1
|
Wen X, Du J, Li Z, Liu N, Huo J, Li J, Ke W, Wu J, Fang X, Lin X. Establishment of linkage phase, using Oxford Nanopore Technologies, for preimplantation genetic testing of Coffin-Lowry syndrome with a de novo RPS6KA3 mutation. Front Genet 2023; 14:1169868. [PMID: 37779904 PMCID: PMC10538565 DOI: 10.3389/fgene.2023.1169868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background: This study aimed to perform preimplantation genetic testing (PGT) for a female Coffin-Lowry Syndrome (CLS) patient with a de novo mutation (DNM) in RPS6KA3. It was challenging to establish the haplotype in this family because of the lack of information from affected family members. Hence, we explored a new and reliable strategy for the detection of the DNM in PGT, using Oxford Nanopore Technologies (ONT) and the MARSALA platform. Methods: We performed whole-exome sequencing (WES) on the proband and confirmed the pathogenic mutation by Sanger sequencing. The proband then underwent PGT to prevent the transmission of the pathogenic mutation to her offspring. We diverged from the conventional methods and used long-read sequencing (LRS) on the ONT platform to directly detect the mutation and nearby SNPs, for construction of the haplotype in the preclinical phase of PGT. In the clinical phase of embryo diagnosis, the MARSALA method was used to detect both the SNP-based haplotype and chromosome copy number variations (CNVs), in each blastocyst. Finally, a normal embryo was selected by comparison to the haplotype of the proband and transferred into the uterus. Sanger sequencing and karyotyping were performed by amniocentesis, at 17 weeks of gestation, to confirm the accuracy of PGT. Results: Using WES, we found the novel, heterozygous, pathogenic c.1496delG (p.Gly499Valfs*25) mutation of RPS6KA3 in the proband. The SNP-based haplotype that was linked to the pathogenic mutation site was successfully established in the proband, without the need for other family members to be tested with ONT. Eight blastocysts were biopsied to perform PGT and were assessed with a haplotype linkage analysis (30 SNP sites selected), to give results that were consistent with direct mutation detection using Sanger sequencing. The results of PGT showed that three of the eight blastocysts were normal, without the DNM. Moreover, the patient had a successful pregnancy, after transfer of a normal blastocyst into the uterus, and delivered a healthy baby. Conclusion: The ONT platform, combined with the MARSALA method, can be used to perform PGT for DNM patients without the need for other samples as a reference.
Collapse
Affiliation(s)
- Xiaojun Wen
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jing Du
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Zhiming Li
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Nengqing Liu
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Junye Huo
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jieliang Li
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Wanna Ke
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jiaqi Wu
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Xiaowu Fang
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Xiufeng Lin
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Schaeffer S, Gupta B, Calatayud AL, Calderaro J, Caruso S, Hirsch TZ, Pelletier L, Zucman-Rossi J, Rebouissou S. RSK2 inactivation cooperates with AXIN1 inactivation or β-catenin activation to promote hepatocarcinogenesis. J Hepatol 2023; 79:704-716. [PMID: 37201672 DOI: 10.1016/j.jhep.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or β-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or β-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or β-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.
Collapse
Affiliation(s)
- Samantha Schaeffer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Anna-Line Calatayud
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Julien Calderaro
- Service d'Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Théo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.
| |
Collapse
|
3
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Jin H, Li H, Qiang S. Coffin-Lowry Syndrome Induced by RPS6KA3 Gene Variation in China: A Case Report in Twins. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070958. [PMID: 35888677 PMCID: PMC9320784 DOI: 10.3390/medicina58070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Background and objectives: Coffin-Lowry Syndrome (CLS), a rare neurodegenerative disorder, is mainly diagnosed based on clinical manifestations and molecular analyses. In total, about 20 cases of CLS have been reported in China. Here, we report two cases of CLS in identical twin brothers and examine their potential causative mutations. Methods: The Trio mode was used in this analysis, i.e., DNA from the proband and his parents was sequenced. Furthermore, DNA from the proband’s twin brother was used for confirmation. Results: A hemizygous variation was detected in the 11th exon of the RPS6KA3 gene, c.898C>T (p.R300*) of the proband, and the same site variation was detected in his identical twin brother; however, the mutation was not detected in his parents. Conclusions: The RPS6KA3 gene mutation c.898C>T (p.R300*) is the causative factor of familial CLS. The variant detected was reported for the first time in the Chinese population. Additionally, by analyzing the previous literature, we were able to summarize the phenotypic and genetic characteristics of GLS in China.
Collapse
Affiliation(s)
- Huiying Jin
- Correspondence: (H.J.); (S.Q.); Tel.: +86-0571-88873322 (H.J.); +86-0571-86670006 (S.Q.)
| | | | - Shu Qiang
- Correspondence: (H.J.); (S.Q.); Tel.: +86-0571-88873322 (H.J.); +86-0571-86670006 (S.Q.)
| |
Collapse
|
5
|
Vecchio D, Cocciadiferro D, Macchiaiolo M, Gonfiantini MV, Agolini E, Matraxia M, Carboni A, Coretti A, Villani A, Panfili FM, Dentici ML, Buonuomo PS, Rana I, Colafati GS, Digilio MC, Novelli A, Bartuli A. Expanding the novel MAPKAPK5-related developmental disorder's genotype-phenotype correlation: Patient report and 19 months of follow-up. Clin Genet 2022; 102:142-148. [PMID: 35575217 PMCID: PMC9545400 DOI: 10.1111/cge.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022]
Abstract
This study aimed to widen the knowledge of a recently identified, autosomal‐recessive, multiple congenital anomalies syndrome to date observed in only other three children. This is the second report of biallelic mutations in MAPKAPK5 whose impairment during human development has been associated with neurological, cardiac, and facial anomalies combined with fingers and toes malformations. Through the affected patients' genetic and phenotypic features overlap, this report confirms MAPKAPK5 as causative gene and adds unique neurodevelopmental characterization. Moreover, based on the complex congenital genitourinary anomalies reported and MAPKAPK5 literature review, we also propose kidney and external genitalia involvement as a key syndromic feature whose expressivity may be more severe in males.
Collapse
Affiliation(s)
- Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michaela Veronika Gonfiantini
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Matraxia
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Carboni
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Coretti
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Villani
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Filippo Maria Panfili
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ippolita Rana
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Novel missense mutation c.1784A>G, p.Tyr595Cys in RPS6KA3 gene responsible for Coffin-Lowry syndrome in a family with variable features and diabetes 2. Clin Dysmorphol 2021; 30:32-35. [PMID: 32858545 DOI: 10.1097/mcd.0000000000000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Quantitative description of the interactions among kinase cascades underlying long-term plasticity of Aplysia sensory neurons. Sci Rep 2021; 11:14931. [PMID: 34294802 PMCID: PMC8298407 DOI: 10.1038/s41598-021-94393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation. This study provides new insights into how these pathways contribute to the temporal domains of memory, using empirical and computational approaches. Empirical studies of Aplysia sensory neurons identified a positive feedforward loop in which the PKA and ERK pathways converge to regulate RSK, and a negative feedback loop in which p38 MAPK inhibits the activation of ERK and RSK. A computational model incorporated these findings to simulate the dynamics of kinase activity produced by different stimulus protocols and predict the critical roles of kinase interactions in the dynamics of these pathways. These findings may provide insights into the mechanisms underlying aberrant synaptic plasticity observed in genetic disorders such as RASopathies and Coffin-Lowry syndrome.
Collapse
|
8
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Sci Rep 2020; 10:608. [PMID: 31953461 PMCID: PMC6969148 DOI: 10.1038/s41598-020-57484-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple kinases converge on the transcription factor cAMP response element-binding protein (CREB) to enhance the expression of proteins essential for long-term synaptic plasticity and memory. The p90 ribosomal S6 kinase (RSK) is one of these kinases, although its role is poorly understood. The present study exploited the technical advantages of the Aplysia sensorimotor culture system to examine the role of RSK in long-term synaptic facilitation (LTF) and long-term enhancement of neuronal excitability (LTEE), two correlates of long-term memory (LTM). Inhibition of RSK expression or RSK activity both significantly reduced CREB1 phosphorylation, LTF, and LTEE, suggesting RSK is required for learning-related synaptic plasticity and enhancement in neuronal excitability. In addition, knock down of RSK by RNAi in Aplysia sensory neurons impairs LTF, suggesting that this may be a useful single-cell system to study aspects of defective synaptic plasticity in Coffin-Lowry Syndrome (CLS), a cognitive disorder that is caused by mutations in rsk2 and associated with deficits in learning and memory. We found that the impairments in LTF and LTEE can be rescued by a computationally designed spaced training protocol, which was previously demonstrated to augment normal LTF and LTM.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Castelluccio VJ, Vetrini F, Lynnes T, Jones J, Holloway L, Belonis A, Breman AM, Graham BH, Sapp K, Wilson T, Schwartz CE, Pratt VM, Weaver DD. An unusual cause for Coffin-Lowry syndrome: Three brothers with a novel microduplication in RPS6KA3. Am J Med Genet A 2019; 179:2357-2364. [PMID: 31512387 DOI: 10.1002/ajmg.a.61353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 11/07/2022]
Abstract
Coffin-Lowry syndrome (CLS) is a rare X-linked disorder characterized by moderate to severe intellectual disability, hypotonia, craniofacial features, tapering digits, short stature, and skeletal deformities. Using whole exome sequencing and high-resolution targeted comparative genomic hybridization array analysis, we identified a novel microduplication encompassing exons five through nine of RPS6KA3 in three full brothers. Each brother presented with intellectual disability and clinical and radiographic features consistent with CLS. qRT-PCR analyses performed on mRNA from the peripheral blood of the three siblings revealed a marked reduction of RPS6KA3 levels suggesting a loss-of-function mechanism. PCR analysis of the patients' cDNA detected a band greater than expected for an exon 4-10 amplicon, suggesting this was likely a direct duplication that lies between exons 4 through 10, which was later confirmed by Sanger sequencing. This microduplication is only the third intragenic duplication of RPS6KA3, and the second and smallest reported to date thought to cause CLS. Our study further supports the clinical utility of methods such as next-generation sequencing and high-resolution genomic arrays to detect small intragenic duplications. These methods, coupled with expression studies and cDNA structural analysis have the capacity to confirm the diagnosis of CLS in these rare cases.
Collapse
Affiliation(s)
- Valerie J Castelluccio
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ty Lynnes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie Jones
- Greenwood Genetic Center, Greenwood, South Carolina
| | | | - Alyce Belonis
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katherine Sapp
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theodore Wilson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
11
|
Fung JLF, Rethanavelu K, Luk HM, Ho MSP, Lo IFM, Chung BHY. Coffin-Lowry syndrome in Chinese. Am J Med Genet A 2019; 179:2043-2048. [PMID: 31400053 DOI: 10.1002/ajmg.a.61323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/11/2022]
Abstract
Coffin-Lowry syndrome (CLS) is a well-described syndrome characterized by intellectual disability, growth retardation, recognizable dysmorphic features, and skeletal changes. It is an X-linked syndrome where males are more severely affected and females have high variability in clinical presentations. This case series reports nine molecularly confirmed Chinese CLS patients from six unrelated families (three with familial variants and three with de novo variants). There is a wide genotypic spectrum with five novel variants in RPS6KA3 gene. Clinical phenotype and facial features of these Chinese CLS patients are comparable to what has been described in other ethnicities.
Collapse
Affiliation(s)
- Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kavitha Rethanavelu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong
| | - Matthew S P Ho
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Miyata Y, Saida K, Kumada S, Miyake N, Mashimo H, Nishida Y, Shirai I, Kurihara E, Nakata Y, Matsumoto N. Periventricular small cystic lesions in a patient with Coffin-Lowry syndrome who exhibited a novel mutation in the RPS6KA3 gene. Brain Dev 2018; 40:566-569. [PMID: 29678278 DOI: 10.1016/j.braindev.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Coffin-Lowry syndrome is a rare X-linked disease, caused by loss-of-function mutations in the RPS6KA3 gene. Patients exhibit severe intellectual disability with characteristic dysmorphism. As there are no specific laboratory findings to support the diagnosis of Coffin-Lowry syndrome, it may be difficult to diagnose-especially in young children, where the characteristic craniofacial features are less discernible. CASE Here we report on a 2-year-old boy with Coffin-Lowry syndrome with a novel missense mutation in the RPS6KA3 gene. On magnetic resonance imaging, his brain exhibited periventricular signal abnormalities with multiple small cystic lesions. These findings may aid in diagnosis of Coffin-Lowry syndrome.
Collapse
Affiliation(s)
- Yohane Miyata
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan; Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan.
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yuya Nishida
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ikuko Shirai
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Eiji Kurihara
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
13
|
Lv Y, Zhu L, Zheng J, Wu D, Shao J. Growth Concerns in Coffin-Lowry Syndrome: A Case Report and Literature Review. Front Pediatr 2018; 6:430. [PMID: 30740391 PMCID: PMC6357678 DOI: 10.3389/fped.2018.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023] Open
Abstract
Mutation of RPS6KA3 can induce Coffin-Lowry syndrome, an X-linked syndrome. The case here reported manifests its signature characteristic of short stature, facial dysmorphism, development retardation, hearing defect. The mutation of RPS6KA3 we detected by NGS analysis is c.2185 C > T. The short stature is a noteworthy problem we discuss here to improve the patient's growth and development. The efficacy and safety of application of growth hormone analogs on patients with CLS are not confirmed and need to be carefully considered.
Collapse
Affiliation(s)
- Ying Lv
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liuyan Zhu
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zheng
- Department of Gene Screening Laboratory, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwen Wu
- Department of Gene Screening Laboratory, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
15
|
Concomitant partial exon skipping by a unique missense mutation of RPS6KA3 causes Coffin-Lowry syndrome. Gene 2015; 575:42-7. [PMID: 26297997 DOI: 10.1016/j.gene.2015.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Coffin-Lowry syndrome (CLS) is an X-linked semi-dominant disorder characterized by diverse phenotypes including intellectual disability, facial and digital anomalies. Loss-of-function mutations in the Ribosomal Protein S6 Kinase Polypeptide 3 (RPS6KA3) gene have been shown to be responsible for CLS. Among the large number of mutations, however, no exonic mutation causing exon skipping has been described. Here, we report a male patient with CLS having a novel mutation at the 3' end of an exon at a splice donor junction. Interestingly, this nucleotide change causes both a novel missense mutation and partial exon skipping leading to a truncated transcript. These two transcripts were identified by cDNA sequencing of RT-PCR products. In the carrier mother, we found only wildtype transcripts suggesting skewed X-inactivation. Methylation studies confirmed X-inactivation was skewed moderately, but not completely, which is consistent with her mild phenotype. Western blot showed that the mutant RSK2 protein in the patient is expressed at similar levels relative to his mother. Protein modeling demonstrated that the missense mutation is damaging and may alter binding to ATP molecules. This is the first report of exon skipping from an exonic mutation of RPS6KA3, demonstrating that a missense mutation and concomitant disruption of normal splicing contribute to the manifestation of CLS.
Collapse
|
16
|
Maricato JT, Furtado MN, Takenaka MC, Nunes ERM, Fincatti P, Meliso FM, da Silva IDCG, Jasiulionis MG, Cecília de Araripe Sucupira M, Diaz RS, Janini LMR. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 2015; 10:e0119234. [PMID: 25875202 PMCID: PMC4395311 DOI: 10.1371/journal.pone.0119234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these observations, it is possible to speculate that the outcome of viral infections may be influenced by the cellular activation status at the moment of infection.
Collapse
Affiliation(s)
- Juliana T. Maricato
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Maria N. Furtado
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Maisa C. Takenaka
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Edsel R. M. Nunes
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Patricia Fincatti
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fabiana M. Meliso
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Luiz M. R. Janini
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Familial co-segregation of Coffin–Lowry syndrome inherited from the mother and autosomal dominant Waardenburg type IV syndrome due to deletion of EDNRB inherited from the father. Eur J Med Genet 2014; 57:562-6. [DOI: 10.1016/j.ejmg.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/03/2014] [Indexed: 01/11/2023]
|
18
|
Nishimoto HK, Ha K, Jones JR, Dwivedi A, Cho HM, Layman LC, Kim HG. The historical Coffin-Lowry syndrome family revisited: identification of two novel mutations of RPS6KA3 in three male patients. Am J Med Genet A 2014; 164A:2172-9. [PMID: 25044551 DOI: 10.1002/ajmg.a.36488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Abstract
Coffin-Lowry syndrome (CLS) is a rare X-linked dominant disorder characterized by intellectual disability, craniofacial abnormalities, short stature, tapering fingers, hypotonia, and skeletal malformations. CLS is caused by mutations in the Ribosomal Protein S6 Kinase, 90 kDa, Polypeptide 3 (RPS6KA3) gene located at Xp22.12, which encodes Ribosomal S6 Kinase 2 (RSK2). Here we analyzed RPS6KA3 in three unrelated CLS patients including one from the historical Coffin-Lowry syndrome family and found two novel mutations. To date, over 140 mutations in RPS6KA3 have been reported. However, the etiology of the very first familial case, which was described in 1971 by Lowry with detailed phenotype and coined the term CLS, has remained unknown. More than 40 years after the report, we succeeded in identifying deposited fibroblast cells from one patient of this historic family and found a novel heterozygous 216 bp in-frame deletion, encompassing exons 15 and 16 of RPS6KA3. Drop episodes in CLS patients were reported to be associated with truncating mutations deleting the C-terminal kinase domain (KD), and only one missense mutation and one single basepair duplication involving the C-terminal KD of RSK2 in the patients with drop episode have been reported thus far. Here we report the first in-frame deletion in C-terminal KD of RPS6KA3 in a CLS patient with drop episodes.
Collapse
Affiliation(s)
- Hiromi Koso Nishimoto
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics and Gynecology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | |
Collapse
|
19
|
Identification of the first deep intronic mutation in the RPS6KA3 gene in a patient with a severe form of Coffin–Lowry syndrome. Eur J Med Genet 2013; 56:150-2. [DOI: 10.1016/j.ejmg.2012.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022]
|
20
|
Niida Y, Kuroda M, Mitani Y, Okumura A, Yokoi A. Applying and testing the conveniently optimized enzyme mismatch cleavage method to clinical DNA diagnosis. Mol Genet Metab 2012; 107:580-5. [PMID: 23022073 DOI: 10.1016/j.ymgme.2012.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/03/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
Establishing a simple and effective mutation screening method is one of the most compelling problems with applying genetic diagnosis to clinical use. Because there is no reliable and inexpensive screening system, amplifying by PCR and performing direct sequencing of every coding exon is the gold standard strategy even today. However, this approach is expensive and time consuming, especially when gene size or sample number is large. Previously, we developed CEL nuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) as an ideal simple mutation screening system constructed with only conventional apparatuses and commercially available reagents. In this study, we evaluated the utility of CHIPS technology for genetic diagnosis in clinical practice by applying this system to screening for the COL2A1, WRN and RPS6KA3 mutations in newly diagnosed patients with Stickler syndrome (autosomal dominant inheritance), Werner syndrome (autosomal recessive inheritance) and Coffin-Lowry syndrome (X-linked inheritance), respectively. In all three genes, CHIPS detected all DNA variations including disease causative mutations within a day. Direct sequencing of all coding exons of these genes confirmed 100% sensitivity and specificity. We demonstrate high sensitivity, high cost performance and reliability of this simple system, with compatibility to all inheritance modes. Because of its low technology, CHIPS is ready to use and potentially disseminate to any laboratories in the world.
Collapse
Affiliation(s)
- Yo Niida
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Hahn JS, Hanauer A. Stimulus-induced drop episodes in Coffin–Lowry syndrome. Eur J Med Genet 2012; 55:335-7. [DOI: 10.1016/j.ejmg.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/10/2012] [Indexed: 11/17/2022]
|
23
|
Abstract
Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90 kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.
Collapse
|
24
|
Four novel RSK2 mutations in females with Coffin–Lowry syndrome. Eur J Med Genet 2010; 53:268-73. [DOI: 10.1016/j.ejmg.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/04/2010] [Indexed: 11/21/2022]
|
25
|
Pereira PM, Schneider A, Pannetier S, Heron D, Hanauer A. Coffin-Lowry syndrome. Eur J Hum Genet 2009; 18:627-33. [PMID: 19888300 DOI: 10.1038/ejhg.2009.189] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coffin-Lowry syndrome (CLS) is a syndromic form of X-linked mental retardation, which is characterized in male patients by psychomotor and growth retardation and various skeletal anomalies. Typical facial changes and specific clinical and radiological signs in the hand are useful aids in the diagnosis. CLS is caused by mutations in the RPS6KA3 gene located at Xp22.2, which encodes RSK2, a growth-factor-regulated protein kinase. RPS6KA3 mutations are extremely heterogeneous and lead to loss of phosphotransferase activity in the RSK2 kinase, most often because of premature termination of translation.
Collapse
|
26
|
De Sario A. Clinical and molecular overview of inherited disorders resulting from epigenomic dysregulation. Eur J Med Genet 2009; 52:363-72. [PMID: 19632366 DOI: 10.1016/j.ejmg.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/21/2009] [Indexed: 01/23/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Most constitutional defects in genes encoding components of the machinery that regulates the epigenome lead to embryonic death. Hypomorphic mutations may be compatible with life, but lead to severe developmental disorders. Their study is of great importance to our understanding of epigenetics and may clarify the interplay between different epigenetic mechanisms. This review will briefly introduce DNA methylation, post-translational histone modifications, and non-coding small RNA transcription, which are the best known epigenetic mechanisms. Then it will describe five human disorders (RETT, ATRX, ICF, Coffin-Lowry, and Rubinstein-Taybi) resulting from mutations in genes responsible for DNA methylation and in genes involved in chromatin remodeling. Finally, it will discuss how research in medical genetics can elucidate fundamental epigenetic processes.
Collapse
Affiliation(s)
- Albertina De Sario
- Institut de Génétique Humaine, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
27
|
Marques Pereira P, Heron D, Hanauer A. The first large duplication of the RSK2 gene identified in a Coffin-Lowry syndrome patient. Hum Genet 2007; 122:541-3. [PMID: 17717706 DOI: 10.1007/s00439-007-0424-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
Heterogeneous mutations in the X-linked gene RPS6KA3, encoding the protein kinase RSK2, are responsible for Coffin-Lowry Syndrome. Here we have further studied a male patient with a highly suggestive clinical diagnosis of CLS but in whom no mutation was found by exon sequencing. Western blot analysis revealed a protein much larger than the normal expected size. Sequencing of the RSK2 cDNA, showed the presence of an in-frame tandem duplication of exons 17-20. The mutated RSK2 protein was found to be inactive in an in-vitro kinase assay. This event, which was the result of a homologous unequal recombination between Alu sequences, is the first reported large duplication of the RPS6KA3 gene. Our finding provides further evidence that immunoblot analysis, or a molecular assay capable to detect large genomic mutational events, is essential for patients with a highly suggestive CLS clinical diagnosis but remaining without mutation after exon sequencing.
Collapse
Affiliation(s)
- Patricia Marques Pereira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B.P. 10142, 67404, Illkirch Cedex, C.U. de Strasbourg, France
| | | | | |
Collapse
|
28
|
Kaphzan H, Doron G, Rosenblum K. Co-application of NMDA and dopamine-induced rapid translation of RSK2 in the mature hippocampus. J Neurochem 2007; 103:388-99. [PMID: 17645456 DOI: 10.1111/j.1471-4159.2007.04774.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ribosomal S6 kinase2 (RSK2) is known to take part in several signal transduction cascades including Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK). Following our recent observation that ERK can serve as a coincidence detector for fast and slow neurotransmission in the hippocampus, we analyzed the status of RSK2 phosphorylation subsequent to application of NMDA, dopamine, or both to preparations of mature hippocampal slices in Sprague-Dawley rats. RSK2 was indeed phosphorylated; however, in addition, the amount of RSK2 protein (60%) was induced within 10 min following stimulation. Moreover, the induced expression of RSK2 could be detected in both the cell body layer and the dendrites of hippocampal CA1 cells. Pharmacological analysis showed that RSK2 induction was MAPK ERK Kinase (MEK)-ERK independent, but mammalian Target of Rapamycin (mTOR) and translation dependent. We suggest that the fast kinetics of RSK2 translation that follows physiological stimulations, together with recent observations that its over-expression is vital for the attenuation of major signal transduction cascades, indicate an expanded physiological function of RSK2 in neurons, and sheds new light on the role of RSK2 in the Coffin-Lowry syndrome.
Collapse
Affiliation(s)
- Hanoch Kaphzan
- Department of Neurobiology and Ethology, Faculty of Science, Haifa University, Haifa, Israel
| | | | | |
Collapse
|
29
|
Smith JA, Maloney DJ, Hecht SM, Lannigan DA. Structural basis for the activity of the RSK-specific inhibitor, SL0101. Bioorg Med Chem 2007; 15:5018-34. [PMID: 17512736 DOI: 10.1016/j.bmc.2007.03.087] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 11/19/2022]
Abstract
Inappropriate activity of p90 ribosomal S6 kinase (RSK) has been implicated in various human cancers as well as other pathologies. We previously reported the isolation, characterization, and synthesis of the natural product kaempferol 3-O-(3'',4''-di-O-acetyl-alpha-l-rhamnopyranoside), termed SL0101 [Smith, J. A.; Poteet-Smith, C. E.; Xu, Y.; Errington, T. M.; Hecht, S. M.; Lannigan, D. A. Cancer Res., 2005, 65, 1027-1034: Xu, Y.-M; Smith, J. A.; Lannigan, D. A.; Hecht, S. M. Bioorg. Med. Chem., 2006, 14, 3974-3977: Maloney, D. J.; Hecht, S. M. Org. Lett., 2005, 7, 1097-1099]. SL0101 is a potent and specific inhibitor of RSK; therefore, we performed an analysis of the structural basis for the inhibitory activity of this lead compound. In in vitro kinase assays we found that acylation of the rhamnose moiety and the 4', 5, and 7-hydroxyl groups are responsible for maintaining a high affinity interaction of RSK with SL0101. It is likely that the hydroxyl groups facilitate RSK binding through their ability to form hydrogen bonds. To determine whether the SL0101 derivatives were specific for inhibition of RSK we analyzed their ability to preferentially inhibit the growth of the human breast cancer line, MCF-7, compared to the normal human breast line, MCF-10A. We have previously validated this differential growth assay as a convenient readout for analyzing the specificity of RSK inhibitors [Smith, J. A.; Maloney, D. J.; Clark, D. E.; Xu, Y.-M.; Hecht, S. M.; Lannigan, D. A. Bioorg. Med. Chem., 2006, 14, 6034-6042]. We found that acylation of the rhamnose moiety was essential for maintaining the selectivity for RSK inhibition in intact cells. Further, the efficacy of SL0101 in intact cells is limited by cellular uptake as well as possible hydrolysis of the acetyl groups on the rhamnose moiety by ubiquitous intracellular esterases. These studies should facilitate the development of a RSK inhibitor, based on the SL0101 pharmacophore, as an anti-cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Jeffrey A Smith
- Center for Cell Signaling, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
30
|
Field M, Tarpey P, Boyle J, Edkins S, Goodship J, Luo Y, Moon J, Teague J, Stratton MR, Futreal PA, Wooster R, Raymond FL, Turner G. Mutations in the RSK2(RPS6KA3) gene cause Coffin-Lowry syndrome and nonsyndromic X-linked mental retardation. Clin Genet 2007; 70:509-15. [PMID: 17100996 PMCID: PMC2714973 DOI: 10.1111/j.1399-0004.2006.00723.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe three families with X-linked mental retardation, two with a deletion of a single amino acid and one with a missense mutation in the proximal domain of the RSK2(RPS6KA3) (ribosomal protein S6 kinase, 90 kDa, polypeptide 3) protein similar to mutations found in Coffin-Lowry syndrome (CLS). In two families, the clinical diagnosis had been nonsyndromic X-linked mental retardation. In the third family, although CLS had been suspected, the clinical features were atypical and the degree of intellectual disability much less than expected. These families show that strict reliance on classical clinical criteria for mutation testing may result in a missed diagnosis. A less targeted screening approach to mutation testing is advocated.
Collapse
Affiliation(s)
- M Field
- The NSW GOLD Service, Hunter Genetics, Newcastle, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|