1
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
2
|
Baaloudj A, De los Ríos-Escalante PR, Esse C. Benthic community ecology for Algerian river Seybouse. BRAZ J BIOL 2024; 84:e251566. [DOI: 10.1590/1519-6984.251566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022] Open
Abstract
Abstract The Seybouse is the second largest river basin in Algeria, hosting an important biodiversity and providing various ecosystem services. This watershed is highly influenced by agricultural and industrial activities, which threaten its biodiversity and ecosystem integrity. The use of benthic macroinvertebrates as biological indicators has a long tradition in developed countries and integrated into all assessments of the ecological quality of river systems. However, the macroinvertebrates of many North African regions are still not well studied, including those of the Seybouse river. The aim of this study is to assess the inventory and ecological role of benthic macroinvertebrates in inland waters of the Seybouse River and determine the impact of pollution on their spatial distributions. We sampled the benthic macrofauna of Wadi Seybouse and its affluents using regular surveys in three sites, of which one was in the upper Seybouse Bouhamdane in Medjez Amar and two in the middle Seybouse. Between December 2019 and May 2020, 10 physico-chemical parameters (pH, EC, OD, water speed, NO3, Salinity, NO2, MES, turbidity, depth) were measured in order to establish a health state diagnosis of these aquatic ecosystems. The complementary biological approach by the analysis of populations of macroinvertebrates identified 7482 individuals and 40 taxa divided into five classes: Crustaceans which were the most dominant, insects with the main orders (Ephemeroptera, Diptera, Trichoptera, Heteroptera and Odonata), Molluscs, Nematodes and Annelids. The physico-chemical analyzes and the application of the organic pollution indices indicated a strong to excessive pollution for all sites, especially in Seybouse upstream
Collapse
Affiliation(s)
| | | | - C. Esse
- Universidad Autónoma de Chile, Chile
| |
Collapse
|
3
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Chung KP, Gonzalez-Duran E, Ruf S, Endries P, Bock R. Control of plastid inheritance by environmental and genetic factors. NATURE PLANTS 2023; 9:68-80. [PMID: 36646831 PMCID: PMC9873568 DOI: 10.1038/s41477-022-01323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Pierre Endries
- Universität Hamburg, Institut für Pflanzenwissenschaften und Mikrobiologie, Hamburg, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
5
|
Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages. Sci Rep 2022; 12:17306. [PMID: 36243755 PMCID: PMC9569374 DOI: 10.1038/s41598-022-21737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Salinity has a significant negative impact on production of rice. To cope with the increased soil salinity due to climate change, we need to develop salt tolerant rice varieties that can maintain their high yield. Rice landraces indigenous to coastal Bangladesh can be a great resource to study the genetic basis of salt adaptation. In this study, we implemented a QTL analysis framework with a reciprocal mapping population developed from a salt tolerant landrace Horkuch and a high yielding rice variety IR29. Our aim was to detect genetic loci that contributes to the salt adaptive responses of the two different developmental stages of rice which are very sensitive to salinity stress. We identified 14 QTLs for 9 traits and found that most are unique to specific developmental stages. In addition, we detected a significant effect of the cytoplasmic genome on the QTL model for some traits such as leaf total potassium and filled grain weight. This underscores the importance of considering cytoplasm-nuclear interaction for breeding programs. Finally, we identified QTLs co-localization for multiple traits that highlights the possible constraint of multiple QTL selection for breeding programs due to different contributions of a donor allele for different traits.
Collapse
|
6
|
Postel Z, Poux C, Gallina S, Varré JS, Godé C, Schmitt E, Meyer E, Van Rossum F, Touzet P. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities. Mol Phylogenet Evol 2022; 169:107436. [DOI: 10.1016/j.ympev.2022.107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
7
|
Fujita Y, Nagashima Y, Yamaguchi M, Shim SH, Ohnishi T, Bang SW. Characterization of cytoplasmic female sterility in an alloplasmic and monosomic addition line of Brassica rapa carrying the cytoplasm and one chromosome of Diplotaxis tenuifolia. BREEDING SCIENCE 2020; 70:355-362. [PMID: 32714058 PMCID: PMC7372022 DOI: 10.1270/jsbbs.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Alloplasmic plants exhibit various phenotypic changes such as cytoplasmic male sterility (CMS). We have been attempting to produce an alloplasmic Brassica rapa CMS line (2n = 20) carrying Diplotaxis tenuifolia cytoplasm (cyt-Dt) for several years, but a single extra chromosome always remained in all lines produced. We confirmed a D. tenuifolia-specific band in the alloplasmic line carrying D. tenuifolia cytoplasm by RAPD analysis, indicating that the additional chromosome was derived from D. tenuifolia. Here, we observed the phenotypic characteristics of the alloplasmic B. rapa monosomic addition line, named (cyt-Dt) B. rapa MAL, and investigated why a single extra chromosome is required in its genetic background for viability. When the (cyt-Dt) B. rapa MALs were crossed with pollen of several B. rapa lines, approximately 50% of the ovules attracted pollen tubes, and all the progeny had the additional chromosome. These results suggested that only the female gametes with n = 11 rather than n = 10 were fertilized and developed into mature seeds, and that cytoplasmic female sterility was overcome by nuclear restorer gene(s) derived from the cytoplasmic donor species.
Collapse
Affiliation(s)
- Yoshiaki Fujita
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yuriko Nagashima
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Mei Yamaguchi
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Su-Hyeun Shim
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Takayuki Ohnishi
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sang Woo Bang
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
8
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
9
|
Postel Z, Touzet P. Cytonuclear Genetic Incompatibilities in Plant Speciation. PLANTS 2020; 9:plants9040487. [PMID: 32290056 PMCID: PMC7238192 DOI: 10.3390/plants9040487] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation.
Collapse
|
10
|
Jo YD, Lee HY, Ro NY, Kim SH, Kim JB, Kang BC, Kang SY. Mitotypes Based on Structural Variation of Mitochondrial Genomes Imply Relationships With Morphological Phenotypes and Cytoplasmic Male Sterility in Peppers. FRONTIERS IN PLANT SCIENCE 2019; 10:1343. [PMID: 31708952 PMCID: PMC6822277 DOI: 10.3389/fpls.2019.01343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Plant mitochondrial genomes characteristically contain extensive structural variation that can be used to define and classify cytoplasm types. We developed markers based on structural variation in the mitochondrial genomes of fertile and cytoplasmic male sterility (CMS) pepper lines and applied them to a panel of Capsicum accessions. We designed a total of 20 sequence characterized amplified region (SCAR) markers based on DNA rearrangement junctions or cytoplasm-specific segments that did not show high similarity to any nuclear mitochondrial DNA segments. We used those markers to classify the mitotypes of 96 C. annuum accessions into 15 groups. Precise genotyping of other Capsicum species (C. frutescens, C. chinense, and C. baccatum) was hampered because of various stoichiometric levels of marker amplicons. We developed a multiplex PCR system based on four of the markers that efficiently classified the C. annuum accessions into five mitotype groups. Close relationships between specific mitotypes and morphological phenotypes implied that diversification or domestication of C. annuum germplasm might have been accompanied by structural rearrangements of mitochondrial DNA or the selection of germplasms with specific mitotypes. Meanwhile, CMS lines shared the same amplification profile of markers with another mitotype. Further analysis using mitochondrial DNA (mtDNA) markers based on single-nucleotide polymorphisms (SNPs) or insertions and deletions (InDels) and CMS-specific open reading frames (orfs) provided new information about the origin of the CMS-specific mitotype and evaluation of candidates for CMS-associated genes, respectively.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hea-Young Lee
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, South Korea
| | - Na-Young Ro
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Sang Hoon Kim
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jin-Baek Kim
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, South Korea
| | - Si-Yong Kang
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
11
|
Nováková E, Zablatzká L, Brus J, Nesrstová V, Hanáček P, Kalendar R, Cvrčková F, Majeský Ľ, Smýkal P. Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/ bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea ( Pisum sp.). Int J Mol Sci 2019; 20:E1773. [PMID: 30974846 PMCID: PMC6480052 DOI: 10.3390/ijms20071773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
Collapse
Affiliation(s)
- Eliška Nováková
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Lenka Zablatzká
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Jan Brus
- Department of Geoinformatics, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Viktorie Nesrstová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 78371 Olomouc, Czech Republic.
| | - Pavel Hanáček
- Department of Plant Biology, Faculty of Agronomy, Mendel University, 61300 Brno, Czech Republic.
| | - Ruslan Kalendar
- National Center for Biotechnology, Astana 010000, Kazakhstan.
- Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Sustainability Centre, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic.
| | - Ľuboš Majeský
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| |
Collapse
|
12
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
13
|
Boussardon C, Martin-Magniette ML, Godin B, Benamar A, Vittrant B, Citerne S, Mary-Huard T, Macherel D, Rajjou L, Budar F. Novel Cytonuclear Combinations Modify Arabidopsis thaliana Seed Physiology and Vigor. FRONTIERS IN PLANT SCIENCE 2019; 10:32. [PMID: 30804952 PMCID: PMC6370702 DOI: 10.3389/fpls.2019.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Dormancy and germination vigor are complex traits of primary importance for adaptation and agriculture. Intraspecific variation in cytoplasmic genomes and cytonuclear interactions were previously reported to affect germination in Arabidopsis using novel cytonuclear combinations that disrupt co-adaptation between natural variants of nuclear and cytoplasmic genomes. However, specific aspects of dormancy and germination vigor were not thoroughly explored, nor the parental contributions to the genetic effects. Here, we specifically assessed dormancy, germination performance and longevity of seeds from Arabidopsis plants with natural and new genomic compositions. All three traits were modified by cytonuclear reshuffling. Both depth and release rate of dormancy could be modified by a changing of cytoplasm. Significant changes on dormancy and germination performance due to specific cytonuclear interacting combinations mainly occurred in opposite directions, consistent with the idea that a single physiological consequence of the new genetic combination affected both traits oppositely. However, this was not always the case. Interestingly, the ability of parental accessions to contribute to significant cytonuclear interactions modifying the germination phenotype was different depending on whether they provided the nuclear or cytoplasmic genetic compartment. The observed deleterious effects of novel cytonuclear combinations (in comparison with the nuclear parent) were consistent with a contribution of cytonuclear interactions to germination adaptive phenotypes. More surprisingly, we also observed favorable effects of novel cytonuclear combinations, suggesting suboptimal genetic combinations exist in natural populations for these traits. Reduced sensitivity to exogenous ABA and faster endogenous ABA decay during germination were observed in a novel cytonuclear combination that also exhibited enhanced longevity and better germination performance, compared to its natural nuclear parent. Taken together, our results strongly support that cytoplasmic genomes represent an additional resource of natural variation for breeding seed vigor traits.
Collapse
Affiliation(s)
- Clément Boussardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Laure Martin-Magniette
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Abdelilah Benamar
- Institut de Recherche en Horticulture et Semences, Université d’Angers, Institut National de la Recherche Agronomique, Agrocampus Ouest, UMR 1345, SFR 4207 QUASAV, Angers, France
| | - Benjamin Vittrant
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Tristan Mary-Huard
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
- GQE – Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Macherel
- Institut de Recherche en Horticulture et Semences, Université d’Angers, Institut National de la Recherche Agronomique, Agrocampus Ouest, UMR 1345, SFR 4207 QUASAV, Angers, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
14
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
15
|
Takenaka S, Yamamoto R, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep 2018; 8:16267. [PMID: 30390041 PMCID: PMC6214928 DOI: 10.1038/s41598-018-34682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity in cytoplasmic and nuclear genomes and their interaction affecting adaptive traits is an attractive research subject in plants. We addressed submergence stress response of wheat that has become increasingly important but remained largely uninvestigated. Our primary aim was to disclose cytoplasmic diversity using nucleus-cytoplasm (NC) hybrids possessing a series of heterologous cytoplasms in a common nuclear background. Effects of submergence on seedling emergence and growth from imbibed seeds were studied and compared with euplasmic lines. Marked phenotypic variabilities were observed among both lines, demonstrating divergent cytoplasmic and nuclear effects on submergence response. NC hybrids with cytoplasm of Aegilops mutica showed a less inhibition, indicative of their positive contribution to submergence tolerance, whereas cytoplasms of Aegilops umbellulata and related species caused a greater inhibition. Superoxide dismutase (SOD) activity showed a marked increase accompanied by retardation of seedling growth in a susceptible NC hybrid. The observation suggested that the elevated SOD activity was resulted from a high level of reactive oxygen species accumulated and remained in susceptible seedlings. Taken together, our results point to the usefulness of NC hybrids in further studies needed to clarify molecular mechanisms underlying the nucleus-cytoplasm interaction regulating submergence stress response in wheat.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan.
| |
Collapse
|
16
|
Takamatsu T, Baslam M, Inomata T, Oikawa K, Itoh K, Ohnishi T, Kinoshita T, Mitsui T. Optimized Method of Extracting Rice Chloroplast DNA for High-Quality Plastome Resequencing and de Novo Assembly. FRONTIERS IN PLANT SCIENCE 2018; 9:266. [PMID: 29541088 PMCID: PMC5835797 DOI: 10.3389/fpls.2018.00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research. To investigate effects on rice chloroplast genome quality, we compared cpDNA extraction by three extraction protocols: liquid nitrogen coupled with sucrose density gradient centrifugation, high-salt buffer, and Percoll gradient centrifugation. The liquid nitrogen-sucrose gradient method gave a high yield of high-quality cpDNA with reliable purity. The cpDNA isolated by this technique was evaluated, resequenced, and assembled de novo to build a robust framework for genomic and genetic studies. Comparison of this high-purity cpDNA with total DNAs revealed the read coverage of the sequenced regions; next-generation sequencing data showed that the high-quality cpDNA eliminated noise derived from contamination by nuclear and mitochondrial DNA, which frequently occurs in total DNA. The assembly process produced highly accurate, long contigs. We summarize the extent to which this improved method of isolating cpDNA from rice can provide practical progress in overcoming challenges related to chloroplast genomes and in further exploring the development of new sequencing technologies.
Collapse
Affiliation(s)
- Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takuya Inomata
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- *Correspondence: Toshiaki Mitsui,
| |
Collapse
|
17
|
Miclaus M, Balacescu O, Has I, Balacescu L, Has V, Suteu D, Neuenschwander S, Keller I, Bruggmann R. Maize Cytolines Unmask Key Nuclear Genes That Are under the Control of Retrograde Signaling Pathways in Plants. Genome Biol Evol 2016; 8:3256-3270. [PMID: 27702813 PMCID: PMC5203784 DOI: 10.1093/gbe/evw245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The genomes of the two plant organelles encode for a relatively small number of proteins. Thus, nuclear genes encode the vast majority of their proteome. Organelle-to-nucleus communication takes place through retrograde signaling (RS) pathways. Signals relayed through RS pathways have an impact on nuclear gene expression but their target-genes remain elusive in a normal state of the cell (considering that only mutants and stress have been used so far). Here, we use maize cytolines as an alternative. The nucleus of a donor line was transferred into two other cytoplasmic environments through at least nine back-crosses, in a time-span of > 10 years. The transcriptomes of the resulting cytolines were sequenced and compared. There are 96 differentially regulated nuclear genes in two cytoplasm-donor lines when compared with their nucleus-donor. They are expressed throughout plant development, in various tissues and organs. One-third of the 96 proteins have a human homolog, stressing their potential role in mitochondrial RS. We also identified syntenic orthologous genes in four other grasses and homologous genes in Arabidopsis thaliana. These findings contribute to the paradigm we use to describe the RS in plants. The 96 nuclear genes identified here are not differentially regulated as a result of mutation, or any kind of stress. They are rather key players of the organelle-to-nucleus communication in a normal state of the cell.
Collapse
Affiliation(s)
- Mihai Miclaus
- National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania .,Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Ovidiu Balacescu
- The Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Has
- Agricultural Research and Development Station, Turda, Romania
| | - Loredana Balacescu
- The Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Voichita Has
- Agricultural Research and Development Station, Turda, Romania
| | - Dana Suteu
- National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania
| | - Samuel Neuenschwander
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc Natl Acad Sci U S A 2016; 113:3687-92. [PMID: 26979961 DOI: 10.1073/pnas.1520687113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.
Collapse
|
19
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
20
|
Chou JY, Leu JY. The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front Genet 2015; 6:187. [PMID: 26042149 PMCID: PMC4437034 DOI: 10.3389/fgene.2015.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/05/2015] [Indexed: 01/08/2023] Open
Abstract
Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused by incompatible alleles between mitochondrial and nuclear genomes, has been suggested to play a critical role during speciation. Several features of the mitochondrial genome (mtDNA), including high mutation rate, dynamic genomic structure, and uniparental inheritance, make mtDNA more likely to accumulate mutations in the population. Once mtDNA has changed, the nuclear genome needs to play catch-up due to the intimate interactions between these two genomes. In two populations, if cyto-nuclear co-evolution is driven in different directions, it may eventually lead to hybrid incompatibility. Although cyto-nuclear incompatibility has been observed in a wide range of organisms, it remains unclear what type of mutations drives the co-evolution. Currently, evidence supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been known that some mutations allow mtDNA to propagate more efficiently but compromise the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect may contribute to the frequent observation of cyto-nuclear incompatibility and be the underlying driving force of some human mitochondrial diseases.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education , Changhua, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica , Taipei, Taiwan
| |
Collapse
|
21
|
Sloan DB. Using plants to elucidate the mechanisms of cytonuclear co-evolution. THE NEW PHYTOLOGIST 2015; 205:1040-6. [PMID: 25729802 DOI: 10.1111/nph.12835] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The presence of both cytoplasmic and nuclear genomes within eukaryotic cells raises fascinating questions about co-evolution between genomic compartments that experience fundamentally different mutation rates and modes of inheritance. The highly mutagenic environments found in the mitochondria of some eukaryotes have generated interest in the role that mitochondrial mutation accumulation plays in phenomena such as intracellular gene transfer, compensatory evolution in the nucleus and the evolution of reproductive isolation. Although plant systems have played an important historical role in the study of cytonuclear co-evolution, they remain underutilized in many respects. In particular, the enormous natural variation in DNA substitution rates, gene content and genome architecture in plant mitochondria - much of which has even been found within a single genus – provides opportunities to resolve longstanding evolutionary questions about the consequences of mitochondrial mutation accumulation. This review summarizes some of the classic questions about cytonuclear co-evolution that could be addressed by taking advantage of the variation in plants and highlights a recent analysis of the effect of mitochondrial mutation accumulation on rates of molecular evolution in the nucleus.
Collapse
|
22
|
Stoll K, Jonietz C, Binder S. In Arabidopsis thaliana two co-adapted cyto-nuclear systems correlate with distinct ccmC transcript sizes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:247-257. [PMID: 25399870 DOI: 10.1111/tpj.12724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Plant mitochondrial transcripts undergo maturation processes at both termini. Although frequently observed, the post-transcriptional formation of mature 5' ends is still poorly understood. We now analyzed the processing of transcripts derived from the mitochondrial ccmC gene, coding for a component of the cytochrome c maturation system. In Arabidopsis thaliana (Arabidopsis) there are two mitochondrial ccmC configurations, discriminated by a 66-bp sequence segment located approximately 500 bp upstream of the ccmC gene. In Arabidopsis accessions these divergent mitochondrial genotypes correlate with the generation of two different 5' termini that map to positions around -484 in accession Columbia (Col ccmC genotype) or -390 in accession C24 relative to the translation start codon (C24 ccmC genotype). Previously we identified RNA PROCESSING FACTOR 3 (RPF3), a pentatricopeptide repeat (PPR) protein required for the maturation of ccmCmRNAs with -484 5' ends transcribed from the Col ccmC genotype. Now we identified several accessions defective in maturation of ccmC transcripts. Taking advantage of this natural genetic variation we identified RNA PROCESSING FACTOR 6 (RPF6), a PPR protein necessary for the generation of ccmCmRNAs with -390 5' ends transcribed from the C24 ccmC genotype. Both Col-type and C24-type accessions encode RPF3 and RPF6 so that they can process ccmC transcripts derived from the two different mitochondrial genotypes. These factors and their cognate RNA recognition sites in the different ccmC genotypes are an intriguing example for the evolution of two co-adapted cyto-nuclear systems required for the same process i.e. 5' maturation of ccmC transcripts.
Collapse
Affiliation(s)
- Katrin Stoll
- Institut Molekulare Botanik, Universität Ulm, D-89069, Ulm, Germany
| | | | | |
Collapse
|
23
|
Dobler R, Rogell B, Budar F, Dowling DK. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol 2014; 27:2021-34. [DOI: 10.1111/jeb.12468] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Affiliation(s)
- R. Dobler
- Institute of Evolution and Ecology; University of Tübingen; Tübingen Germany
| | - B. Rogell
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - F. Budar
- UMR 1318; Institut Jean-Pierre Bourgin; INRA; Versailles France
- UMR 1318; Institut Jean-Pierre Bourgin; AgroParisTech; Versailles France
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
24
|
Sloan DB, Triant DA, Wu M, Taylor DR. Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes. Mol Biol Evol 2013; 31:673-82. [PMID: 24336923 DOI: 10.1093/molbev/mst259] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many mitochondrial and plastid protein complexes contain subunits that are encoded in different genomes. In animals, nuclear-encoded mitochondrial proteins often exhibit rapid sequence evolution, which has been hypothesized to result from selection for mutations that compensate for changes in interacting subunits encoded in mutation-prone animal mitochondrial DNA. To test this hypothesis, we analyzed nuclear genes encoding cytosolic and organelle ribosomal proteins in flowering plants. The model angiosperm genus Arabidopsis exhibits low organelle mutation rates, typical of most plants. Nevertheless, we found that (nuclear-encoded) subunits of organelle ribosomes in Arabidopsis have higher amino acid sequence polymorphism and divergence than their counterparts in cytosolic ribosomes, suggesting that organelle ribosomes experience relaxed functional constraint. However, the observed difference between organelle and cytosolic ribosomes was smaller than in animals and could be partially attributed to rapid evolution in N-terminal organelle-targeting peptides that are not involved in ribosome function. To test the role of organelle mutation more directly, we used transcriptomic data from an angiosperm genus (Silene) with highly variable rates of organelle genome evolution. We found that Silene species with unusually fast-evolving mitochondrial and plastid DNA exhibited increased amino acid sequence divergence in ribosomal proteins targeted to the organelles but not in those that function in cytosolic ribosomes. Overall, these findings support the hypothesis that rapid organelle genome evolution has selected for compensatory mutations in nuclear-encoded proteins. We conclude that coevolution between interacting subunits encoded in different genomic compartments within the eukaryotic cell is an important determinant of variation in rates of protein sequence evolution.
Collapse
|
25
|
Joseph B, Corwin JA, Li B, Atwell S, Kliebenstein DJ. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. eLife 2013; 2:e00776. [PMID: 24150750 PMCID: PMC3791467 DOI: 10.7554/elife.00776] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022] Open
Abstract
Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes affects phenotypic variation. This showed that the cytoplasmic variation had effects similar to, if not larger than, the largest individual nuclear locus. Inclusion of cytoplasmic variation into the genetic model greatly increased the explained phenotypic variation. Cytoplasmic genetic variation was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation in metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation. DOI: http://dx.doi.org/10.7554/eLife.00776.001.
Collapse
Affiliation(s)
- Bindu Joseph
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jason A Corwin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Suzi Atwell
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, United States
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Joseph B, Corwin JA, Züst T, Li B, Iravani M, Schaepman-Strub G, Turnbull LA, Kliebenstein DJ. Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis. THE PLANT CELL 2013; 25:1929-45. [PMID: 23749847 PMCID: PMC3723604 DOI: 10.1105/tpc.113.112615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/09/2013] [Accepted: 05/16/2016] [Indexed: 05/18/2023]
Abstract
To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.
Collapse
Affiliation(s)
- Bindu Joseph
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Jason A. Corwin
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Tobias Züst
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Baohua Li
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Majid Iravani
- Department of Natural Resources, Isfahan University of Technology, 83111-84156 Isfahan, Iran
| | - Gabriela Schaepman-Strub
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Lindsay A. Turnbull
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
- Address correspondence to
| |
Collapse
|
27
|
Gobron N, Waszczak C, Simon M, Hiard S, Boivin S, Charif D, Ducamp A, Wenes E, Budar F. A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana. PLoS One 2013; 8:e62450. [PMID: 23658632 PMCID: PMC3639211 DOI: 10.1371/journal.pone.0062450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 01/25/2023] Open
Abstract
Gynodioecy, the coexistence of hermaphrodites and females (i.e. male-sterile plants) in natural plant populations, most often results from polymorphism at genetic loci involved in a particular interaction between the nuclear and cytoplasmic genetic compartments (cytonuclear epistasis): cytoplasmic male sterility (CMS). Although CMS clearly contributes to the coevolution of involved nuclear loci and cytoplasmic genomes in gynodioecious species, the occurrence of CMS genetic factors in the absence of sexual polymorphism (cryptic CMS) is not easily detected and rarely taken in consideration. We found cryptic CMS in the model plant Arabidopsis thaliana after crossing distantly related accessions, Sha and Mr-0. Male sterility resulted from an interaction between the Sha cytoplasm and two Mr-0 genomic regions located on chromosome 1 and chromosome 3. Additional accessions with either nuclear sterility maintainers or sterilizing cytoplasms were identified from crosses with either Sha or Mr-0. By comparing two very closely related cytoplasms with different male-sterility inducing abilities, we identified a novel mitochondrial ORF, named orf117Sha, that is most likely the sterilizing factor of the Sha cytoplasm. The presence of orf117Sha was investigated in worldwide natural accessions. It was found mainly associated with a single chlorotype in accessions belonging to a clade predominantly originating from Central Asia. More than one-third of accessions from this clade carried orf117Sha, indicating that the sterilizing-inducing cytoplasm had spread in this lineage. We also report the coexistence of the sterilizing cytoplasm with a non-sterilizing cytoplasm at a small, local scale in a natural population; in addition a correlation between cytotype and nuclear haplotype was detected in this population. Our results suggest that this CMS system induced sexual polymorphism in A. thaliana populations, at the time when the species was mainly outcrossing.
Collapse
Affiliation(s)
- Nicolas Gobron
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Cezary Waszczak
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Matthieu Simon
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Sophie Hiard
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Stéphane Boivin
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Delphine Charif
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Aloïse Ducamp
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Estelle Wenes
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| | - Françoise Budar
- INRA Institut National de la Recherche Agronomique, UMR1318, IJPB Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, IJPB Institut Jean-Pierre Bourgin, Versailles, France
| |
Collapse
|
28
|
Duchene D, Bromham L. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol Biol 2013; 13:65. [PMID: 23497266 PMCID: PMC3600047 DOI: 10.1186/1471-2148-13-65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. RESULTS Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. CONCLUSIONS We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship.
Collapse
Affiliation(s)
- David Duchene
- Centre for Macroevolution and Macroecology, Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
29
|
Stoll B, Stoll K, Steinhilber J, Jonietz C, Binder S. Mitochondrial transcript length polymorphisms are a widespread phenomenon in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:221-233. [PMID: 23225154 DOI: 10.1007/s11103-012-9993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/27/2012] [Indexed: 05/27/2023]
Abstract
Natural genetic variation affects development, physiology, biochemical properties as well as mitochondrial transcripts of the model species Arabidopsis thaliana (Arabidopsis). In a previous study, we identified mitochondrial transcript end polymorphisms in Arabidopsis accessions Columbia, C24 and Landsberg erecta. The polymorphic transcript species could either be assigned to differences in the mitochondrial DNA or to natural genetic variation in the nucleus. To analyze the distribution and to identify additional 5' end polymorphisms we now analyzed 19 mitochondrial transcription units in 26 different accessions. We found additional 5' end polymorphisms indicating that such transcript length differences are a widespread phenomenon in Arabidopsis. The new polymorphisms affect cox1, cox2, nad2 as well nad3-rps12 transcript species. While the cox2 polymorphism can be attributed to a recombination event in the mitochondrial DNA, the nad2 transcript polymorphism is linked to differences in the nuclear DNA. A complex pattern is found for nad3-rps12 mRNA whose 5' ends differ between several accessions. These new polymorphisms provide an important basis for a more detailed characterization of mitochondrial 5' end processing.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cell Nucleus/genetics
- Cells, Cultured
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genetic Variation
- Genotype
- Mitochondria/genetics
- Mitochondria/metabolism
- Polymorphism, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombination, Genetic
- Seedlings/genetics
- Seedlings/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
30
|
Greiner S, Bock R. Tuning a ménage à trois: Co-evolution and co-adaptation of nuclear and organellar genomes in plants. Bioessays 2013; 35:354-65. [DOI: 10.1002/bies.201200137] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Alcázar R, Pecinka A, Aarts MGM, Fransz PF, Koornneef M. Signals of speciation within Arabidopsis thaliana in comparison with its relatives. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:205-211. [PMID: 22265228 DOI: 10.1016/j.pbi.2012.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/06/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
The species within the now well-defined Arabidopsis genus provide biological materials suitable to investigate speciation and the development of reproductive isolation barriers between related species. Even within the model species A. thaliana, genetic differentiation between populations due to environmental adaptation or demographic history can lead to cases where hybrids between accessions are non-viable. Experimental evidence supports the importance of genome duplications and genetic epistatic interactions in the occurrence of reproductive isolation. Other examples of adaptation to specific environments can be found in Arabidopsis relatives where hybridization and chromosome doubling lead to new amphidiploid species. Molecular signals of speciation found in the Arabidopsis genus should provide a better understanding of speciation processes in plants from a genetic, molecular and evolutionary perspective.
Collapse
Affiliation(s)
- Rubén Alcázar
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | |
Collapse
|
32
|
Stegemann S, Keuthe M, Greiner S, Bock R. Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci U S A 2012; 109:2434-8. [PMID: 22308367 PMCID: PMC3289295 DOI: 10.1073/pnas.1114076109] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genomes of DNA-containing cell organelles (mitochondria, chloroplasts) can be laterally transmitted between organisms, a process known as organelle capture. Organelle capture often occurs in the absence of detectable nuclear introgression, and the capture mechanism is unknown. Here, we have considered horizontal genome transfer across natural grafts as a mechanism underlying chloroplast capture in plants. By grafting sexually incompatible species, we show that complete chloroplast genomes can travel across the graft junction from one species into another. We demonstrate that, consistent with reported phylogenetic evidence, replacement of the resident plastid genome by the alien genome occurs in the absence of intergenomic recombination. Our results provide a plausible mechanism for organelle capture in plants and suggest natural grafting as a path for horizontal gene and genome transfer between sexually incompatible species.
Collapse
Affiliation(s)
- Sandra Stegemann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Mandy Keuthe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
|
34
|
Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, Oztas S, Lenoble P, Vacherie B, Barbe V, Touzet P. Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 2011; 3:723-36. [PMID: 21602571 PMCID: PMC3163473 DOI: 10.1093/gbe/evr042] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite their monophyletic origin, mitochondrial (mt) genomes of plants and animals have developed contrasted evolutionary paths over time. Animal mt genomes are generally small, compact, and exhibit high mutation rates, whereas plant mt genomes exhibit low mutation rates, little compactness, larger sizes, and highly rearranged structures. We present the (nearly) whole sequences of five new mt genomes in the Beta genus: four from Beta vulgaris and one from B. macrocarpa, a sister species belonging to the same Beta section. We pooled our results with two previously sequenced genomes of B. vulgaris and studied genome diversity at the species level with an emphasis on cytoplasmic male-sterilizing (CMS) genomes. We showed that, contrary to what was previously assumed, all three CMS genomes belong to a single sterile lineage. In addition, the CMSs seem to have undergone an acceleration of the rates of substitution and rearrangement. This study suggests that male sterility emergence might have been favored by faster rates of evolution, unless CMS itself caused faster evolution.
Collapse
Affiliation(s)
- A Darracq
- University of Lille Nord de France, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Budar F, Roux F. The role of organelle genomes in plant adaptation: time to get to work! PLANT SIGNALING & BEHAVIOR 2011; 6:635-9. [PMID: 21499027 PMCID: PMC3172827 DOI: 10.4161/psb.6.5.14524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 05/25/2023]
Abstract
That organellar genome variation can play a role in plant adaptation has been suggested by several lines of evidence, including cytoplasm capture, cytoplasm effects in local adaptation, and positive selection in a chloroplast gene. In-depth analysis and better understanding of the genetic basis of plant adaptation is becoming a main objective in plant science. Arabidopsis thaliana has all the required characteristics to be used as a model for obtaining knowledge on the mechanisms underlying the role of organelles in plant adaptation. The availability of the appropriate tools and materials for assessing organelle genetic variation will open up new opportunities for developing novel breeding strategies.
Collapse
Affiliation(s)
- Françoise Budar
- INRA, Institut Jean-Pierre Bourgin, Versailles cedex, France.
| | | |
Collapse
|
36
|
GÉRARDI SÉBASTIEN, JARAMILLO-CORREA JUANP, BEAULIEU JEAN, BOUSQUET JEAN. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce. Mol Ecol 2010; 19:5265-80. [DOI: 10.1111/j.1365-294x.2010.04881.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|