1
|
Tonetto S, Weikop P, Thomsen M. Nutritional ketosis as treatment for alcohol withdrawal symptoms in female C57BL/6J mice. Sci Rep 2024; 14:5092. [PMID: 38429369 PMCID: PMC10907582 DOI: 10.1038/s41598-024-55310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Hovedvejen 17, 1., 2000, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Lovinger DM, Gremel CM. A Circuit-Based Information Approach to Substance Abuse Research. Trends Neurosci 2021; 44:122-135. [PMID: 33168235 PMCID: PMC7856012 DOI: 10.1016/j.tins.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 01/25/2023]
Abstract
Recent animal research on substance-use disorders (SUDs) has emphasized learning models and the identification of 'addiction-prone' animals. Meanwhile, basic neuroscientific research has elucidated molecular, cellular, and circuit functions with increasing sophistication. However, SUD-related research is hampered by continued arguments over which animal models are more 'addiction like', as well as the facile assignment of behaviors to a given brain region and vice versa. We argue that SUD-related research would benefit from a 'bottom-up' approach including: (i) the characterization of different brain circuits to understand their normal function as well as how they respond to drugs and contribute to SUDs; and (ii) a focus on the use patterns and neurobiological effects of different substances to understand the range of critical SUD-related in vivo phenotypes.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Christina M Gremel
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Wolstenholme JT, Younis RM, Toma W, Damaj MI. Adolescent low-dose ethanol drinking in the dark increases ethanol intake later in life in C57BL/6J, but not DBA/2J mice. Alcohol 2020; 89:85-91. [PMID: 32860857 PMCID: PMC7721983 DOI: 10.1016/j.alcohol.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Alcohol is the most widely used and abused drug among youth in the United States. Youths aged 12-20 years old drink almost 11% of all alcohol consumed in the United States, and typically these young people are consuming alcohol in the form of binge drinking. Particularly concerning is that the risk of developing an alcohol use disorder over their lifetime increases the younger one begins to drink. Here we investigated the impact of ethanol drinking in early adolescence on adult ethanol intake using C57BL/6J and DBA/2J mice. We modeled low-dose drinking in adolescent mice using a modified Drinking in the Dark (DID) model where the total ethanol intake during adolescence was similar between the strains to specifically ask whether low-dose ethanol exposure in the high-alcohol preferring C57BL/6J strain will also lead to increased ethanol intake in adulthood. Our results show that low-dose ethanol drinking in early adolescence dramatically increases adult intake, but only in the alcohol-preferring C57BL/6J strain. Early adolescent ethanol exposure had no effect on ethanol intake in the alcohol-nonpreferring DBA/2J mice. These data add to the growing evidence that low-dose ethanol exposures, below the pharmacologically relevant dose, can also contribute to increased drinking in adulthood, but the effect may be influenced by genetic background.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Virginia Commonwealth University, Alcohol Research Center, Richmond, VA, United States.
| | - Rabha M Younis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Stafford AM, Reed C, Phillips TJ. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology (Berl) 2020; 237:3315-3336. [PMID: 32833064 PMCID: PMC7572688 DOI: 10.1007/s00213-020-05614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Genetic and non-genetic factors influence substance use disorders. Our previous work in genetic mouse models focused on genetic factors that influence methamphetamine (MA) intake. The current research examined several non-genetic factors for their potential influence on this trait. OBJECTIVES We examined the impact on MA intake of several non-genetic factors, including MA access schedule, prior forced MA exposure, concomitant ethanol (EtOH) access, and gamma-aminobutyric acid type B (GABAB) receptor activation. Selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mice participated in this research. RESULTS MAHDR, but not MALDR, mice increased MA intake when given intermittent access, compared with continuous access, with a water choice under both schedules. MA intake was not altered by previous exposure to forced MA consumption. Male MAHDR mice given simultaneous access to MA, EtOH, and an EtOH+MA mixture exhibited a strong preference for MA over EtOH and EtOH+MA; MA intake was not affected by EtOH in female MAHDR mice. When independent MAHDR groups were given access to MA, EtOH, or EtOH+MA vs. water in each case, MA intake was reduced in the water vs. EtOH+MA group, compared with the water vs. MA group. The GABAB receptor agonist R(+)-baclofen (BAC) not only reduced MA intake but also reduced water intake and locomotor activity in MAHDR mice. There was a residual effect of BAC, such that MA intake was increased after termination of BAC treatment. CONCLUSIONS These findings demonstrate that voluntary MA intake in MAHDR mice is influenced by non-genetic factors related to MA access schedule and co-morbid EtOH exposure.
Collapse
Affiliation(s)
- A M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - T J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
5
|
Kuprys PV, Tsukamoto H, Gao B, Jia L, McGowan J, Coopersmith CM, Moreno MC, Hulsebus H, Meena AS, Souza-Smith FM, Roper P, Foster MT, Raju SV, Marshall SA, Fujita M, Curtis BJ, Wyatt TA, Mandrekar P, Kovacs EJ, Choudhry MA. Summary of the 2018 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2019; 77:11-18. [PMID: 30763905 PMCID: PMC6733262 DOI: 10.1016/j.alcohol.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
On January 26, 2018, the 23rd annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado. The meeting consisted of plenary sessions with oral presentations and a poster presentation session. There were four plenary sessions that covered a wide range of topics relating to alcohol use: Alcohol and Liver Disease; Alcohol, Inflammation and Immune Response; Alcohol and Organ Injury; Heath Consequences and Alcohol Drinking. The meeting provided a forum for the presentation and discussion of novel research findings regarding alcohol use and immunology.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD, Cirrhosis and Department of Pathology, University of Southern California, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, CA, United States
| | - Bin Gao
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Lin Jia
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jacob McGowan
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | | | - Maria Camargo Moreno
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Holly Hulsebus
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Avtar S. Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Philip Roper
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Michelle T. Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - S. Alex Marshall
- Department of Basic Pharmaceutical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, NC, United States
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Brenda J. Curtis
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Elizabeth J. Kovacs
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Mashkoor A. Choudhry
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States,Corresponding author. Alcohol Research Program, Burn & Shock Trauma, Research Institute, Loyola University Chicago Health Sciences Division, 2160 South, First Ave., Maywood, IL 60153, United States. Fax: +1 708 327 2813. (M.A. Choudhry)
| |
Collapse
|
6
|
Nona CN, Hendershot CS, Lê AD. Behavioural sensitization to alcohol: Bridging the gap between preclinical research and human models. Pharmacol Biochem Behav 2018; 173:15-26. [DOI: 10.1016/j.pbb.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
7
|
Sidhu H, Kreifeldt M, Contet C. Affective Disturbances During Withdrawal from Chronic Intermittent Ethanol Inhalation in C57BL/6J and DBA/2J Male Mice. Alcohol Clin Exp Res 2018; 42:1281-1290. [PMID: 29687895 PMCID: PMC6028290 DOI: 10.1111/acer.13760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alcohol use disorders are characterized by a complex behavioral symptomatology, which includes the loss of control over alcohol consumption and the emergence of a negative affective state when alcohol is not consumed. Some of these symptoms can be recapitulated in rodent models, for instance following chronic intermittent ethanol (EtOH; CIE) vapor inhalation. However, the detection of negative affect in mice withdrawn from CIE has proven challenging and variable between strains. This study aimed to detect reliable indices of negative emotionality in CIE-exposed C57BL/6J (C57) and DBA/2J (DBA) mice. Males were used because they are known to escalate their voluntary EtOH consumption upon CIE exposure, which is hypothesized to be driven by negative reinforcement (relief from negative affect). METHODS Adult male mice were exposed to 4 to 6 weeks of CIE and were evaluated 3 to 10 days into withdrawal in the social approach, novelty-suppressed feeding, digging, marble burying, and bottle brush tests. RESULTS Withdrawal from CIE decreased sociability in DBA mice but not in C57 mice. Conversely, hyponeophagia was exacerbated by CIE in C57 mice but not in DBA mice. Withdrawal from CIE robustly increased digging activity in both strains, even in the absence of marbles. Aggressive responses to bottle brush attacks were elevated in both C57 and DBA mice following CIE exposure, but CIE had an opposite effect on defensive responses in the 2 strains (increase in C57 vs. decrease in DBA). CONCLUSIONS Our results indicate that withdrawal from CIE elicits negative emotionality in both C57 and DBA mice, but different tests need to be used to measure the anxiogenic-like effects of withdrawal in each strain. Increased digging activity and irritability-like behavior represent novel indices of affective dysfunction associated with withdrawal from CIE in both mouse strains. Our findings enrich the characterization of the affective symptomatology of protracted withdrawal from CIE in mice.
Collapse
Affiliation(s)
- Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Max Kreifeldt
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
8
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
9
|
Mouse strain differences in punished ethanol self-administration. Alcohol 2017; 58:83-92. [PMID: 27814928 DOI: 10.1016/j.alcohol.2016.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 01/01/2023]
Abstract
Determining the neural factors contributing to compulsive behaviors such as alcohol-use disorders (AUDs) has become a significant focus of current preclinical research. Comparison of phenotypic differences across genetically distinct mouse strains provides one approach to identify molecular and genetic factors contributing to compulsive-like behaviors. Here we examine a rodent assay for punished ethanol self-administration in four widely used inbred strains known to differ on ethanol-related behaviors: C57BL/6J (B6), DBA/2J (D2), 129S1/SvImJ (S1), and BALB/cJ (BALB). Mice were trained in an operant task (FR1) to reliably lever-press for 10% ethanol using a sucrose-fading procedure. Once trained, mice received a punishment session in which lever pressing resulted in alternating ethanol reward and footshock, followed by tests to probe the effects of punishment on ethanol self-administration. Results indicated significant strain differences in training performance and punished attenuation of ethanol self-administration. S1 and BALB showed robust attenuation of ethanol self-administration after punishment, whereas behavior in B6 was attenuated only when the punishment and probe tests were conducted in the same contexts. By contrast, D2 were insensitive to punishment regardless of context, despite receiving more shocks during punishment and exhibiting normal footshock reactivity. Additionally, B6, but not D2, reduced operant self-administration when ethanol was devalued with a bitter tastant. B6 and D2 showed devaluation of sucrose self-administration, and punished suppression of sucrose seeking was context dependent in both the strains. While previous studies have demonstrated avoidance of ethanol in D2, particularly when ethanol is orally available from a bottle, current findings suggest this strain may exhibit heightened compulsive-like self-administration of ethanol, although there are credible alternative explanations for the phenotype of this strain. In sum, these findings offer a foundation for future studies examining the neural and genetic factors underlying AUDs.
Collapse
|
10
|
Lopez MF, Miles MF, Williams RW, Becker HC. Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort. Alcohol 2017; 58:73-82. [PMID: 27793543 PMCID: PMC5253308 DOI: 10.1016/j.alcohol.2016.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023]
Abstract
The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n ∼ 4 per genotype; 1/genotype/sex/group) were evaluated along with males from both progenitor strains (n = 14-15/genotype). Mice were evaluated for intake using limited access (2 h/day) 2-bottle (15% v/v ethanol vs. water) model for 6 weeks (baseline intake). Each animal received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (CIE group) or air control exposure (CTL group) (16 h/day × 4 days) interleaved by 5-day drinking test cycles. Blood ethanol concentrations (BEC) ranged from 150 to 300 mg/dl across genotypes. Baseline intake varied greatly among cases-from ∼0.8 to ∼2.9 g/kg. As expected, CIE exposure induced a significant increase in ethanol drinking in C57BL/6J relative to baseline as well as air controls that remained relatively stable over the four test cycles. In contrast, DBA/2J cases did not show a significant increase in consumption. Heritability of variation in baseline consumption, calculated from C57BL/6J and DBA/2J strains is about 54% but this increases following treatment to 60-80%. As expected from the marked difference between progenitors, ethanol intake and level of escalation varied greatly among BXDs after exposure (∼-1.3 to 2.6 g/kg). Interestingly, the magnitude and direction of changes in ethanol intake did not relate to BEC values of the preceding CIE exposure cycle. Overall, these data indicate significant variation in consumption and even escalation, much of it under genetic control, following repeated CIE treatment.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Michael F Miles
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Camarini R, Pautassi RM. Behavioral sensitization to ethanol: Neural basis and factors that influence its acquisition and expression. Brain Res Bull 2016; 125:53-78. [PMID: 27093941 DOI: 10.1016/j.brainresbull.2016.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Ethanol-induced behavioral sensitization (EBS) was first described in 1980, approximately 10 years after the phenomenon was described for psychostimulants. Ethanol acts on γ-aminobutyric acid (GABA) and glutamate receptors as an allosteric agonist and antagonist, respectively, but it also affects many other molecular targets. The multiplicity of factors involved in the behavioral and neurochemical effects of ethanol and the ensuing complexity may explain much of the apparent disparate results, found across different labs, regarding ethanol-induced behavioral sensitization. Although the mesocorticolimbic dopamine system plays an important role in EBS, we provide evidence of the involvement of other neurotransmitter systems, mainly the glutamatergic, GABAergic, and opioidergic systems. This review also analyses the neural underpinnings (e.g., induction of cellular transcription factors such as cyclic adenosine monophosphate response element binding protein and growth factors, such as the brain-derived neurotrophic factor) and other factors that influence the phenomenon, including age, sex, dose, and protocols of drug administration. One of the reasons that make EBS an attractive phenomenon is the assumption, firmly based on empirical evidence, that EBS and addiction-related processes have common molecular and neural basis. Therefore, EBS has been used as a model of addiction processes. We discuss the association between different measures of ethanol-induced reward and EBS. Parallels between the pharmacological basis of EBS and acute motor effects of ethanol are also discussed.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Médicas M. y M. Ferreyra, Córdoba (IMMF-CONICET-Universidad Nacional de Córdoba), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
12
|
Becker HC, Lopez MF. An Animal Model of Alcohol Dependence to Screen Medications for Treating Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:157-77. [PMID: 27055614 DOI: 10.1016/bs.irn.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the high prevalence of alcohol use disorders in the United States, only a relatively small percentage of those afflicted seek treatment. This is further compounded by the fact that there are too few medications available to effectively treat this significant public health problem. The need for identifying and evaluating more effective treatments that aid in preventing relapse and/or tempering risky and harmful alcohol consumption cannot be overstated. Use of animal models represents a critical step in the process of screening, identifying, and informing plans for prioritizing the most promising candidate medications that can be advanced to the next stage of evaluation (clinical laboratory paradigms and controlled clinical trials). Numerous animal models have been developed to study excessive levels of alcohol self-administration. In recent years, a large literature has amassed of studies in which rodent models of dependence have been linked with alcohol self-administration procedures. This chapter focuses on studies employing a dependence model that involves chronic exposure to alcohol vapor by inhalation, which yields in both mice and rats significant escalation of voluntary alcohol consumption. These animal models of dependence and alcohol self-administration have revealed valuable insights about underlying mechanisms that drive excessive drinking. Additionally, this preclinical approach is useful in evaluating the effects of medications on escalated drinking associated with dependence vs more stable levels displayed by nondependent animals.
Collapse
Affiliation(s)
- H C Becker
- Charleston Alcohol Research Center, Charleston, SC, United States; Medical University of South Carolina, Charleston, SC, United States; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, United States.
| | - M F Lopez
- Charleston Alcohol Research Center, Charleston, SC, United States
| |
Collapse
|
13
|
Gomez JL, Cunningham CL, Finn DA, Young EA, Helpenstell LK, Schuette LM, Fidler TL, Kosten TA, Ryabinin AE. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacology 2015; 97:182-93. [PMID: 26051399 PMCID: PMC4537402 DOI: 10.1016/j.neuropharm.2015.05.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/15/2022]
Abstract
An effort has been mounted to understand the mechanisms of alcohol dependence in a way that may allow for greater efficacy in treatment. It has long been suggested that drugs of abuse seize fundamental reward pathways and disrupt homeostasis to produce compulsive drug seeking behaviors. Ghrelin, an endogenous hormone that affects hunger state and release of growth hormone, has been shown to increase alcohol intake following administration, while antagonists decrease intake. Using rodent models of dependence, the current study examined the effects of two ghrelin receptor antagonists, [DLys3]-GHRP-6 (DLys) and JMV2959, on dependence-induced alcohol self-administration. In two experiments adult male C57BL/6J mice and Wistar rats were made dependent via intermittent ethanol vapor exposure. In another experiment, adult male C57BL/6J mice were made dependent using the intragastric alcohol consumption (IGAC) procedure. Ghrelin receptor antagonists were given prior to voluntary ethanol drinking. Ghrelin antagonists reduced ethanol intake, preference, and operant self-administration of ethanol and sucrose across these models, but did not decrease food consumption in mice. In experiments 1 and 2, voluntary drinking was reduced by ghrelin receptor antagonists, however this reduction did not persist across days. Despite the transient effects of ghrelin antagonists, the drugs had renewed effectiveness following a break in administration as seen in experiment 1. The results show the ghrelin system as a potential target for studies of alcohol abuse. Further research is needed to determine the central mechanisms of these drugs and their influence on addiction in order to design effective pharmacotherapies.
Collapse
Affiliation(s)
- Juan L Gomez
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Christopher L Cunningham
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Deborah A Finn
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Portland VA Healthcare System, Department of Research, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Emily A Young
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lily K Helpenstell
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lindsey M Schuette
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tara L Fidler
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Therese A Kosten
- Baylor College of Medicine, Menninger Department of Psychiatry & Behavioral Sciences, Michael E Debakey VAMC, 2002 Holcombe Blvd, Houston, TX 77030, USA
| | - Andrey E Ryabinin
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
14
|
Perez EE, De Biasi M. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment. Alcohol 2015; 49:237-43. [PMID: 25817777 DOI: 10.1016/j.alcohol.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Alcohol is one of the most prevalent addictive substances in the world. Withdrawal symptoms result from abrupt cessation of alcohol consumption in habitual drinkers. The emergence of both affective and physical symptoms produces a state that promotes relapse. Mice provide a preclinical model that could be used to study alcohol dependence and withdrawal while controlling for both genetic and environmental variables. The use of a liquid ethanol diet offers a reliable method for the induction of alcohol dependence in mice, but this approach is impractical when conducting high-throughput pharmacological screens or when comparing multiple strains of genetically engineered mice. The goal of this study was to compare withdrawal-associated behaviors in mice chronically treated with a liquid ethanol diet vs. mice treated with a short-term ethanol treatment that consisted of daily ethanol injections containing the alcohol dehydrogenase inhibitor, 4-methylpyrazole. Twenty-four hours after ethanol treatment, mice were tested in the open field arena, the elevated plus maze, the marble burying test, or for changes in somatic signs during spontaneous ethanol withdrawal. Anxiety-like and compulsive-like behaviors, as well as physical signs, were all significantly elevated in mice undergoing withdrawal, regardless of the route of ethanol administration. Therefore, a short-term ethanol treatment can be utilized as a screening tool for testing genetic and pharmacological agents before investing in a more time-consuming ethanol treatment.
Collapse
Affiliation(s)
- E E Perez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M De Biasi
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
McCool BA, Chappell AM. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice. Alcohol 2015; 49:111-20. [PMID: 25659650 DOI: 10.1016/j.alcohol.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023]
Abstract
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption.
Collapse
|
16
|
Stimulant and motivational effects of alcohol: Lessons from rodent and primate models. Pharmacol Biochem Behav 2014; 122:37-52. [DOI: 10.1016/j.pbb.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
17
|
Griffin WC. Alcohol dependence and free-choice drinking in mice. Alcohol 2014; 48:287-93. [PMID: 24530006 DOI: 10.1016/j.alcohol.2013.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 02/04/2023]
Abstract
Alcohol dependence continues to be an important health concern and animal models are critical to furthering our understanding of this complex disease. A hallmark feature of alcoholism is a significant increase in alcohol drinking over time. While several different animal models of excessive alcohol (ethanol) drinking exist for mice and rats, a growing number of laboratories are using a model that combines chronic ethanol exposure procedures with voluntary ethanol drinking with mice as experimental subjects. Primarily, these studies use a chronic intermittent ethanol (CIE) exposure pattern to render mice dependent and a 2-h limited access procedure to evaluate drinking behavior. Compared to non-dependent mice that also drink ethanol, the ethanol-dependent mice demonstrate significant increases in voluntary ethanol drinking. The increased drinking significantly elevates blood and brain ethanol concentrations compared to the non-dependent control mice. Studies report that the increased drinking by dependent mice is driven by neuroadaptations in glutamatergic and corticotropin-releasing factor signaling in different brain regions known to be involved in alcohol-related behaviors. The dysregulation of these systems parallels findings in human alcoholics and treatments that demonstrate efficacy in alcoholics can also reduce drinking in this model. Moreover, preclinical findings have informed the development of human clinical trials, further highlighting the translational potential of the model. As a result of these features, the CIE exposure and free-choice drinking model is becoming more widely used and promises to provide more insight into mechanisms of excessive drinking that may be important for developing treatments for human alcoholics. The salient features and possible future considerations for CIE exposure and free-choice drinking in mice are discussed.
Collapse
|
18
|
Lopez MF, Becker HC. Operant ethanol self-administration in ethanol dependent mice. Alcohol 2014; 48:295-9. [PMID: 24721194 DOI: 10.1016/j.alcohol.2014.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022]
Abstract
While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies.
Collapse
|
19
|
Dreumont SE, Cunningham CL. Effects of acute withdrawal on ethanol-induced conditioned place preference in DBA/2J mice. Psychopharmacology (Berl) 2014; 231:777-85. [PMID: 24096534 PMCID: PMC3910420 DOI: 10.1007/s00213-013-3291-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Reexposure to ethanol during acute withdrawal might facilitate the transition to alcoholism by enhancing the rewarding effect of ethanol. OBJECTIVE The conditioned place preference (CPP) procedure was used to test whether ethanol reward is enhanced during acute withdrawal. METHODS DBA/2J mice were exposed to an unbiased one-compartment CPP procedure. Ethanol (0.75, 1.0, or 1.5 g/kg IP) was paired with a distinctive floor cue (CS+), whereas saline was paired with a different floor cue (CS-). The withdrawal (W) group received CS+ trials during acute withdrawal produced by a large dose of ethanol (4 g/kg) given 8 h before each trial. The no-withdrawal (NW) group did not experience acute withdrawal during conditioning trials but was matched for acute withdrawal experience. Floor preference was tested in the absence of ethanol or acute withdrawal. RESULTS All groups eventually showed a dose-dependent preference for the ethanol-paired cue, but development of CPP was generally more rapid and stable in the W groups than in the NW groups. Acute withdrawal suppressed the normal activating effect of ethanol during CS+ trials, but there were no group differences in test activity. CONCLUSIONS Acute withdrawal enhanced ethanol's rewarding effect as indexed by CPP. Since this effect depended on ethanol exposure during acute withdrawal, the enhancement of ethanol reward was likely mediated by the alleviation of acute withdrawal, i.e., negative reinforcement. Enhancement of ethanol reward during acute withdrawal may be a key component in the shift from episodic to chronic ethanol consumption that characterizes alcoholism.
Collapse
Affiliation(s)
- Sarah E Dreumont
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | | |
Collapse
|
20
|
Abstract
Alcoholism (alcohol dependence and alcohol use disorder, AUD) is quintessentially behavioral in nature. AUD is behaviorally and genetically complex. This review discusses behavioral assessment of alcohol sensitivity, tolerance, dependence, withdrawal, and reinforcement. The focus is on using laboratory animal models to explore genetic contributions to individual differences in alcohol responses. Rodent genetic animal models based on selective breeding for high vs low alcohol response, and those based on the use of inbred strains, are reviewed. Genetic strategies have revealed the complexity of alcohol responses where genetic influences on multiple alcohol-related behaviors are mostly discrete. They have also identified areas where genetic influences are consistent across behavioral assays and have been used to model genetic differences among humans at different risk for AUD.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Crabbe JC. Rodent models of genetic contributions to motivation to abuse alcohol. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2014; 61:5-29. [PMID: 25306777 PMCID: PMC4988659 DOI: 10.1007/978-1-4939-0653-6_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in 1968. I have tried to identify promising areas where the power of genetics could be fruitfully harvested and generally feel that we have a much more clear idea now about some important experiments remaining to be performed.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Medical Center (R&D 12), 3710 SW US Veterans Hospital Road, Portland, Oregon 97239 USA, Phone: 503-273-5298, FAX: 503-721-1029
| |
Collapse
|
22
|
Iancu OD, Oberbeck D, Darakjian P, Metten P, McWeeney S, Crabbe JC, Hitzemann R. Selection for drinking in the dark alters brain gene coexpression networks. Alcohol Clin Exp Res 2013; 37:1295-303. [PMID: 23550792 DOI: 10.1111/acer.12100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. METHODS Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. RESULTS Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. CONCLUSIONS We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cunningham CL, Fidler TL, Murphy KV, Mulgrew JA, Smitasin PJ. Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal. Biol Psychiatry 2013; 73:249-55. [PMID: 22999529 PMCID: PMC3552109 DOI: 10.1016/j.biopsych.2012.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 07/09/2012] [Accepted: 07/31/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. METHODS Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. RESULTS The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). CONCLUSIONS Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism.
Collapse
Affiliation(s)
- Christopher L Cunningham
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
24
|
Crabbe JC. Translational behaviour-genetic studies of alcohol: are we there yet? GENES BRAIN AND BEHAVIOR 2012; 11:375-86. [PMID: 22510368 DOI: 10.1111/j.1601-183x.2012.00798.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work.
Collapse
Affiliation(s)
- J C Crabbe
- VA Medical Center (R&D12) Portland Alcohol Research Center Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|