1
|
Zhang Y, Wallace B, Cai B, Johnson N, Ciafaloni E, Venkatesh YS, Westfield C, McDermott S. Latent factors underlying the symptoms of adult-onset myotonic dystrophy type 1 during the clinical course. ORPHANET JOURNAL OF RARE DISEASES 2024; 19:409. [PMID: 39487453 PMCID: PMC11529289 DOI: 10.1186/s13023-024-03359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a multisystem genetic disorder that classically presents with symptoms associated with myotonia, early onset cataracts, and muscular weakness, although the presentation and pattern of disease progression is quite varied. Presenting symptoms are well documented among adults with DM1. However, less is known about the co-occurrence of symptoms over time. We aimed to use factor analysis to explore the correlation pattern of signs and symptoms (S/S) that emerged during the clinical course. RESULTS Clinical records of 228 individuals with adult onset DM1 were abstracted using the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) from a six-site cohort in the United States during an eight-year study period. Factor analysis was used to group the correlated S/S into latent factors. Three factors were identified. Group 1: 'Facial Weakness/Myotonia' includes the two most common S/S, as indicated by its name. Group 2: 'Skeletal Muscle Weakness' includes eight muscular S/S and is more frequently reported by males and those with older age at onset. Group 3: 'Gastrointestinal distress/Sleepiness' includes four non-muscular S/S and hand stiffness. The abstracted medical records reported that over 63% of individuals had S/S from all three groups. Associations of covariates with factor scores were also examined using linear regression. CTG repeat length was significantly positively associated with higher factor scores for all three factors. CONCLUSIONS This study identified three latent factors of S/S which accumulated during the clinical course of adult onset DM1.
Collapse
Grants
- DD001126, DD001119, DD001123, DD001116, DD001117, DD001108, DD001120, DD001054, DD001244, DD001242, DD001250, 5U01DD001245 Centers for Disease Control and Prevention Foundation
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Bailey Wallace
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Atlanta, GA, USA
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Nicholas Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Yedatore Swamy Venkatesh
- Department of Neurology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | | | - Suzanne McDermott
- Department of Environmental, Occupational, Geospatial Health Sciences, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Panoyan MA, Wendt FR. The role of tandem repeat expansions in brain disorders. EMERGING TOPICS IN LIFE SCIENCES 2023; 7:249-263. [PMID: 37401564 DOI: 10.1042/etls20230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
The human genome contains numerous genetic polymorphisms contributing to different health and disease outcomes. Tandem repeat (TR) loci are highly polymorphic yet under-investigated in large genomic studies, which has prompted research efforts to identify novel variations and gain a deeper understanding of their role in human biology and disease outcomes. We summarize the current understanding of TRs and their implications for human health and disease, including an overview of the challenges encountered when conducting TR analyses and potential solutions to overcome these challenges. By shedding light on these issues, this article aims to contribute to a better understanding of the impact of TRs on the development of new disease treatments.
Collapse
Affiliation(s)
- Mary Anne Panoyan
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
3
|
Ziaei Jam H, Li Y, DeVito R, Mousavi N, Ma N, Lujumba I, Adam Y, Maksimov M, Huang B, Dolzhenko E, Qiu Y, Kakembo FE, Joseph H, Onyido B, Adeyemi J, Bakhtiari M, Park J, Javadzadeh S, Jjingo D, Adebiyi E, Bafna V, Gymrek M. A deep population reference panel of tandem repeat variation. NATURE COMMUNICATIONS 2023; 14:6711. [PMID: 37872149 PMCID: PMC10593948 DOI: 10.1038/s41467-023-42278-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.
Collapse
Affiliation(s)
- Helyaneh Ziaei Jam
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yang Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ross DeVito
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Nichole Ma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ibra Lujumba
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mikhail Maksimov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Bonnie Huang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Yunjiang Qiu
- Illumina Incorporated, San Diego, CA, 92122, USA
| | - Fredrick Elishama Kakembo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Habi Joseph
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Blessing Onyido
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Jumoke Adeyemi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Daudi Jjingo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Computer Science, Makerere University, Kampala, Uganda
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
- Applied Bioinformatics Division, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, 69120, Germany
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Jam HZ, Li Y, DeVito R, Mousavi N, Ma N, Lujumba I, Adam Y, Maksimov M, Huang B, Dolzhenko E, Qiu Y, Kakembo FE, Joseph H, Onyido B, Adeyemi J, Bakhtiari M, Park J, Javadzadeh S, Jjingo D, Adebiyi E, Bafna V, Gymrek M. A deep population reference panel of tandem repeat variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531600. [PMID: 36945429 PMCID: PMC10028971 DOI: 10.1101/2023.03.09.531600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.
Collapse
Affiliation(s)
- Helyaneh Ziaei Jam
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Yang Li
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ross DeVito
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA
| | - Nichole Ma
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ibra Lujumba
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mikhail Maksimov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Bonnie Huang
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | | | - Yunjiang Qiu
- Illumina Incorporated, San Diego, California 92122, USA
| | - Fredrick Elishama Kakembo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Habi Joseph
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Blessing Onyido
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Jumoke Adeyemi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Daudi Jjingo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
- Department of Computer Science, Makerere University, Kampala, Uganda
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
- Applied Bioinformatics Division, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, 69120, Germany
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? AMERICAN JOURNAL OF HUMAN GENETICS 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
6
|
Lian M, Lee CG, Chong SS. Robust Preimplantation Genetic Testing Strategy for Myotonic Dystrophy Type 1 by Bidirectional Triplet-Primed Polymerase Chain Reaction Combined With Multi-microsatellite Haplotyping Following Whole-Genome Amplification. FRONTIERS IN GENETICS 2019; 10:589. [PMID: 31316546 PMCID: PMC6611416 DOI: 10.3389/fgene.2019.00589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of the DMPK CTG trinucleotide repeat. Disease transmission to offspring can be avoided through prenatal diagnosis or preimplantation genetic testing for monogenic disorders (PGT-M). We describe a robust strategy for DM1 PGT-M that can be applied to virtually any at-risk couple. This strategy utilizes whole-genome amplification, followed by triplet-primed PCR (TP-PCR) detection of expanded DMPK alleles, in parallel with single-tube haplotype analysis of 12 closely linked and highly polymorphic microsatellite markers. Bidirectional TP-PCR and dodecaplex marker PCR assays were optimized and validated on whole-genome amplified single lymphoblasts isolated from DM1 reference cell lines, and tested on a simulated PGT-M case comprising a parent-offspring trio and three simulated embryos. Bidirectional DMPK TP-PCR reliably detects repeat expansions even in the presence of non-CTG interruptions at either end of the expanded allele. Misdiagnoses, diagnostic ambiguity, and couple-specific assay customization are further minimized by the use of multi-marker haplotyping, preventing the loss of potentially unaffected embryos for transfer.
Collapse
Affiliation(s)
- Mulias Lian
- Department of Pediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Division of Medical Sciences, National Cancer Center, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
7
|
Murillo-Melo NM, Márquez-Quiróz LC, Gómez R, Orozco L, Mendoza-Caamal E, Tapia-Guerrero YS, Camacho-Mejorado R, Cortés H, López-Reyes A, Santana C, Noris G, Hernández-Hernández O, Cisneros B, Magaña JJ. Origin of the myotonic dystrophy type 1 mutation in Mexican population and influence of Amerindian ancestry on CTG repeat allelic distribution. NEUROMUSCULAR DISORDERS 2017; 27:1106-1114. [PMID: 29054426 DOI: 10.1016/j.nmd.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/17/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy type 1 is caused by expansion of a CTG trinucleotide repeat situated in the DMPK gene. Worldwide genetic studies suggest a single or limited number of mutational events cause the disease. However, distribution of CTG alleles and disease incidence varies among ethnicities. Due to the great ethnic diversity of the Mexican population, the present study was aimed at analyzing the impact of different lineages in shaping the CTG-repeat allelic distribution in the contemporary Mexican-Mestizo population as well as to shed light on the DM1 ancestral origin. Distribution of CTG-repeat alleles was similar among Mestizo and Amerindian subpopulations with (CTG)11-13 being the most frequent alleles in both groups, which implies that Mexican-Mestizo allelic distribution has been modeled by Amerindian ancestry. We diagnosed a relatively high number of cases, consistent with the high frequency of large-normal alleles found in Mexican subpopulations. Haplotype analysis using various polymorphic-markers in proximity to DMPK gene indicates that a single founder mutation originates myotonic dystrophy type 1 in Mexico; however, Y-STR haplogroups data and the presence of pre-mutated and large normal alleles in Amerindians support the hypothesis that both European and Amerindian ancestral chromosomes might have introduced the disease to the Mexican population, which was further disseminated through mestizaje.
Collapse
Affiliation(s)
- N M Murillo-Melo
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - L C Márquez-Quiróz
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - R Gómez
- Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - L Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - E Mendoza-Caamal
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - Y S Tapia-Guerrero
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | | | - H Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - A López-Reyes
- Laboratory of Sinovial Liquid, INR, Mexico City, Mexico
| | - C Santana
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - G Noris
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - O Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - B Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.
| | - J J Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
8
|
Ambrose KK, Ishak T, Lian LH, Goh KJ, Wong KT, Ahmad-Annuar A, Thong MK. Analysis of CTG repeat length variation in the DMPK gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia. BMJ OPEN 2017; 7:e010711. [PMID: 28363916 PMCID: PMC5387946 DOI: 10.1136/bmjopen-2015-010711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The lack of epidemiological data and molecular diagnostic services in Malaysia has hampered the setting-up of a comprehensive management plan for patients with myotonic dystrophy type 1 (DM1), leading to delayed diagnosis, treatment and support for patients and families. The aim of this study was to estimate the prevalence of DM1 in the 3 major ethnic groups in Malaysia and evaluate the feasibility of a single tube triplet-primed PCR (TP-PCR) method for diagnosis of DM1 in Malaysia. DESIGN, SETTING AND PARTICIPANTS We used PCR to determine the size of CTG repeats in 377 individuals not known to be affected by DM and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. TP-PCR was performed on selected samples, followed by Southern blot hybridisation of PCR amplified fragments to confirm and estimate the size of CTG expansion. OUTCOME MEASURES The number of individuals not known to be affected by DM with (CTG)>18 was determined according to ethnic group and as a whole population. The χ2 test was performed to compare the distribution of (CTG)>18 with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 patients with DM1 was determined by comparing the results with that from Southern blot hybridisation. RESULTS Of the 754 chromosomes studied, (CTG)>18 frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian subpopulations, respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in 9 patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot hybridisation. CONCLUSIONS The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost-effective DM1 diagnosis in developing countries.
Collapse
Affiliation(s)
- Kathlin K Ambrose
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Taufik Ishak
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Lay-Hoong Lian
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Jin Goh
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum-Thong Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Meow-Keong Thong
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Efficient and Highly Sensitive Screen for Myotonic Dystrophy Type 1 Using a One-Step Triplet-Primed PCR and Melting Curve Assay. THE JOURNAL OF MOLECULAR DIAGNOSTICS : JMD 2015; 17:128-35. [DOI: 10.1016/j.jmoldx.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 01/22/2023]
|
10
|
Theerasasawat S, Papsing C, Pulkes T. CTG repeat lengths of the DMPK gene in myotonic dystrophy patients compared to healthy controls in Thailand. JOURNAL OF CLINICAL NEUROSCIENCE : OFFICIAL JOURNAL OF THE NEUROSURGICAL SOCIETY OF AUSTRALASIA 2010; 17:1520-2. [PMID: 20801043 DOI: 10.1016/j.jocn.2010.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/15/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
Myotonic dystrophy (DM) is frequently associated with large expansions of the cytosine-thymine-guanine (CTG) repeat in the myotonic dystrophy protein kinase gene (DMPK). The frequency of distribution of the CTG repeat length in normal alleles of several populations is well correlated with the prevalence of DM. Therefore, we studied the CTG repeat length of the DMPK gene in DM patients and controls in Thailand. Only seven typical patients with DM from six unrelated families were identified, all with large pathological CTG repeat expansions (> 400 repeats) in the DMPK gene. Only 2.75% of controls had normal CTG repeat alleles > 18 repeats. The frequency distribution of the CTG-repeat alleles in the normal Thai population is similar to that of the Taiwanese population (χ² with Yates correction = 1.393; p = 0.2379). These data suggest that the incidence of DM might be rare in Thailand, where the risk of developing DM is possibly similar to that in Taiwan.
Collapse
Affiliation(s)
- S Theerasasawat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
11
|
Distribution of CTG repeats at the DMPK gene in myotonic dystrophy patients and healthy individuals from the Mexican population. MOLECULAR BIOLOGY REPORTS 2010; 38:1341-6. [PMID: 20635151 DOI: 10.1007/s11033-010-0235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of adult muscular dystrophy, is caused by anormal expansion of CTG trinucleotide repeats located in the 3'-untranslated region of the DMPK gene. The clinical features of DM1 are multisystemic and highly variable, and the unstable nature of CTG expansion causes wide genotypic and phenotypic presentations. In this study, we described to our knowledge for the first time the molecular diagnosis of myotonic dystrophy type 1 patients in the Mexican population, applying a fluorescent PCR method in combination with capillary electrophoresis analysis of the amplified products. We identified expanded alleles in 45 out of 50 patients (90%) with clinical features of myotonic disease. Furthermore, genotyping of 400 healthy subjects revealed the presence of 25 different alleles, ranging in size from 5 to 34 repeats. The most frequent allele was 13 CTG repeats (38.87%) and the frequency for alleles over 18 CTG repeats was 6.7%. Molecular test is essential for DM1 diagnosis and distribution of the CTG repeat alleles present in the Mexican population are significantly different from those of other populations.
Collapse
|