and a retro-element in FT upstream blocks A and B contributed to significant structural divergence between the A and C genome orthologues. Phylogenetic analysis of upstream block A indicated the conserved evolutionary relationships of distinct FT genes within Brassicaceae. We conclude that the ancient At-α whole genome duplication contributed to distinct ancestral lineages for this key adaptive gene, which co-exist within the same genus. FT-A2 was found to be transcribed in all leaf samples from different developmental stages in both B. rapa and B. napus, whereas FT-C2 was not transcribed in either B. napus or B. oleracea. Silencing of FT-C2 appeared to result from TE insertion and consequent high levels of cytosine methylation in TE sequences within upstream block A. Interestingly, FT-A7/C6 paralogues were specifically silenced in winter type B. napus but abundantly expressed in spring type cultivars under vernalization-free conditions. Motif prediction indicated the presence of two CO protein binding sites within all Brassica block A and additional sites for FT activation in block C. We propose that the ancestral whole genome duplications have contributed to more complex mechanisms of floral regulation and niche adaptation in Brassica compared to Arabidopsis.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mao S, Han Y, Wu X, An T, Tang J, Shen J, Li Z. Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra. Hereditas 2012; 149:86-90. [PMID: 22804340 DOI: 10.1111/j.1601-5223.2012.02248.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To further understand the relationships between the SS genome of Sinapis arvensis and the AA, BB genomes in Brassica, genomic DNA of Sinapis arvensis was hybridized to the metaphase chromosomes of Brassica nigra (BB genome), and the metaphase chromosomes and interphase nucleus of Brassica rapa (AA genome) by comparative genomic in situ hybridization (cGISH). As a result, every chromosome of B. nigra had signals along the whole chromosomal length. However, only half of the condensed heterochromatic areas in the interphase nucleus and the chromosomes showed rich signals in Brassica rapa. Interphase nucleus and the metaphase chromosomes of S. arvensis were simultaneously hybridized with digoxigenin-labeled genomic DNA of B. nigra and biotin-labeled genomic DNA of B. rapa. Signals of genomic DNA of B. nigra hybridized throughout the length of all chromosomes and all the condensed heterochromatic areas in the interphase nucleus, except chromosome 4, of which signals were weak in centromeric regions. Signals of the genomic DNA of B. rapa patterned the most areas of ten chromosomes and ten condensed heterochromatic areas, others had less signals. The results showed that the SS genome had homology with AA and BB genomes, but the homology between SS genome and AA genome was clearly lower than that between the SS genome and BB genome.
Collapse
Affiliation(s)
- Shufang Mao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JSP. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 2012; 20:353-61. [PMID: 22476396 DOI: 10.1007/s10577-012-9280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
Collapse
Affiliation(s)
- Tarja Niemelä
- Department of Agriculture, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
36
|
Heslop-Harrison JSP. Genome evolution: extinction, continuation or explosion? CURRENT OPINION IN PLANT BIOLOGY 2012; 15:115-21. [PMID: 22465161 DOI: 10.1016/j.pbi.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 05/24/2023]
Abstract
Darwin recognised the processes of speciation and the frequent extinction of species. We now understand many of the genome-scale processes occurring during evolution involving mutations, amplification, loss or homogenisation of DNA sequences; rearrangement, fusion and fission of chromosomes; and horizontal transfer of genes or genomes, including processes involving hybridisation and polyploidy. DNA sequence information, combined with appropriate informatic tools and experimental approaches such as generation of synthetic hybrids, comparison of genotypes across environments, and modelling of genomic responses, is now letting us link genome behaviour with its consequences. The understanding of genome evolution will be of critical value both for conservation of the biodiversity of the plant kingdom and addressing the challenges of breeding new and more sustainable crops to feed the human population.
Collapse
|
37
|
Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species. Mol Biol Rep 2012; 39:7513-23. [DOI: 10.1007/s11033-012-1585-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 01/30/2012] [Indexed: 12/24/2022]
|
38
|
Parisod C, Senerchia N. Responses of Transposable Elements to Polyploidy. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
|
40
|
Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. PLANT MOLECULAR BIOLOGY 2011; 77:59-75. [PMID: 21626236 DOI: 10.1007/s11103-011-9794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/12/2011] [Indexed: 05/02/2023]
Abstract
We characterized a Brassica miniature inverted repeat transposable element (MITE) from the Stowaway superfamily, designated BraSto (Bra ssica Sto waway). BraSto copy number was assessed using real-time quantitative PCR in the two diploid species B. rapa (genome A) and B. oleracea (genome C) and the corresponding allotetraploid species B. napus (genome AC). Phylogenetic relationships among a set of 131 BraSto copies were then analyzed. BraSto appears to have been only moderately amplified in the Brassica genome and was still active recently with marks of proliferation in both diploid Brassica species, which diverged 3.75 million years ago, but also in the allotetraploid species after reuniting of the two differentiated genomes. We characterized insertion sites for low-divergence BraSto copies among the gene space of the B. rapa genome using bioinformatics approaches. For BraSto copies localized nearby or within genes, we observed frequent associations of BraSto with putative promoters and regulatory regions of genes, but exclusion from coding regions. In addition, BraSto was significantly similar to several Brassica expressed sequence tags (ESTs), including stress-induced ESTs. We also demonstrated the enrichment of BraSto sequences in binding sites for transcription factors and other regulatory elements. Our results lead to the question of a role for BraSto in the regulation of gene expression: this putative role, if further confirmed experimentally, would help to obtain a new insight into the significance of MITEs in the functional plant genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech/CNRS, UMR 0320/UMR 8120 Génétique Végétale INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
41
|
Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM. Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. THE NEW PHYTOLOGIST 2011; 191:884-894. [PMID: 21517871 DOI: 10.1111/j.1469-8137.2011.03729.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Polyploids can be produced by the union of unreduced gametes or through somatic doubling of F(1) interspecific hybrids. The first route is suspected to produce allopolyploid species under natural conditions, whereas experimental data have only been thoroughly gathered for the latter. • We analyzed the meiotic behavior of an F(1) interspecific hybrid (by crossing Brassica oleracea and B.rapa, progenitors of B.napus) and the extent to which recombined homoeologous chromosomes were transmitted to its progeny. These results were then compared with results obtained for a plant generated by somatic doubling of this F₁ hybrid (CD.S₀) and an amphidiploid (UG.S₀) formed via a pathway involving unreduced gametes; we studied the impact of this method of polyploid formation on subsequent generations. • This study revealed that meiosis of the F₁ interspecific hybrid generated more gametes with recombined chromosomes than did meiosis of the plant produced by somatic doubling, although the size of these translocations was smaller. In the progeny of the UG.S₀ plant, there was an unexpected increase in the frequency at which the C1 chromosome was replaced by the A1 chromosome. • We conclude that polyploid formation pathways differ in their genetic outcome. Our study opens up perspectives for the understanding of polyploid origins.
Collapse
Affiliation(s)
- E Szadkowski
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - F Eber
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - V Huteau
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - M Lodé
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - O Coriton
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - E Jenczewski
- INRA Institut Jean-Pierre Bourgin, Station Génétique et d'Amélioration des Plantes, F-78026 Versailles, France
| | - A M Chèvre
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| |
Collapse
|
42
|
Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 2011; 120:557-71. [DOI: 10.1007/s00412-011-0331-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 01/13/2023]
|
43
|
Heslop-Harrison JSP, Schwarzacher T. Organisation of the plant genome in chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:18-33. [PMID: 21443620 DOI: 10.1111/j.1365-313x.2011.04544.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production.
Collapse
|
44
|
Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 2010; 187:37-49. [PMID: 21041557 DOI: 10.1534/genetics.110.122473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.
Collapse
|
45
|
Kong F, Ge C, Fang X, Snowdon RJ, Wang Y. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics 2010; 37:333-40. [PMID: 20513634 DOI: 10.1016/s1673-8527(09)60051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.
Collapse
Affiliation(s)
- Fang Kong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | |
Collapse
|
46
|
La Mura M, Norris C, Sporle S, Jayaweera D, Greenland A, Lee D. Development of genome-specific 5S rDNA markers in Brassica and related species for hybrid testing. Genome 2010; 53:643-9. [PMID: 20725152 DOI: 10.1139/g10-033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Brassicaceae are targets for DNA manipulation to modify oil content and composition. However, any strategy for creating novel products using genetic modification or traditional breeding must take into account the potential for hybridization with other Brassica species, many of which are important sources of edible oils. In this study we have tested Brassica carinata, a possible target for oil modification, to establish whether it can cross with other Brassica species and related genera, and we have developed molecular DNA assays to confirm hybridization.
Collapse
Affiliation(s)
- Maurizio La Mura
- John Bingham Laboratory, National Institute of Agricultural Botany, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
47
|
Genome structure affects the rate of autosyndesis and allosyndesis in AABC, BBAC and CCAB Brassica interspecific hybrids. Chromosome Res 2010; 18:655-66. [PMID: 20571876 DOI: 10.1007/s10577-010-9140-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/22/2010] [Accepted: 06/01/2010] [Indexed: 01/06/2023]
Abstract
Gene introgression into allopolyploid crop species from diploid or polyploid ancestors can be accomplished through homologous or homoeologous chromosome pairing during meiosis. We produced trigenomic Brassica interspecific hybrids (genome complements AABC, BBAC and CCAB) from the amphidiploid species Brassica napus (AACC), Brassica juncea (AABB) and Brassica carinata (BBCC) in order to test whether the structure of each genome affects frequencies of homologous and homoeologous (both allosyndetic and autosyndetic) pairing during meiosis. AABC hybrids produced from three genotypes of B. napus were included to assess the genetic control of homoeologous pairing. Multi-colour fluorescent in situ hybridisation was used to quantify homologous pairing (e.g. A-genome bivalents in AABC), allosyndetic associations (e.g. B-C in AABC) and autosyndetic associations (e.g. B-B in AABC) at meiosis. A high percentage of homologous chromosomes formed pairs (97.5-99.3%), although many pairs were also involved in autosyndetic and allosyndetic associations. Allosyndesis was observed most frequently as A-C genome associations (mean 4.0 per cell) and less frequently as A-B genome associations (0.8 per cell) and B-C genome associations (0.3 per cell). Autosyndesis occurred most frequently in the haploid A genome (0.75 A-A per cell) and least frequently in the haploid B genome (0.13 B-B per cell). The frequency of C-C autosyndesis was greater in BBAC hybrids (0.75 per cell) than in any other hybrid. The frequency of A-B, A-C and B-C allosyndesis was affected by the genomic structure of the trigenomic hybrids. Frequency of allosyndesis was also influenced by the genotype of the B. napus paternal parent for the three AABC (B. juncea × B. napus) hybrid types. Homoeologous pairing between the Brassica A, B and C genomes in interspecific hybrids may be influenced by complex interactions between genome structure and allelic composition.
Collapse
|
48
|
Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA. Impact of transposable elements on the organization and function of allopolyploid genomes. THE NEW PHYTOLOGIST 2010; 186:37-45. [PMID: 20002321 DOI: 10.1111/j.1469-8137.2009.03096.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transposable elements (TEs) represent an important fraction of plant genomes and are likely to play a pivotal role in fuelling genome reorganization and functional changes following allopolyploidization. Various processes associated with allopolyploidy (i.e. genetic redundancy, bottlenecks during the formation of allopolyploids or genome shock following genome merging) may allow accumulation of TE insertions. Our objective in carrying out a survey of the literature and a comparative analysis across different allopolyploid systems is to shed light on the structural, epigenetic and functional modifications driven by TEs during allopolyploidization and subsequent diploidization. The available evidence indicates that TE proliferation in the short or the long term after allopolyploidization may be restricted to a few TEs, in specific polyploid systems. By contrast, data indicate major structural changes in the TE genome fraction immediately after allopolyploidization, mainly through losses of TE sequences as a result of recombination. Emerging evidence also suggests that TEs are targeted by substantial epigenetic changes, which may impact gene expression and genome stability. Furthermore, TEs may directly or indirectly support the evolution of new functionalities in allopolyploids during diploidization. All data stress allopolyploidization as a shock associated with drastic genome reorganization. Mechanisms controlling TEs during allopolyploidization as well as their impact on diploidization are discussed.
Collapse
Affiliation(s)
- Christian Parisod
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, 78026 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C. Mobilization of retrotransposons in synthetic allotetraploid tobacco. THE NEW PHYTOLOGIST 2010; 186:135-47. [PMID: 20074093 DOI: 10.1111/j.1469-8137.2009.03140.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Allopolyploidy is a major driving force in plant evolution and can induce rapid structural changes in the hybrid genome. As major components of plant genomes, transposable elements are involved in these changes. In a previous work, we observed turnover of retrotransposon insertions in natural allotretraploid tobacco (Nicotiana tabacum). Here, we studied the early stages of allopolyploid formation by monitoring changes at retrotransposon insertion sites in the Th37 synthetic tobacco. We used sequence-specific amplification polymorphism (SSAP) to study insertion patterns of two populations of the Tnt1 retrotransposon in Th37 S4 generation plants, and characterized the nature of polymorphic insertion sites. We observed significant amplification of young Tnt1 populations. Newly transposed copies were amplified from maternal elements and were highly similar to Tnt1A tobacco copies amplified in response to microbial factors. A high proportion of paternal SSAP bands were not transmitted to the hybrid, corresponding to various rearrangements at paternal insertion sites, including indels or the complete loss of the Tnt1/flanking junction. These data indicate that major changes, such as retrotransposon amplification and molecular restructuring in or around insertion sites, occur rapidly in response to allopolyploidy.
Collapse
Affiliation(s)
- M Petit
- Institut Jean-Pierre Bourgin, INRA-Centre de Versailles, F-78026, Versailles cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM. The first meiosis of resynthesized Brassica napus, a genome blender. THE NEW PHYTOLOGIST 2010; 186:102-12. [PMID: 20149113 DOI: 10.1111/j.1469-8137.2010.03182.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy promotes the restructuring of merged genomes within initial generations of resynthesized Brassica napus, possibly caused by homoeologous recombination at meiosis. However, little is known about the impact of the first confrontation of two genomes at the first meiosis which could lead to genome exchanges in progeny. Here, we assessed the role of the first meiosis in the genome instability of synthetic B. napus. We used three different newly resynthesized B. napus plants and established meiotic pairing frequencies for the A and C genomes. We genotyped the three corresponding progenies in a cross to a natural B. napus on the two homoeologous A1 and C1 chromosomes. Pairing at meiosis in a set of progenies with various rearrangements was scored. Here, we confirmed that the very first meiosis of resynthesized plants of B. napus acts as a genome blender, with many of the meiotic-driven genetic changes transmitted to the progenies, in proportions that depend significantly on the cytoplasm background inherited from the progenitors. We conclude that the first meiosis generates rearrangements on both genomes and promotes subsequent restructuring in further generations. Our study advances the knowledge on the timing of genetic changes and the mechanisms that may bias their transmission.
Collapse
Affiliation(s)
- E Szadkowski
- INRA, UMR118 APBV, F-35653 Le Rheu Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|