1
|
Jacquemin V, Versbraegen N, Duerinckx S, Massart A, Soblet J, Perazzolo C, Deconinck N, Brischoux-Boucher E, De Leener A, Revencu N, Janssens S, Moorgat S, Blaumeiser B, Avela K, Touraine R, Abou Jaoude I, Keymolen K, Saugier-Veber P, Lenaerts T, Abramowicz M, Pirson I. Congenital hydrocephalus: new Mendelian mutations and evidence for oligogenic inheritance. Hum Genomics 2023; 17:16. [PMID: 36859317 PMCID: PMC9979489 DOI: 10.1186/s40246-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. MATERIALS AND METHODS We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. RESULTS In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. CONCLUSION Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.
| | - Nassim Versbraegen
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium ,grid.4989.c0000 0001 2348 0746Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- grid.4989.c0000 0001 2348 0746Service de Neuropédiatrie, Hôpital Universitaire de Bruxelles and CUB Hôpital Erasme and Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- grid.4989.c0000 0001 2348 0746Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium ,grid.411414.50000 0004 0626 3418Department of Nephrology, University Hospital of Antwerp, Edegem, Belgium
| | - Julie Soblet
- grid.412157.40000 0000 8571 829XHuman Genetics Department, CUB Hôpital Erasme, Brussels, Belgium
| | - Camille Perazzolo
- grid.4989.c0000 0001 2348 0746Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- grid.412209.c0000 0004 0578 1002Hopital Universitaire des Enfants Reine Fabiola and Hopital Universitaire de Bruxelles and Université Libre de Bruxelles, Brussels, Belgium
| | - Elise Brischoux-Boucher
- grid.493090.70000 0004 4910 6615Centre de génétique humaine - CHU de Besançon, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Anne De Leener
- grid.48769.340000 0004 0461 6320Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Nicole Revencu
- grid.48769.340000 0004 0461 6320Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Janssens
- grid.410566.00000 0004 0626 3303Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Stèphanie Moorgat
- grid.452439.d0000 0004 0578 0894Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Bettina Blaumeiser
- grid.411414.50000 0004 0626 3418Center of Medical Genetics, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Kristiina Avela
- grid.15485.3d0000 0000 9950 5666Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Renaud Touraine
- grid.412954.f0000 0004 1765 1491Génétique Clinique Chromosomique et Moléculaire, CHU de Saint-Etienne, St-Priest-en-Jarez, France
| | - Imad Abou Jaoude
- Department of Gynecology and Obstetrics, Abou Jaoude Hospital, Jal El Dib, Lebanon
| | - Kathelijn Keymolen
- grid.411326.30000 0004 0626 3362Center for Medical Genetics, UZ Brussels, Jette, Belgium
| | - Pascale Saugier-Veber
- grid.10400.350000 0001 2108 3034Department of Genetics and Reference Center for Developmental Disorders, Université Rouen Normandie, Inserm U1245 and CHU Rouen, Rouen, France
| | - Tom Lenaerts
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium ,grid.4989.c0000 0001 2348 0746Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium. .,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - Isabelle Pirson
- grid.4989.c0000 0001 2348 0746Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
3
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
4
|
Hang J, Wang J, Lu M, Xue Y, Qiao J, Tao L. Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomed Pharmacother 2022; 148:112685. [PMID: 35149389 DOI: 10.1016/j.biopha.2022.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The post-translational glycosylation of proteins by O-linked α-mannose is conserved from bacteria to humans. Due to advances in high-throughput mass spectrometry-based approaches, a variety of glycoproteins are identified to be O-mannosylated. Various proteins with O-mannosylation are involved in biological processes, providing essential necessity for proper growth and development. In this review, we summarize the process and regulation of O-mannosylation. The multi-step O-mannosylation procedures are quite dynamic and complex, especially when considering the structural and functional inspection of the involved enzymes. The widely studied O-mannosylated proteins in human include α-Dystroglycan (α-DG), cadherins, protocadherins, and plexin, and their aberrant O-mannosylation are associated with many diseases. In addition, O-mannosylation also contributes to diverse functions in lower eukaryotes and prokaryotes. Finally, we present the relationship between O-mannosylation and gut microbiota (GM), and elucidate that O-mannosylation in microbiome is of great importance in the dynamic balance of GM. Our study provides an overview of the processes of O-mannosylation in mammalian cells and other organisms, and also associated regulated enzymes and biological functions, which could contribute to the understanding of newly discovered O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang 110001, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
6
|
Lee JY. Normal and Disordered Formation of the Cerebral Cortex : Normal Embryology, Related Molecules, Types of Migration, Migration Disorders. J Korean Neurosurg Soc 2019; 62:265-271. [PMID: 31085952 PMCID: PMC6514308 DOI: 10.3340/jkns.2019.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the cerebral cortex will be discussed.
Collapse
Affiliation(s)
- Ji Yeoun Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
7
|
Astrea G, Romano A, Angelini C, Antozzi CG, Barresi R, Battini R, Battisti C, Bertini E, Bruno C, Cassandrini D, Fanin M, Fattori F, Fiorillo C, Guerrini R, Maggi L, Mercuri E, Morani F, Mora M, Moro F, Pezzini I, Picillo E, Pinelli M, Politano L, Rubegni A, Sanseverino W, Savarese M, Striano P, Torella A, Trevisan CP, Trovato R, Zaraieva I, Muntoni F, Nigro V, D'Amico A, Santorelli FM. Broad phenotypic spectrum and genotype-phenotype correlations in GMPPB-related dystroglycanopathies: an Italian cross-sectional study. Orphanet J Rare Dis 2018; 13:170. [PMID: 30257713 PMCID: PMC6158856 DOI: 10.1186/s13023-018-0863-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background Dystroglycanopathy (α-DG) is a relatively common, clinically and genetically heterogeneous category of congenital forms of muscular dystrophy (CMD) and limb-girdle muscular dystrophy (LGMD) associated with hypoglycosylated α-dystroglycan. To date, mutations in at least 19 genes have been associated with α-DG. One of them, GMPPB, encoding the guanosine-diphosphate-mannose (GDP-mannose) pyrophosphorylase B protein, has recently been associated with a wide clinical spectrum ranging from severe Walker-Warburg syndrome to pseudo-metabolic myopathy and even congenital myasthenic syndromes. We re-sequenced the full set of known disease genes in 73 Italian patients with evidence of either reduced or nearly absent α-dystroglycan to assess genotype-phenotype correlations in this cohort. We used innovative bioinformatic tools to calculate the effects of all described GMPPB mutations on protein function and attempted to correlate them with phenotypic expressions. Results We identified 13 additional cases from 12 families and defined seven novel mutations. Patients displayed variable phenotypes including less typical pictures, ranging from asymptomatic hyperCKemia, to arthrogryposis and congenital clubfoot at birth, and also showed neurodevelopmental comorbidities, such as seizures and ataxic gait, as well as autism-spectrum disorder, which is seldom described in clinical reports of dystroglycanopathies. We also demonstrated that few mutations recur in the Italian GMPPB-mutated population and that alterations of protein stability are the main effects of GMPPB missense variants. Conclusion This work adds to the data on genotype-phenotype correlations in α-DG and offers new bionformatic tools to provide the conceptual framework needed to understand the complexity of these disorders. Electronic supplementary material The online version of this article (10.1186/s13023-018-0863-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guja Astrea
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy.
| | - Alessandro Romano
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Carlo Giuseppe Antozzi
- Department of Neuroimmunology and Neuromuscular Disorders, Neurological Institute "C. Besta" IRCCS Foundation, Milan, Italy
| | - Rita Barresi
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, and The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Roberta Battini
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carla Battisti
- Department of Medical, Surgical and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudio Bruno
- Center of Myology and Neurodegenerative Disorders, G. Gaslini Institute, Genoa, Italy
| | - Denise Cassandrini
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | - Marina Fanin
- Neurological Science Department and Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genoa, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Lorenzo Maggi
- Department of Neuroimmunology and Neuromuscular Disorders, Neurological Institute "C. Besta" IRCCS Foundation, Milan, Italy
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Department of Women's and Children's Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Morani
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | - Marina Mora
- Department of Neuroimmunology and Neuromuscular Disorders, Neurological Institute "C. Besta" IRCCS Foundation, Milan, Italy
| | - Francesca Moro
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | - Ilaria Pezzini
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | - Esther Picillo
- Cardiomyology and Genetic Section, Department of Internal and Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Pinelli
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Genetic Section, Department of Internal and Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Rubegni
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | | | - Marco Savarese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Folkhälsan Institute of Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genoa, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Pietro Trevisan
- Department of Neurological and Psychiatric Sciences, University of Padua, Padua, Italy
| | - Rosanna Trovato
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy
| | - Irina Zaraieva
- Dubowitz Neuromuscular Centre (F. Muntoni), UCL Great Ormond Street Institute of Child Health, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre (F. Muntoni), UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Filippo M Santorelli
- Department of Developmental Neuroscience and Molecular Medicine Neuromuscular Unit and Child Neurology, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56018, Pisa, Italy.
| | | |
Collapse
|
8
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Hu P, Yuan L, Deng H. Molecular genetics of the POMT1-related muscular dystrophy-dystroglycanopathies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:45-50. [PMID: 30454682 DOI: 10.1016/j.mrrev.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023]
Abstract
Protein O-mannosyltransferase 1 (POMT1) is a critical enzyme participating in the first step of protein O-mannosylation. Mutations in the coding gene, POMT1, have been described to be related to a series of autosomal recessive disorders associated with defective alpha-dystroglycan glycosylation, later termed muscular dystrophy-dystroglycanopathies (MDDGs). MDDGs are characterized by a broad phenotypic spectrum of congenital muscular dystrophy or later-onset limb-girdle muscular dystrophy, accompanied by variable degrees of intellectual disability, brain defects, and ocular abnormalities. To date, at least 76 disease-associated mutations in the POMT1 gene, including missense, nonsense, splicing, deletion, insertion/duplication, and insertion-deletion mutations, have been reported in the literature. In this review, we highlight the present knowledge of the identified disease-associated POMT1 gene mutations and genetic animal models related to the POMT1 gene. This review may help further normative classification of phenotypes, assist in definite clinical and genetic diagnoses, and genetic counseling, and may comprehensively improve our understanding of the basis of complex phenotypes and possible pathogenic mechanisms involved.
Collapse
Affiliation(s)
- Pengzhi Hu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, PR China; Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, PR China.
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
10
|
Kask K, Tikker L, Ruisu K, Lulla S, Oja EM, Meier R, Raid R, Velling T, Tõnissoo T, Pooga M. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles. Dev Neurobiol 2018; 78:374-390. [PMID: 29380551 DOI: 10.1002/dneu.22578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018.
Collapse
Affiliation(s)
- Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Laura Tikker
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | - Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Sirje Lulla
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Eva-Maria Oja
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Teet Velling
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
11
|
Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review. Mol Aspects Med 2016; 51:115-24. [PMID: 27421908 DOI: 10.1016/j.mam.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
α-Dystroglycanopathy, an autosomal recessive disease, is associated with the development of a variety of diseases, including muscular dystrophy. In humans, α-dystroglycanopathy includes various types of congenital muscular dystrophy such as Fukuyama type congenital muscular dystrophy (FCMD), muscle eye brain disease (MEB), and the Walker Warburg syndrome (WWS), and types of limb girdle muscular dystrophy 2I (LGMD2I). α-Dystroglycanopathy share a common etiology, since it is invariably caused by gene mutations that are associated with the O-mannose glycosylation pathway of α-dystroglycan (α-DG). α-DG is a central member of the dystrophin glycoprotein complex (DGC) family in peripheral membranes, and the proper glycosylation of α-DG is essential for it to bind to extracellular matrix proteins, such as laminin, to cell components. The disruption of this ligand-binding is thought to result in damage to cell membrane integration, leading to the development of muscular dystrophy. Clinical manifestations of α-dystroglycanopathy frequently include mild to severe alterations in the central nervous system and optical manifestations in addition to muscular dystrophy. Eighteen causative genes for α-dystroglycanopathy have been identified to date, and it is likely that more will be reported in the near future. These findings have stimulated extensive and energetic investigations in this research field, and novel glycosylation pathways have been implicated in the process. At the same time, the use of gene therapy, antisense therapy, and enzymatic supplementation have been evaluated as therapeutic possibilities for some types of α-dystroglycanopathy. Here we review the molecular and clinical findings associated with α-dystroglycanopathy and the development of therapeutic approaches, by comparing the approaches with the development of Duchenne muscular dystrophy.
Collapse
|
12
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
13
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW We provide a review of recent standards of care and therapeutic development in different forms of muscular dystrophies. This topic is relevant as the improved understanding of these disorders has not only led to a better definition of clinical course and to the development of standards of care for individual types of muscular dystrophies, but also culminated in different therapeutic approaches. RECENT FINDINGS Recent natural history studies have demonstrated the impact of new standards of care in different forms of muscular dystrophies, and identified areas of clinical management in which further developments are needed. The majority of the experimental studies are focused on Duchenne muscular dystrophy. Some of them target patients with specific mutations, such as antisense oligonucleotides, to induce exon skipping of specific mutations or drugs developed to allow read-through of nonsense mutations, whereas other therapies deal with secondary aspects of muscle degeneration, aiming, for example, at reducing inflammation or apoptosis, and may also be suitable for other forms of muscular dystrophies. SUMMARY The advances in the field of muscular dystrophy have resulted in improved clinical course and survival. The encouraging results of early experimental studies could further improve these outcomes in the future.
Collapse
|
15
|
Martinez HR, Craigen WJ, Ummat M, Adesina AM, Lotze TE, Jefferies JL. Novel cardiovascular findings in association with a POMT2 mutation: three siblings with α-dystroglycanopathy. Eur J Hum Genet 2013; 22:486-91. [PMID: 24002165 DOI: 10.1038/ejhg.2013.165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/09/2022] Open
Abstract
Dystroglycanopathies are a genetically heterogeneous subset of congenital muscular dystrophies that exhibit autosomal recessive inheritance and are characterized by abnormal glycosylation of α-dystroglycan. In particular, POMT2 (protein O-mannosyltransferase-2) mutations have been identified in congenital muscular dystrophy patients with a wide range of clinical involvement, ranging from the severe muscle-eye-brain disease and Walker-Warburg syndrome to limb girdle muscular dystrophy without structural brain or ocular involvement. Cardiovascular disease is thought to be uncommon in congenital muscular dystrophy, with rare reports of cardiac involvement. We describe three brothers aged 21, 19, and 17 years with an apparently homozygous POMT2 mutation who all presented with congenital muscular dystrophy, intellectual disabilities, and distinct cardiac abnormalities. All three brothers were homozygous for a p.Tyr666Cys missense mutation in exon 19 of the POMT2 gene. On screening echocardiograms, all siblings demonstrated significant dilatation of the aortic root and depressed left ventricular systolic function and/or left ventricular wall motion abnormalities. Our report is the first to document an association between POMT2 mutations and aortopathy with concomitant depressed left ventricular systolic function. On the basis of our findings, we suggest patients with POMT2 gene mutations be screened not only for myocardial dysfunction but also for aortopathy. In addition, given the potential for progression of myocardial dysfunction and/or aortic dilatation, longitudinal surveillance imaging is recommended both for patients with disease as well as those that have normal baseline imaging.
Collapse
Affiliation(s)
- Hugo R Martinez
- Section of Pediatrics, University of Texas Medical Branch, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Monika Ummat
- Section of Pediatric Neurology, Texas Children's Hospital, Houston, TX, USA
| | | | - Timothy E Lotze
- Section of Pediatric Neurology, Texas Children's Hospital, Houston, TX, USA
| | - John L Jefferies
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy. An improved understanding of their molecular bases has led to more accurate definitions of the clinical features associated with known subtypes. Knowledge of disease-specific complications, implementation of anticipatory care, and medical advances have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected people. A better understanding of the mechanisms underlying the molecular pathogenesis of several disorders and the availability of preclinical models are leading to several new experimental approaches, some of which are already in clinical trials. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
18
|
Stevens E, Carss K, Cirak S, Foley A, Torelli S, Willer T, Tambunan D, Yau S, Brodd L, Sewry C, Feng L, Haliloglu G, Orhan D, Dobyns W, Enns G, Manning M, Krause A, Salih M, Walsh C, Hurles M, Campbell K, Manzini M, Stemple D, Lin YY, Muntoni F. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 2013; 92:354-65. [PMID: 23453667 PMCID: PMC3591840 DOI: 10.1016/j.ajhg.2013.01.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.
Collapse
Affiliation(s)
- Elizabeth Stevens
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Keren J. Carss
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - A. Reghan Foley
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Tobias Willer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dimira E. Tambunan
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shu Yau
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Lina Brodd
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Caroline A. Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
- Wolfson Centre for Inherited Neuromuscular Diseases, Oswestry SY10 7AG, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Goknur Haliloglu
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - Diclehan Orhan
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Gregory M. Enns
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Melanie Manning
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, the University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Mustafa A. Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Christopher A. Walsh
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Kevin P. Campbell
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - M. Chiara Manzini
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Derek Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
19
|
Furlong LI. Human diseases through the lens of network biology. Trends Genet 2013; 29:150-9. [DOI: 10.1016/j.tig.2012.11.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/24/2012] [Accepted: 11/09/2012] [Indexed: 12/13/2022]
|
20
|
Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg EJ, van den Elzen C, van Beusekom E, Blaser S, Babul-Hirji R, Halliday W, Wright GJ, Stemple DL, Lin YY, Lefeber DJ, van Bokhoven H. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 2013; 22:1746-54. [PMID: 23359570 PMCID: PMC3613162 DOI: 10.1093/hmg/ddt021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker–Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.
Collapse
Affiliation(s)
- Karen Buysse
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F, Vleugels W, Mercuri E, Garozzo D, Sturiale L, Messina S, Jaeken J, Fiumara A, Wevers RA, Bertini E, Matthijs G, Lefeber DJ. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2013; 72:550-8. [PMID: 23109149 DOI: 10.1002/ana.23632] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Congenital disorders of glycosylation (CDG) are a group of metabolic diseases due to defects in protein and lipid glycosylation. We searched for the primary defect in 3 children from 2 families with a severe neurological phenotype, including profound developmental delay, intractable epilepsy, progressive microcephaly, severe hypotonia with elevated blood creatine kinase levels, and early fatal outcome. There was clinical evidence of a muscular dystrophy-dystroglycanopathy syndrome, supported by deficient O-mannosylation by muscle immunohistochemistry. METHODS Biochemical and molecular methods were combined to pinpoint the defect in the glycosylation pathway in the endoplasmic reticulum. RESULTS Metabolic investigations revealed CDG-I, pointing to a defect in protein N-glycosylation in the endoplasmic reticulum. Analysis of lipid-linked oligosaccharides in fibroblasts showed accumulation of Dol-PP-GlcNAc(2) -Man(5) . DNA analysis revealed mutations in DPM2, 1 of the subunits of the dolichol-phosphate-mannose (DPM) synthase; the patient in the first family is compound heterozygous for 2 mutations (c.68A>G, predicting a missense mutation p.Y23C and c.4-1G>C, a splice mutation), whereas the patients in the second family are homozygous for the same missense mutation (c.68A>G, p.Y23C). INTERPRETATION We describe a new CDG, due to a deficiency of DPM2. Hence, mutations have now been described in the genes for the 3 subunits of DPM: DPM1, DPM2, and DPM3, whereby DPM2-CDG links the congenital disorders of glycosylation to the congenital muscular dystrophies.
Collapse
Affiliation(s)
- Rita Barone
- Pediatric Neurology, Department of Pediatrics, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee JK, Matthews RT, Lim JM, Swanier K, Wells L, Pierce JM. Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V. J Biol Chem 2012; 287:28526-36. [PMID: 22715095 DOI: 10.1074/jbc.m112.367565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The severe phenotypic effects of altered glycosylation in the congenital muscular dystrophies, including Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1D, are caused by mutations resulting in altered glycans linked to proteins through O-linked mannose. A glycosyltransferase that branches O-Man, N-acetylglucosaminyltransferase Vb (GnT-Vb), is highly expressed in neural tissues. To understand the expression and function of GnT-Vb, we studied its expression during neuromorphogenesis and generated GnT-Vb null mice. A paralog of GnT-Vb, N-acetylglucosaminyltransferase (GnT-V), is expressed in many tissues and brain, synthesizing N-linked, β1,6-branched glycans, but its ability to synthesize O-mannosyl-branched glycans is unknown; conversely, although GnT-Vb can synthesize N-linked glycans in vitro, its contribution to their synthesis in vivo is unknown. Our results showed that deleting both GnT-V and GnT-Vb results in the total loss of both N-linked and O-Man-linked β1,6-branched glycans. GnT-V null brains lacked N-linked, β1,6-glycans but had normal levels of O-Man β1,6-branched structures, showing that GnT-Vb could not compensate for the loss of GnT-V. By contrast, GnT-Vb null brains contained normal levels of N-linked β1,6-glycans but low levels of some O-Man β1,6-branched glycans. Therefore, GnT-V could partially compensate for GnT-Vb activity in vivo. We found no apparent change in α-dystroglycan binding of glycan-specific antibody IIH6C4 or binding to laminin in GnT-Vb null mice. These results demonstrate that GnT-V is involved in synthesizing branched O-mannosyl glycans in brain, but the function of these branched O-mannosyl structures is unresolved using mice that lack these glycosyltransferases.
Collapse
Affiliation(s)
- Jin Kyu Lee
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA
| | | | | | | | | | | |
Collapse
|
23
|
Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LE, Schraders M, Altunoglu U, Buckley MF, Brunner HG, Grisart B, Zhou H, Veltman JA, Gilissen C, Mancini GM, Delrée P, Willemsen MA, Ramadža DP, Chitayat D, Bennett C, Sheridan E, Peeters EA, Tan-Sindhunata GM, de Die-Smulders CE, Devriendt K, Kayserili H, El-Hashash OAEF, Stemple DL, Lefeber DJ, Lin YY, van Bokhoven H. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 2012; 44:581-5. [PMID: 22522421 PMCID: PMC3378661 DOI: 10.1038/ng.2253] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
Abstract
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.
Collapse
Affiliation(s)
- Tony Roscioli
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- School of Women’s and Children’s Health, Sydney Children’s hospital and the University of New South Wales, Sydney, Australia
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Karen Buysse
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christa van den Elzen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moniek Riemersma
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Margit Schraders
- Department of Otorhinolaryngology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Michael F. Buckley
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- School of Women’s and Children’s Health, Sydney Children’s hospital and the University of New South Wales, Sydney, Australia
| | - Han G. Brunner
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bernard Grisart
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Paul Delrée
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Michèl A. Willemsen
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - David Chitayat
- Mount Sinai Hospital, The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- The Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Canada
| | - Christopher Bennett
- Department of Clinical Genetics, St James’s University Hospital, Leeds, United Kingdom
| | - Eamonn Sheridan
- Department of Clinical Genetics, St James’s University Hospital, Leeds, United Kingdom
| | | | | | | | - Koenraad Devriendt
- Center for Human Genetics, Clinical Genetics, Catholic University Leuven, Leuven, Belgium
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Dirk J. Lefeber
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Devisme L, Bouchet C, Gonzalès M, Alanio E, Bazin A, Bessières B, Bigi N, Blanchet P, Bonneau D, Bonnières M, Bucourt M, Carles D, Clarisse B, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D, Gasser B, Delezoide AL, Guimiot F, Joubert M, Laurent N, Laquerrière A, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, Pelluard F, Perez MJ, Rouleau C, Triau S, Attié-Bitach T, Vuillaumier-Barrot S, Seta N, Encha-Razavi F. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. ACTA ACUST UNITED AC 2012; 135:469-82. [PMID: 22323514 DOI: 10.1093/brain/awr357] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cobblestone lissencephaly represents a peculiar brain malformation with characteristic radiological anomalies, defined as cortical dysplasia combined with dysmyelination, dysplastic cerebellum with cysts and brainstem hypoplasia. Cortical dysplasia results from neuroglial overmigration into the arachnoid space, forming an extracortical layer, responsible for agyria and/or 'cobblestone' brain surface and ventricular enlargement. The underlying mechanism is a disruption of the glia limitans, the outermost layer of the brain. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal recessive diseases with cerebral, ocular and muscular deficits, Walker-Warburg syndrome, muscle-eye-brain and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN and FKRP genes attributed these diseases to α-dystroglycanopathies. However, studies have not been able to identify causal mutations in the majority of patients and to establish a clear phenotype/genotype correlation. Therefore, we decided to perform a detailed neuropathological survey and molecular screenings in 65 foetal cases selected on the basis of histopathological criteria. After sequencing the six genes of α-dystroglycanopathies, a causal mutation was observed in 66% of cases. On the basis of a ratio of severity, three subtypes clearly emerged. The most severe, which we called cobblestone lissencephaly A, was linked to mutations in POMT1 (34%), POMT2 (8%) and FKRP (1.5%). The least severe, cobblestone lissencephaly C, was linked to POMGNT1 mutations (18%). An intermediary type, cobblestone lissencephaly B, was linked to LARGE mutations (4.5%) identified for the first time in foetuses. We conclude that cobblestone lissencephaly encompasses three distinct subtypes of cortical malformations with different degrees of neuroglial ectopia into the arachnoid space and cortical plate disorganization regardless of gestational age. In the cerebellum, histopathological changes support the novel hypothesis that abnormal lamination arises from a deficiency in granule cells. Our studies demonstrate the positive impact of histoneuropathology on the identification of α-dystroglycanopathies found in 66% of cases, while with neuroimaging criteria and biological values, mutations are found in 32-50% of patients. Interestingly, our morphological classification was central in the orientation of genetic screening of POMT1, POMT2, POMGNT1, LARGE and FKRP. Despite intensive research, one-third of our cases remained unexplained; suggesting that other genes and/or pathways may be involved. This material offers a rich resource for studies on the affected neurodevelopmental processes of cobblestone lissencephaly and on the identification of other responsible gene(s)/pathway(s).
Collapse
Affiliation(s)
- Louise Devisme
- Institut de Pathologie, Centre de Biologie-Pathologie, CHU Lille, 33.3.20446983, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lefeber DJ, de Brouwer APM, Morava E, Riemersma M, Schuurs-Hoeijmakers JHM, Absmanner B, Verrijp K, van den Akker WMR, Huijben K, Steenbergen G, van Reeuwijk J, Jozwiak A, Zucker N, Lorber A, Lammens M, Knopf C, van Bokhoven H, Grünewald S, Lehle L, Kapusta L, Mandel H, Wevers RA. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 2011; 7:e1002427. [PMID: 22242004 PMCID: PMC3248466 DOI: 10.1371/journal.pgen.1002427] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022] Open
Abstract
Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.
Collapse
Affiliation(s)
- Dirk J Lefeber
- Department of Neurology, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marrone AK, Kucherenko MM, Rishko VM, Shcherbata HR. New dystrophin/dystroglycan interactors control neuron behavior in Drosophila eye. BMC Neurosci 2011; 12:93. [PMID: 21943192 PMCID: PMC3217851 DOI: 10.1186/1471-2202-12-93] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/26/2011] [Indexed: 01/09/2023] Open
Abstract
Background The Dystrophin Glycoprotein Complex (DGC) is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys) and Dystroglycan (Dg) are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a Drosophila model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s) in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing Drosophila brain and eye. Results Given that disruption of Dys and Dg leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in chif, CG34400, Nrk, Lis1, capt and Cam cause improper axon path-finding and loss of SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 and Cam cause shortened rhabdomere lengths. We determined that Nrk, mbl, capt and Cam genetically interact with Dys and/or Dg in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics. Conclusions Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.
Collapse
Affiliation(s)
- April K Marrone
- Max Planck Institute for biophysical chemistry, Research group of Gene Expression and Signaling, Am Fassberg 11, 37077, Goettingen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
Mutations in more than 450 different genes have been associated with intellectual disability (ID) and related cognitive disorders (CDs), such as autism. It is to be expected that this number will increase three to fourfold in the next years due to the rapid implementation of innovative high-throughput sequencing technology in genetics labs. Numerous functional relationships have been identified between the products of individual ID genes, and common molecular and cellular pathways onto which these networks converge are beginning to emerge. Prominent examples are genes involved in synaptic plasticity, Ras and Rho GTPase signaling, and epigenetic genes that encode modifiers of the chromatin structure. It thus seems that there might be common pathological patterns in ID, despite its bewildering genetic heterogeneity. These common pathways provide attractive opportunities for knowledge-based therapeutic interventions.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Molecular Neurogenetics Unit, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Godfrey C, Clement E, Abbs S, Muntoni F. Exclusion of WWP1
mutations in a cohort of dystroglycanopathy patients. Muscle Nerve 2011; 44:388-92. [DOI: 10.1002/mus.22068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases. PLoS One 2011; 6:e20284. [PMID: 21695124 PMCID: PMC3114846 DOI: 10.1371/journal.pone.0020284] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/27/2011] [Indexed: 02/05/2023] Open
Abstract
Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.
Collapse
Affiliation(s)
- Anna Bauer-Mehren
- Research Programme on Biomedical Informatics (GRIB), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Barcelona, Spain
| | - Markus Bundschus
- Institute for Computer Science, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Rautschka
- Research Programme on Biomedical Informatics (GRIB), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel A. Mayer
- Research Programme on Biomedical Informatics (GRIB), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics (GRIB), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Abstract
During the last 10 years it has become apparent that a significant subset of inherited muscular dystrophy is caused by errors in the glycosylation of α-dystroglycan. Many of these dystrophies are also associated with abnormalities of the central nervous system. Dystroglycan has to be fully glycosylated in order bind to its ligands. To date, six genes have been shown to be essential for functional dystroglycan glycosylation and most, if not all, of these genes act in the formation of O-mannosyl glycans. Genetic heterogeneity indicates that other genes are involved in this pathway. Identification of these additional genes would increase our understanding of this specific and essential glycosylation pathway.
Collapse
|
31
|
|
32
|
Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 2010; 30:14560-72. [PMID: 20980614 DOI: 10.1523/jneurosci.3247-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cobblestone (type II) lissencephaly and mental retardation are characteristic features of a subset of congenital muscular dystrophies that include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type congenital muscular dystrophy. Although the majority of clinical cases are genetically undefined, several causative genes have been identified that encode known or putative glycosyltransferases in the biosynthetic pathway of dystroglycan. Here we test the effects of brain-specific deletion of dystroglycan, and show distinct functions for neuronal and glial dystroglycan. Deletion of dystroglycan in the whole brain produced glial/neuronal heterotopia resembling the cerebral cortex malformation in cobblestone lissencephaly. In wild-type mice, dystroglycan stabilizes the basement membrane of the glia limitans, thereby supporting the cortical infrastructure necessary for neuronal migration. This function depends on extracellular dystroglycan interactions, since the cerebral cortex developed normally in transgenic mice that lack the dystroglycan intracellular domain. Also, forebrain histogenesis was preserved in mice with neuron-specific deletion of dystroglycan, but hippocampal long-term potentiation was blunted, as is also the case in the Largemyd mouse, in which dystroglycan glycosylation is disrupted. Our findings provide genetic evidence that neuronal dystroglycan plays a role in synaptic plasticity and that glial dystroglycan is involved in forebrain development. Differences in dystroglycan glycosylation in distinct cell types of the CNS may contribute to the diversity of dystroglycan function in the CNS, as well as to the broad clinical spectrum of type II lissencephalies.
Collapse
|
33
|
Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 67:343-62. [PMID: 19547838 DOI: 10.1590/s0004-282x2009000200035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/14/2009] [Indexed: 11/22/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. In the last number of this journal, we presented the main clinical and diagnostic data concerning the different subtypes of CMD. In this second part of the review, we analyse the main reports from the literature concerning the pathogenesis and the therapeutic perspectives of the most common subtypes of CMD: MDC1A with merosin deficiency, collagen VI related CMDs (Ullrich and Bethlem), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker Warburg syndrome, MDC1C, MDC1D), and rigid spine syndrome, another much rare subtype of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex.
Collapse
|
34
|
Grant PK, Moens CB. The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Dev 2010; 5:9. [PMID: 20350296 PMCID: PMC2857861 DOI: 10.1186/1749-8104-5-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/29/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The facial branchiomotor neurons of cranial nerve VII undergo a stereotyped tangential migration in the zebrafish hindbrain that provides an ideal system for examining the complex interactions between neurons and their environment that result in directed migration. Several studies have shown the importance of the planar cell polarity pathway in facial branchiomotor neuron migration but the role of apical-basal polarity has not been determined. Here we examine the role of the PAR-aPKC complex in forming the basal structures that guide facial branchiomotor neurons on an appropriate migratory path. RESULTS High resolution timelapse imaging reveals that facial branchiomotor neurons begin their migration by moving slowly ventrally and posteriorly with their centrosomes oriented medially and then, upon contact with the Laminin-containing basement membrane at the rhombomere 4-rhombomere 5 boundary, speed up and reorient their centrosomes on the anterior-posterior axis. Disruption of the PAR-aPKC complex members aPKClambda, aPKCzeta, and Pard6gb results in an ectopic ventral migration in which facial branchiomotor neurons escape from the hindbrain through holes in the Laminin-containing basement membrane. Mosaic analysis reveals that the requirement for aPKC is cell-nonautonomous, indicating that it is likely required in the surrounding polarized neuroepithelium rather than in facial motor neurons themselves. Ventral facial motor neuron ectopia can be phenocopied by mutation of lamininalpha1, suggesting that it is defects in maintenance of the laminin-containing basement membrane that are the likely cause of ventral mismigration in aPKClambda+zeta double morphants. CONCLUSIONS Our results suggest that the laminin-containing ventral basement membrane, dependent on the activity of the PAR-aPKC complex in the hindbrain neuroepithelium, is both a substrate for migration and a boundary that constrains facial branchiomotor neurons to the appropriate migratory path.
Collapse
Affiliation(s)
- Paul K Grant
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
35
|
van Bokhoven H, Kramer JM. Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 2010; 39:3-12. [PMID: 20304068 DOI: 10.1016/j.nbd.2010.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/18/2023] Open
Abstract
Mental retardation (MR) is a highly diverse group of cognitive disorders. Gene defects account for about half of all patients and mutations causative for impaired cognition have been identified in more than 400 genes. While there are numerous genetic defects underlying MR, a more limited number of pathways is emerging whose disruption appears to be shared by groups of MR genes. One of these common pathways is composed of MR genes that encode regulators of chromatin structure and of chromatin-mediated transcription regulation. Already more than 20 "epigenetic MR genes" have been identified and this number is likely to increase in the coming years when deep sequencing of exomes and genomes will become commonplace. Prominent examples of epigenetic MR genes include the methyl CpG-binding protein MECP2 and the CREB binding protein, CBP. Interestingly, several epigenetic MR proteins have been found to interact directly with one another or act together in complexes that regulate the local chromatin structure at target genes. Thus, it appears that the functions of individual epigenetic MR proteins converge onto similar biological processes that are crucial to neuronal processes. The next challenge will be to gain more insight into patterns of altered DNA methylation and histone modifications that are caused by epigenetic gene mutations and how these will disrupt the brain-specific expression of target genes. Such research may reveal that a wide variety of mutations in the genetic code result in a more limited number of disruptions to the epigenetic code. If so, this will provide a rationale for therapeutic strategies.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
36
|
Van Reeuwijk J, Olderode-Berends MJW, Van den Elzen C, Brouwer OF, Roscioli T, Van Pampus MG, Scheffer H, Brunner HG, Van Bokhoven H, Hol FA. A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 2010; 78:275-81. [PMID: 20236121 DOI: 10.1111/j.1399-0004.2010.01384.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dystroglycanopathies are a heterogeneous group of disorders caused by defects in the glycosylation pathway of alpha-dystroglycan. The clinical spectrum ranges from severe congenital muscular dystrophy with structural brain and eye involvement to a relatively mild adult onset limb-girdle muscular dystrophy without brain abnormalities and normal intelligence. Mutations have been identified in one of six putative or demonstrated glycosyltransferases. Many different FKRP mutations have been identified, which cover the complete clinical spectrum of dystroglycanopathies. In contrast to the other known genes involved in these disorders, genotype-phenotype correlations are not obvious for FKRP mutations. To date, no homozygous or compound heterozygous null mutations have been identified in FKRP, suggesting that null mutations in FKRP could result in embryonic lethality. We report a family with two siblings carrying a homozygous mutation in the start codon of FKRP that is likely to result in a loss of functional FKRP protein. The clinical phenotype of the patients was consistent with Walker-Warburg syndrome, the most severe disorder in the disease spectrum of dystroglycanopathies.
Collapse
Affiliation(s)
- J Van Reeuwijk
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
New trends in neuronal migration disorders. Eur J Paediatr Neurol 2010; 14:1-12. [PMID: 19264520 DOI: 10.1016/j.ejpn.2009.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 11/22/2022]
Abstract
Neuronal migration disorders are an heterogeneous group of disorders of nervous system development and they are considered to be one of the most significant causes of neurological and developmental disabilities and epileptic seizures in childhood. In the last ten years, molecular biologic and genetic investigations have widely increased our knowledge about the regulation of neuronal migration during development. One of the most frequent disorders is lissencephaly. It is characterized by a paucity of normal gyri and sulci resulting in a "smooth brain". There are two pathologic subtypes: classical and cobblestone. Classical lissencephaly is caused by an arrest of neuronal migration whereas cobblestone lissencephaly caused by overmigration. Heterotopia is another important neuronal migration disorder. It is characterized by a cluster of disorganized neurons in abnormal locations and it is divided into three main groups: periventricular nodular heterotopia, subcortical heterotopia and marginal glioneural heterotopia. Polymicrogyria develops at the final stages of neuronal migration, in the earliest phases of cortical organization; bilateral frontoparietal form is characterized by bilateral, symmetric polymicrogyria in the frontoparietal regions. Bilateral perisylvian polymicrogyria causes a clinical syndrome which manifests itself in the form of mild mental retardation, epilepsy and pseudobulbar palsy. Schizencephaly is another important neuronal migration disorder whose clinical characteristics are extremely variable. This review reports the main clinical and pathophysiological aspects of these disorders paying particular attention to the recent advances in molecular genetics.
Collapse
|
38
|
Kawahara G, Guyon JR, Nakamura Y, Kunkel LM. Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 2009; 19:623-33. [PMID: 19955119 PMCID: PMC2807370 DOI: 10.1093/hmg/ddp528] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various muscular dystrophies are associated with the defective glycosylation of α-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker–Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in α-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, α-dystroglycan glycosylation and laminin binding activity of α-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans.
Collapse
Affiliation(s)
- Genri Kawahara
- Division of Genetics, Program in Genetics, Harvard Medical School, Children's Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
39
|
Hewitt JE. Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:853-61. [DOI: 10.1016/j.bbadis.2009.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
40
|
Chang W, Winder TL, LeDuc CA, Simpson LL, Millar WS, Dungan J, Ginsberg N, Plaga S, Moore SA, Chung WK. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn 2009; 29:560-9. [PMID: 19266496 PMCID: PMC2735827 DOI: 10.1002/pd.2238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Walker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS. METHOD We screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis. RESULTS We identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults. CONCLUSION These data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population.
Collapse
Affiliation(s)
- Wendy Chang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P, Yildiz J, Grünewald S, Spilioti M, van den Elzen C, Klein D, Hess D, Ashida H, Hofsteenge J, Maeda Y, van den Heuvel L, Lammens M, Lehle L, Wevers RA. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 2009; 85:76-86. [PMID: 19576565 DOI: 10.1016/j.ajhg.2009.06.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/28/2022] Open
Abstract
Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.
Collapse
Affiliation(s)
- Dirk J Lefeber
- Laboratory of Pediatrics & Neurology, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cotarelo RP, Fano O, Raducu M, Peña A, Tarilonte P, Mateos F, Simón R, Cabello A, Cruces J. A double homozygous mutation in the POMT1 gene involving exon skipping gives rise to Walker-Warburg syndrome in two Spanish Gypsy families. Clin Genet 2009; 76:108-12. [PMID: 19519795 DOI: 10.1111/j.1399-0004.2009.01188.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:144-68. [DOI: 10.1590/s0004-282x2009000100038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/17/2008] [Indexed: 12/30/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. We initially present the main clinical and diagnostic data concerning the CMDs related to changes in the complex dystrophin-associated glycoproteins-extracellular matrix: CMD with merosin deficiency (CMD1A), collagen VI related CMDs (Ullrich CMD and Bethlem myopathy), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker-Warburg syndrome, CMD1C, CMD1D), and the much rarer CMD with integrin deficiency. Finally, we present other forms of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex (rigid spine syndrome, CMD1B, CMD with lamin A/C deficiency), and some apparently specific clinical forms not yet associated with a known molecular mechanism. The second part of this review concerning the pathogenesis and therapeutic perspectives of the different subtypes of CMD will be described in a next number.
Collapse
|
44
|
Yanagisawa A, Bouchet C, Quijano-Roy S, Vuillaumier-Barrot S, Clarke N, Odent S, Rodriguez D, Romero NB, Osawa M, Endo T, Taratuto AL, Seta N, Guicheney P. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 2008; 52:201-6. [PMID: 19138766 DOI: 10.1016/j.ejmg.2008.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Alpha-dystroglycanopathies are a group of congenital muscular dystrophies (CMDs) with autosomal recessive inheritance characterized by abnormal glycosylation of alpha-dystroglycan. Although six genetic causes have been identified (FKTN, POMGNT1, POMT1, POMT2, FKRP, and LARGE) many alpha-dystroglycanopathy patients remain without a genetic diagnosis after standard exon sequencing. To date POMT2 mutations have been identified in CMD cases with a wide range of clinical severities from Walker-Warburg syndrome to limb girdle muscular dystrophy without structural brain or ocular involvement. METHODS We analyzed POMT2 in six CMD patients, who had severe diffuse muscle weakness, generalized joint contractures, microcephaly, severe mental retardation and elevated CK levels. Eye involvement was absent or limited to myopia or strabismus. We sequenced the coding regions of POMT2 using genomic DNA and cDNA generated from blood lymphocytes or B lymphoblastoid cell lines. Quantitative PCR analysis of genomic DNA was used to identify and determine the breakpoints of large deletions. RESULTS We report five novel mutations in POMT2, four of which were outside of coding exons, two large genomic deletions and two intronic single base substitutions that induced aberrant mRNA splicing. CONCLUSIONS Large scale DNA rearrangements (such as large deletions) and cryptic splice mutations, that can be missed on standard sequencing of genomic DNA, may be relatively common in POMT2. Additional techniques, such as sequencing of cDNA are needed to identify all mutations. These results also confirm that POMT2 mutations are an important cause of the less severe alpha-dystroglycanopathy phenotypes.
Collapse
Affiliation(s)
- Akiko Yanagisawa
- Inserm, U582, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, UPMC University Paris 06, UMR_S582, IFR14, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Manzini MC, Gleason D, Chang BS, Hill RS, Barry BJ, Partlow JN, Poduri A, Currier S, Galvin-Parton P, Shapiro LR, Schmidt K, Davis JG, Basel-Vanagaite L, Seidahmed MZ, Salih MAM, Dobyns WB, Walsh CA. Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat 2008; 29:E231-41. [PMID: 18752264 DOI: 10.1002/humu.20844] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Walker-Warburg syndrome (WWS) is a genetically heterogeneous autosomal recessive disease characterized by congenital muscular dystrophy, cobblestone lissencephaly, and ocular malformations. Mutations in six genes involved in the glycosylation of á-dystroglycan (POMT1, POMT2, POMGNT1, FCMD, FKRP and LARGE) have been identified in WWS patients, but account for only a portion of WWS cases. To better understand the genetics of WWS and establish the frequency and distribution of mutations across WWS genes, we genotyped all known loci in a cohort of 43 WWS patients of varying geographical and ethnic origin. Surprisingly, we reached a molecular diagnosis for 40% of our patients and found mutations in POMT1, POMT2, FCMD and FKRP, many of which were novel alleles, but no mutations in POMGNT1 or LARGE. Notably, the FCMD gene was a more common cause of WWS than previously expected in the European/American subset of our cohort, including all Ashkenazi Jewish cases, who carried the same founder mutation.
Collapse
Affiliation(s)
- M Chiara Manzini
- Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 2008; 18:497-516. [PMID: 18996916 DOI: 10.1093/hmg/ddn377] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in 'Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315-1325, 1998; Sheen et al. in 'Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69-76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in 'MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789-801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (alpha-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventricular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity.
Collapse
Affiliation(s)
- Russell J Ferland
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moore CJ, Hewitt JE. Dystroglycan glycosylation and muscular dystrophy. Glycoconj J 2008; 26:349-57. [PMID: 18773291 DOI: 10.1007/s10719-008-9182-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/25/2022]
Abstract
Dystroglycan is an integral member of the skeletal muscle dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix. Recently, a group of human muscular dystrophy disorders have been demonstrated to result from defective glycosylation of the alpha-dystroglycan subunit. Genetic studies of these diseases have identified six genes that encode proteins required for the synthesis of essential carbohydrate structures on dystroglycan. Here we highlight their known or postulated functions. This glycosylation pathway appears to be highly specific (dystroglycan is the only substrate identified thus far) and to be highly conserved during evolution.
Collapse
Affiliation(s)
- Christopher J Moore
- Institute of Genetics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
48
|
Thornhill P, Bassett D, Lochmüller H, Bushby K, Straub V. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). ACTA ACUST UNITED AC 2008; 131:1551-61. [PMID: 18477595 DOI: 10.1093/brain/awn078] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of muscular dystrophies are associated with the defective glycosylation of alpha-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy (FCMD), Muscle-Eye-Brain disease (MEB) and Walker-Warburg syndrome (WWS), which are associated with brain and eye abnormalities. The defective glycosylation of alpha-dystroglycan in these disorders leads to a failure of alpha-dystroglycan to bind to extra-cellular matrix components and previous attempts to model these disorders have shown that the generation of fukutin- and Pomt1-deficient knockout mice results in early embryonic lethality due to basement membrane defects. We have used the zebrafish as an animal model to investigate the pathological consequences of downregulating the expression of the putative glycosyltransferase gene fukutin-related protein (FKRP) on embryonic development. We have found that downregulating FKRP in the zebrafish results in embryos which develop a range of abnormalities reminiscent of the developmental defects observed in human muscular dystrophies associated with mutations in FKRP. FKRP morphant embryos showed a spectrum of phenotypic severity involving alterations in somitic structure and muscle fibre organization as well as defects in developing neuronal structures and eye morphology. The pathological phenotype was found to correlate with a reduction in alpha-dystroglycan glycosylation and reduced laminin binding. Further characterization of the developmental processes affected in FKRP morphant embryos may lead to a better understanding of the pathological spectrum observed in muscular dystrophies associated with mutations in the human FKRP gene.
Collapse
Affiliation(s)
- Paul Thornhill
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | | | | | | | | |
Collapse
|
49
|
Teber S, Sezer T, Kafali M, Manzini MC, Konuk Yüksel B, Tekin M, Fitöz S, Walsh CA, Deda G. Severe muscle-eye-brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 2008; 12:133-6. [PMID: 17881266 DOI: 10.1016/j.ejpn.2007.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 11/29/2022]
Abstract
Muscle-eye-brain (MEB) disease is an autosomal recessive disorder characterized by a broad clinical spectrum including congenital muscular dystrophy, ocular abnormalities, and brain malformation (type-II lissencephaly). Herein, we report on two Turkish siblings with a homozygous mutation in the POMGnT1 gene. A 6-year-old sibling has a severe form of MEB disease, which in some aspects is more suitable with the diagnosis of Walker-Warburg syndrome. However, the same mutation resulted in a less severe form of MEB in the older sibling, who is 14 years old. These two cases suggest that POMGnT1 mutations may cause MEB disease with different phenotypes even in the same family.
Collapse
Affiliation(s)
- Serap Teber
- Department of Pediatric Neurology, Ankara University School of Medicine of Pediatrics, 06510 Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reiner O, Sapoznik S, Sapir T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2008; 8:547-65. [PMID: 17028375 DOI: 10.1385/nmm:8:4:547] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 12/11/2022]
Abstract
Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|