1
|
Bai H, Liu T, Wang S, Gong W, Shen L, Zhang S, Wang Z. Identification of Gut Microbiome and Metabolites Associated with Acute Diarrhea in Cats. Microbiol Spectr 2023; 11:e0059023. [PMID: 37428087 PMCID: PMC10434016 DOI: 10.1128/spectrum.00590-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Changes in diet and environment can lead to acute diarrhea in companion animals, but the composition and interactions of the gut microbiome during acute diarrhea remain unclear. In this multicenter case-control study, we investigated the relationship between intestinal flora and acute diarrhea in two breeds of cats. Acutely diarrheic American Shorthair (MD, n = 12) and British Shorthair (BD, n = 12) and healthy American Shorthair (MH, n = 12) and British Shorthair (BH, n = 12) cats were recruited. Gut microbial 16S rRNA sequencing, metagenomic sequencing, and untargeted metabolomic analysis were performed. We observed significant differences in beta-diversity (Adonis, P < 0.05) across breeds and disease state cohorts. Profound differences in gut microbial structure and function were found between the two cat breeds. In comparison to healthy British Shorthair cats, Prevotella, Providencia, and Sutterella were enriched while Blautia, Peptoclostridium, and Tyzzerella were reduced in American Shorthair cats. In the case-control cohort, cats with acute diarrhea exhibited an increased abundance of Bacteroidota, Prevotella, and Prevotella copri and a decreased abundance of Bacilli, Erysipelotrichales, and Erysipelatoclostridiaceae (both MD and BD cats, P < 0.05). Metabolomic analysis identified significant changes in the BD intestine, affecting 45 metabolic pathways. Moreover, using a random forest classifier, we successfully predicted the occurrence of acute diarrhea with an area under the curve of 0.95. Our findings indicate a distinct gut microbiome profile that is associated with the presence of acute diarrhea in cats. However, further investigations using larger cohorts of cats with diverse conditions are required to validate and extend these findings. IMPORTANCE Acute diarrhea is common in cats, and our understanding of the gut microbiome variations across breeds and disease states remains unclear. We investigated the gut microbiome of two cat breeds (British Shorthair and American Shorthair) with acute diarrhea. Our study revealed significant effects of breeds and disease states on the structure and function of the gut microbiota in cats. These findings emphasize the need to consider breed-related factors in animal nutrition and research models. Additionally, we observed an altered gut metabolome in cats with acute diarrhea, closely linked to changes in bacterial genera. We identified a panel of microbial biomarkers with high diagnostic accuracy for feline acute diarrhea. These findings provide novel insights into the diagnosis, classification, and treatment of feline gastrointestinal diseases.
Collapse
Affiliation(s)
- Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | - Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | - Songjun Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | - Wenhui Gong
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | - Liya Shen
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | - Song Zhang
- Nourse Science Centre for Pet Nutrition, Wuhu, China
| | | |
Collapse
|
2
|
Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front Microbiol 2020; 11:1619. [PMID: 32760378 PMCID: PMC7372246 DOI: 10.3389/fmicb.2020.01619] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.
Collapse
Affiliation(s)
- Marie Legein
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Babette Muyshondt
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Laboratory for Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
4
|
Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J, Stamler RA, Kilcrease J, Randall JJ. Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11:14. [PMID: 32082278 PMCID: PMC7002392 DOI: 10.3389/fmicb.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA, United States
| | - Paul Q Lambert
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jolien Venneman
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - James Kilcrease
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
5
|
Javed K, Qiu D. Protein Elicitor PeBL1 of Brevibacillus laterosporus Enhances Resistance Against Myzus persicae in Tomato. Pathogens 2020; 9:pathogens9010057. [PMID: 31947681 PMCID: PMC7168619 DOI: 10.3390/pathogens9010057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Myzus persicae, a destructive aphid of tomato usually managed by chemical pesticides, is responsible for huge annual losses in agriculture. In the current work, a protein elicitor, PeBL1, was investigated for its capacity to induce a defense response against M. persicae in tomato. Population growth rates of M. persicae (second and third generation) decreased with PeBL1 treatments as compared with controls. In a host selection assay, M. persicae showed preference for colonizing control plants as compared to tomato seedlings treated with PeBL1. Tomato leaves treated with PeBL1 gave rise to a hazardous surface environment for M. persicae due to formation of trichomes and wax. Jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) showed significant accumulation in tomato seedlings treated by PeBL1. The following results showed that PeBL1 significantly modified the tomato leaf surface structure to reduce reproduction and deter colonization by M. persicae. Defense processes also included activation of JA, SA, and ET pathways. The study provides evidence for use of PeBL1 in the protection of tomato from M. persicae.
Collapse
|
6
|
Bunsangiam S, Sakpuntoon V, Srisuk N, Ohashi T, Fujiyama K, Limtong S. Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis. MYCOBIOLOGY 2019; 47:292-300. [PMID: 31565465 PMCID: PMC6758620 DOI: 10.1080/12298093.2019.1638672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
IAA biosynthetic pathways in a basidiomycetous yeast, Rhodosporidiobolus fluvialis DMKU-CP293, were investigated. The yeast strain showed tryptophan (Trp)-dependent IAA biosynthesis when grown in tryptophan supplemented mineral salt medium. Gas chromatography-mass spectrometry was used to further identify the pathway intermediates of Trp-dependent IAA biosynthesis. The results indicated that the main intermediates produced by R. fluvialis DMKU-CP293 were tryptamine (TAM), indole-3-acetic acid (IAA), and tryptophol (TOL), whereas indole-3-pyruvic acid (IPA) was not found. However, supplementation of IPA to the culture medium resulted in IAA peak detection by high-performance liquid chromatography analysis of the culture supernatant. Key enzymes of three IAA biosynthetic routes, i.e., IPA, IAM and TAM were investigated to clarify the IAA biosynthetic pathways of R. fluvialis DMKU-CP293. Results indicated that the activities of tryptophan aminotransferase, tryptophan 2-monooxygenase, and tryptophan decarboxylase were observed in cell crude extract. Overall results suggested that IAA biosynthetic in this yeast strain mainly occurred via the IPA route. Nevertheless, IAM and TAM pathway might be involved in R. fluvialis DMKU-CP293.
Collapse
Affiliation(s)
- Sakaoduoen Bunsangiam
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Varunya Sakpuntoon
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
7
|
Francis IM, Vereecke D. Plant-Associated Rhodococcus Species, for Better and for Worse. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Kong P, Hong C. Soil bacteria as sources of virulence signal providers promoting plant infection by Phytophthora pathogens. Sci Rep 2016; 6:33239. [PMID: 27616267 PMCID: PMC5018965 DOI: 10.1038/srep33239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
Phytophthora species are known as "plant destroyers" capable of initiating single zoospore infection in the presence of a quorum of chemical signals from the same or closely related species of oomycetes. Since the natural oomycete population is too low to reach a quorum necessary to initiate a disease epidemic, creation of the quorum is reliant on alternate sources. Here, we show that a soil bacterial isolate, Bacillus megaterium Sb5, promotes plant infection by Phytophthora species. In the presence of Sb5 exudates, colonization of rhododendron leaf discs by 12 Phytophthora species/isolates was significantly enhanced, single zoospores of P. nicotianae infected annual vinca and P. sojae race 25 successfully attacked a non-host plant, Nicotiana benthamiana as well as resistant soybean cultivars with RPS1a or RPS3a. Sb5 exudates, most notably the fractions larger than 3 kDa, promoted plant infection by improving zoospore swimming, germination and plant attachment. Sb5 exudates also stimulated infection hypha growth and upregulated effector gene expression. These results suggest that environmental bacteria are important sources of virulence signal providers that promote plant infection by Phytophthora species, advancing our understanding of biotic factors in the environmental component of the Phytophthora disease triangle and of communal infection of plant pathogens.
Collapse
Affiliation(s)
- Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, 1444 Diamond Springs Road, Virginia Beach, VA 23455, USA
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, 1444 Diamond Springs Road, Virginia Beach, VA 23455, USA
| |
Collapse
|
10
|
Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33:706-717. [PMID: 26877150 DOI: 10.1016/j.nbt.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.
Collapse
|
11
|
Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5123-34. [PMID: 26136271 PMCID: PMC4513927 DOI: 10.1093/jxb/erv309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leafy gall syndrome is the consequence of modified plant development in response to a mixture of cytokinins secreted by the biotrophic actinomycete Rhodococcus fascians. The similarity of the induced symptoms with the phenotype of plant mutants defective in strigolactone biosynthesis and signalling prompted an evaluation of the involvement of strigolactones in this pathology. All tested strigolactone-related Arabidopsis thaliana mutants were hypersensitive to R. fascians. Moreover, treatment with the synthetic strigolactone mixture GR24 and with the carotenoid cleavage dioxygenase inhibitor D2 illustrated that strigolactones acted as antagonistic compounds that restricted the morphogenic activity of R. fascians. Transcript profiling of the MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3, MAX4, and BRANCHED1 (BRC1) genes in the wild-type Columbia-0 accession and in different mutant backgrounds revealed that upregulation of strigolactone biosynthesis genes was triggered indirectly by the bacterial cytokinins via host-derived auxin and led to the activation of BRC1 expression, inhibiting the outgrowth of the newly developing shoots, a typical hallmark of leafy gall syndrome. Taken together, these data support the emerging insight that balances are critical for optimal leafy gall development: the long-lasting biotrophic interaction is possible only because the host activates a set of countermeasures-including the strigolactone response-in reaction to bacterial cytokinins to constrain the activity of R. fascians.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Stephen Depuydt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Ghent University Global Campus, Incheon 406-840, Republic of Korea
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Cedrick Matthys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| | - Koichi Yoneyama
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Stefaan Werbrouck
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
12
|
Tarkowski P, Vereecke D. Threats and opportunities of plant pathogenic bacteria. Biotechnol Adv 2013; 32:215-29. [PMID: 24216222 DOI: 10.1016/j.biotechadv.2013.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/22/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae.
Collapse
Affiliation(s)
- Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Danny Vereecke
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium.
| |
Collapse
|
13
|
Fambrini M, Pugliesi C. Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones. PLANT CELL REPORTS 2013; 32:899-922. [PMID: 23549933 DOI: 10.1007/s00299-013-1426-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.
Collapse
Affiliation(s)
- Marco Fambrini
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | | |
Collapse
|
14
|
Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D. The leafy gall syndrome induced byRhodococcus fascians. FEMS Microbiol Lett 2013; 342:187-94. [DOI: 10.1111/1574-6968.12119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Isolde Francis
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Ine Pertry
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Alicja Dolzblasz
- Institute of Experimental Biology; Department of Plant Developmental Biology; Wrocław University; Wrocław; Poland
| | | | - Danny Vereecke
- Department of Plant Production; University College Ghent; Ghent University; Gent; Belgium
| |
Collapse
|
15
|
Chalupowicz L, Weinthal D, Gaba V, Sessa G, Barash I, Manulis-Sasson S. Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila. MOLECULAR PLANT PATHOLOGY 2013; 14:185-90. [PMID: 23083316 PMCID: PMC6638636 DOI: 10.1111/j.1364-3703.2012.00839.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The virulence of the bacterium Pantoea agglomerans pv. gypsophilae (Pag) on Gypsophila paniculata depends on a type III secretion system (T3SS) and its effectors. The hypothesis that plant-derived indole-3-acetic acid (IAA) plays a major role in gall formation was examined by disrupting basipetal polar auxin transport with the specific inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-naphthylphthalamic acid (NPA). On inoculation with Pag, galls developed in gypsophila stems above but not below lanolin rings containing TIBA or NPA, whereas, in controls, galls developed above and below the rings. In contrast, TIBA and NPA could not inhibit tumour formation in tomato caused by Agrobacterium tumefaciens. The colonization of gypsophila stems by Pag was reduced below, but not above, the lanolin-TIBA ring. Following Pag inoculation and TIBA treatment, the expression of hrpL (a T3SS regulator) and pagR (a quorum-sensing transcriptional regulator) decreased four-fold and that of pthG (a T3SS effector) two-fold after 24 h. Expression of PIN2 (a putative auxin efflux carrier) increased 35-fold, 24 h after Pag inoculation. However, inoculation with a mutant in the T3SS effector pthG reduced the expression of PIN2 by two-fold compared with wild-type infection. The results suggest that pthG might govern the elevation of PIN2 expression during infection, and that polar auxin transport-derived IAA is essential for gall initiation.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|