1
|
Kirschen GW, Blakemore K, Al-Kouatly HB, Fridkis G, Baschat A, Gearhart J, Jelin AC. The genetic etiologies of bilateral renal agenesis. Prenat Diagn 2024; 44:205-221. [PMID: 38180355 DOI: 10.1002/pd.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The goal of this study was to review and analyze the medical literature for cases of prenatal and/or postnatally diagnosed bilateral renal agenesis (BRA) and create a comprehensive summary of the genetic etiologies known to be associated with this condition. METHODS A literature search was conducted as a scoping review employing Online Mendeliain Inheritance in Man, PubMed, and Cochrane to identify cases of BRA with known underlying genetic (chromosomal vs. single gene) etiologies and those described in syndromes without any known genetic etiology. The cases were further categorized as isolated versus non-isolated, describing additional findings reported prenatally, postnatally, and postmortem. Inheritance pattern was also documented when appropriate in addition to the reported timing of diagnosis and sex. RESULTS We identified six cytogenetic abnormalities and 21 genes responsible for 20 single gene disorders associated with BRA. Five genes have been reported to associate with BRA without other renal anomalies; sixteen others associate with both BRA as well as unilateral renal agenesis. Six clinically recognized syndromes/associations were identified with an unknown underlying genetic etiology. Genetic etiologies of BRA are often phenotypically expressed as other urogenital anomalies as well as complex multi-system syndromes. CONCLUSION Multiple genetic etiologies of BRA have been described, including cytogenetic abnormalities and monogenic syndromes. The current era of the utilization of exome and genome-wide sequencing is likely to significantly expand our understanding of the underlying genetic architecture of BRA.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karin Blakemore
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Jefferson Health, Philadelphia, New York, USA
| | - Gila Fridkis
- Physician Affiliate Group of New York, P.C. (PAGNY), Department of Pediatrics, Metropolitan Hospital Center, New York, New York, USA
| | - Ahmet Baschat
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Gearhart
- Department of Urology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Dickinson K, Hammond L, Akpa M, Chu LL, Lalonde CT, Goumba A, Goodyer P. WT1 regulates expression of DNA repair gene Neil3 during nephrogenesis. Am J Physiol Renal Physiol 2023; 324:F245-F255. [PMID: 36546838 DOI: 10.1152/ajprenal.00207.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian nephrons arise from a population of nephron progenitor cells (NPCs) expressing the master transcription factor Wilms tumor-1 (WT1), which is crucial for NPC proliferation, migration, and differentiation. In humans, biallelic loss of WT1 precludes nephrogenesis and leads to the formation of Wilms tumor precursor lesions. We hypothesize that WT1 normally primes the NPC for nephrogenesis by inducing expression of NPC-specific DNA repair genes that protect the genome. We analyzed transcript levels for a panel of DNA repair genes in embryonic day 17.5 (E17.5) versus adult mouse kidneys and noted seven genes that were increased >20-fold. We then isolated Cited1+ NPCs from E17.5 kidneys and found that only one gene, nei-like DNA glycosylase 3 (Neil3), was enriched. RNAscope in situ hybridization of E17.5 mouse kidneys showed increased Neil3 expression in the nephrogenic zone versus mature nephron structures. To determine whether Neil3 expression is WT1 dependent, we knocked down Wt1 in Cited1+ NPCs (60% knockdown efficiency) and noted a 58% reduction in Neil3 transcript levels. We showed that WT1 interacts with the Neil3 promoter and that activity of a Neil3 promoter-reporter vector was increased twofold in WT1+ versus WT1- cells. We propose that Neil3 is a WT1-dependent DNA repair gene expressed at high levels in Cited1+ NPCs, where it repairs mutational injury to the genome during nephrogenesis. NEIL3 is likely just one of many such lineage-specific repair mechanisms that respond to genomic injury during kidney development.NEW & NOTEWORTHY We studied the molecular events leading to Wilms tumors as a model for the repair of genomic injury. Specifically, we showed that WT1 activates DNA repair gene Neil3 in nephron progenitor cells. However, our observations offer a much broader principle, demonstrating that the embryonic kidney invests in lineage-specific expression of DNA repair enzymes. Thus, it is conceivable that failure of these mechanisms could lead to a variety of "sporadic" congenital renal malformations and human disease.
Collapse
Affiliation(s)
- Kyle Dickinson
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Leah Hammond
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Murielle Akpa
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Lee Lee Chu
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Caleb Tse Lalonde
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexandre Goumba
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Paul Goodyer
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Cruz Marino T, Tardif J, Leblanc J, Lavoie J, Morin P, Harvey M, Thomas MJ, Pratte A, Braverman N. First glance at the molecular etiology of hearing loss in French-Canadian families from Saguenay-Lac-Saint-Jean's founder population. Hum Genet 2021; 141:607-622. [PMID: 34387732 DOI: 10.1007/s00439-021-02332-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The French-Canadian population of Saguenay-Lac-Saint-Jean is known for its homogenous genetic background. The hereditary causes of hearing loss were previously unexplored in this population. Individuals with hearing loss were referred from the otorhinolaryngology, pediatrics and family physicians' clinics to the medical genetics service at the Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean between June 2015 and March 2021. A regional clinical evaluation strategy was developed. Samples from 63 individuals belonging to 41 families were sent independently to different molecular clinical laboratories and index cases were analyzed through comprehensive multigene panels, with a diagnostic rate of 54%. Sixteen hearing loss causal variants were identified in 12 genes, with eight of these variants not been previously reported in the literature. Recurrent variants were present in four genes, suggesting a possible founder effect, while GJB2 gene variants were scarce. A comprehensive multigene panel approach as part of the proposed clinical evaluation strategy offers a high diagnostic yield for this population.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada.
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Janie Lavoie
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Pascal Morin
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Michel Harvey
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Marie-Jacqueline Thomas
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Chen A, Song J, Acke FRE, Mei L, Cai X, Feng Y, He C. Otological manifestations in branchiootorenal spectrum disorder: A systematic review and meta-analysis. Clin Genet 2021; 100:3-13. [PMID: 33624842 DOI: 10.1111/cge.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
Branchiootorenal spectrum disorder (BORSD) is a group of rare autosomal dominant entities characterized by branchiogenic malformations, hearing loss (HL) and renal anomalies. It comprises branchiootorenal syndrome and branchiootic syndrome, distinguished by the presence or absence of renal abnormalities. Pathogenic variants have been discovered in the following genes: EYA1, SIX5, SIX1 and SALL1. As the otological phenotype in BORSD is inconsistently reported, we performed a systematic review to provide an up-to-date overview, correlated with the genotype. Forty publications were included, describing 295 individual patients. HL was diagnosed in 95%, usually bilateral and mixed-type, and differed among the different genes involved. Mixed moderate-to-severe HL was the predominant finding in patients with EYA1 involvement, regardless of the presence of renal abnormalities. The sensorineural HL of profound severity was more prevalent in patients with SIX1 mutations. No significant differences among different mutation types or location within the genes could be observed. Structural otological manifestations, ranging from periauricular to inner ear anomalies, were common in both genes. Especially periauricular anomalies were more common and more severe in EYA1. In summary, otological differences among the different genes involved in BORSD are observed, so the molecular analysis is strongly advised.
Collapse
Affiliation(s)
- Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Frederic R E Acke
- Department of Otorhinolaryngology, Ghent University/Ghent University Hospital, Ghent, Belgium
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,Department of Otorhinolaryngology, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China.,National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Targeted Next-Generation Sequencing Facilitates Genetic Diagnosis and Provides Novel Pathogenetic Insights into Deafness with Enlarged Vestibular Aqueduct. J Mol Diagn 2018; 21:138-148. [PMID: 30268946 DOI: 10.1016/j.jmoldx.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022] Open
Abstract
Enlarged vestibular aqueduct (EVA) is an inner-ear malformation associated with sensorineural hearing impairment. Most EVAs are associated with Pendred syndrome and nonsyndromic autosomal recessive deafness-4 (DFNB4), two autosomal-recessive disorders caused by mutations in SLC26A4. However, many EVA patients cannot have a confirmed diagnosis by screening common SLC26A4 mutations, constituting an enigma in genetic diagnosis. To enable comprehensive genetic examination and explore the etiologies of EVA, we designed a next-generation sequencing panel targeting the entire length of 3 Pendred syndrome/DFNB4 genes (SLC26A4, FOXI1, and KCNJ10) and exons of 10 other genes related to EVA and performed genetic testing in 50 EVA families without confirmative results on screening for SLC26A4 hotspots (c.919-2A>G and p.H723R). Bi-allelic SLC26A4 mutations were identified in 34 families and EYA1 mutations in two families, yielding a diagnostic rate of 72% (36 of 50). In addition, two variants were identified in KCNJ10 and FOXI1, but findings did not support the previous hypothesis that mutations in these two genes are probable contributors to EVA through recessive inheritance or digenic inheritance with SLC26A4. Of note, a large SLC26A4 deletion was confirmed in one step using our panel. These results show the utility of a next-generation sequencing-based panel to address EVA families by identifying various types of gene mutations with satisfactory diagnostic yields and provide novel insights into the pathogenesis of EVA.
Collapse
|
6
|
Gawron K. Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X. Cell Stress Chaperones 2016; 21:943-958. [PMID: 27523816 PMCID: PMC5083666 DOI: 10.1007/s12192-016-0719-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum is primarily recognized as the site of synthesis and folding of secreted, membrane-bound, and some organelle-targeted proteins. An imbalance between the load of unfolded proteins and the processing capacity in endoplasmic reticulum leads to the accumulation of unfolded or misfolded proteins and endoplasmic reticulum stress, which is a hallmark of a number of storage diseases, including neurodegenerative diseases, a number of metabolic diseases, and cancer. Moreover, its contribution as a novel mechanistic paradigm in genetic skeletal diseases associated with abnormalities of the growth plates and dwarfism is considered. In this review, I discuss the mechanistic significance of endoplasmic reticulum stress, abnormal folding, and intracellular retention of mutant collagen types II and X in certain variants of skeletal chondrodysplasia.
Collapse
Affiliation(s)
- Katarzyna Gawron
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
7
|
Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:1-13. [PMID: 27234559 DOI: 10.1016/j.mrrev.2016.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Type II collagen, comprised of three identical alpha-1(II) chains, is the major collagen synthesized by chondrocytes, and is found in articular cartilage, vitreous humour, inner ear and nucleus pulposus. Mutations in the collagen type II alpha-1 gene (COL2A1) have been reported to be responsible for a series of abnormalities, known as type II collagenopathies. To date, 16 definite disorders, inherited in an autosomal dominant or recessive pattern, have been described to be associated with the COL2A1 mutations, and at least 405 mutations ranging from point mutations to complex rearrangements have been reported, though the underlying pathogenesis remains unclear. Significant clinical heterogeneity has been reported in COL2A1-associated type II collagenopathies. In this review, we highlight current knowledge of known mutations in the COL2A1 gene for these disorders, as well as genetic animal models related to the COL2A1 gene, which may help us understand the nature of complex phenotypes and underlying pathogenesis of these conditions.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Xiangjun Huang
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D, Touitou I. Mutation Update for COL2A1 Gene Variants Associated with Type II Collagenopathies. Hum Mutat 2015; 37:7-15. [PMID: 26443184 DOI: 10.1002/humu.22915] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Mutations in the COL2A1 gene cause a spectrum of rare autosomal-dominant conditions characterized by skeletal dysplasia, short stature, and sensorial defects. An early diagnosis is critical to providing relevant patient care and follow-up, and genetic counseling to affected families. There are no recent exhaustive descriptions of the causal mutations in the literature. Here, we provide a review of COL2A1 mutations extracted from the Leiden Open Variation Database (LOVD) that we updated with data from PubMed and our own patients. Over 700 patients were recorded, harboring 415 different mutations. One-third of the mutations are dominant-negative mutations that affect the glycine residue in the G-X-Y repeats of the alpha 1 chain. These mutations disrupt the collagen triple helix and are common in achondrogenesis type II and hypochondrogenesis. The mutations resulting in a premature stop codon are found in less severe phenotypes such as Stickler syndrome. The p.(Arg275Cys) substitution is found in all patients with COL2A1-associated Czech dysplasia. LOVD-COL2A1 provides support and potential collaborative material for scientific and clinical projects aimed at elucidating phenotype-genotype correlation and differential diagnosis in patients with type II collagenopathies.
Collapse
Affiliation(s)
- Mouna Barat-Houari
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France
| | - Guillaume Sarrabay
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France
| | - Vincent Gatinois
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Aurélie Fabre
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France
| | - Bruno Dumont
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France
| | - David Genevieve
- Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France.,University of Montpellier, Montpellier, France.,Department of Medical Genetics, Reference Center for Developmental Abnormalities and Constitutional Bone Diseases, CHRU, Montpellier, France
| | - Isabelle Touitou
- Laboratory of Rare and Autoinflammatory Diseases, CHRU, Montpellier, France.,Genetics & Immunopathology of Inflammatory Osteoarticular Diseases, INSERM UMR1183, Montpellier, France.,University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Zeng N, Wu J, Zhu W, Shi B, Jia Z. Evaluation of the association of polymorphisms in
EYA
1
, environmental factors, and non‐syndromic orofacial clefts in Western Han Chinese. J Oral Pathol Med 2015; 44:864-9. [PMID: 25640282 DOI: 10.1111/jop.12311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Wu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Wen‐Chao Zhu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Bing Shi
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Zhong‐Lin Jia
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
10
|
Abstract
INTRODUCTION Branchiootorenal syndrome (BOR) is an autosomal dominant disorder. One of very similar syndromes is branchiooculofacial syndrome (BOF), with incomplete penetrance and variable expression. The overlap between BOR syndrome and BOF syndrome includes external ear abnormalities with hearing loss, lachrymal duct obstruction, branchial cleft remnants, and renal or urethral defects. The relationship between these 2 syndromes is still unclear. CASE OUTLINE We present 2 patients with these rare syndromes: a girl who has fulfilled the diagnostic criteria for BOR syndrome and a boy who has more than fulfilled the criteria for BOF syndrome. The diagnosis of BOF syndrome was performed only on the basis of clinical findings, without genetic confirmation. CONCLUSIONS Differential diagnosis between these similar syndromes with phenotypic variation is delicate especially without genetic examinations.
Collapse
|
11
|
Genetics of cleft lip and/or cleft palate: Association with other common anomalies. Eur J Med Genet 2014; 57:381-93. [DOI: 10.1016/j.ejmg.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
|
12
|
Hearing impairment in Stickler syndrome: a systematic review. Orphanet J Rare Dis 2012; 7:84. [PMID: 23110709 PMCID: PMC3551705 DOI: 10.1186/1750-1172-7-84] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Background Stickler syndrome is a connective tissue disorder characterized by ocular, skeletal, orofacial and auditory defects. It is caused by mutations in different collagen genes, namely COL2A1, COL11A1 and COL11A2 (autosomal dominant inheritance), and COL9A1 and COL9A2 (autosomal recessive inheritance). The auditory phenotype in Stickler syndrome is inconsistently reported. Therefore we performed a systematic review of the literature to give an up-to-date overview of hearing loss in Stickler syndrome, and correlated it with the genotype. Methods English-language literature was reviewed through searches of PubMed and Web of Science, in order to find relevant articles describing auditory features in Stickler patients, along with genotype. Prevalences of hearing loss are calculated and correlated with the different affected genes and type of mutation. Results 313 patients (102 families) individually described in 46 articles were included. Hearing loss was found in 62.9%, mostly mild to moderate when reported. Hearing impairment was predominantly sensorineural (67.8%). Conductive (14.1%) and mixed (18.1%) hearing loss was primarily found in young patients or patients with a palatal defect. Overall, mutations in COL11A1 (82.5%) and COL11A2 (94.1%) seem to be more frequently associated with hearing impairment than mutations in COL2A1 (52.2%). Conclusions Hearing impairment in patients with Stickler syndrome is common. Sensorineural hearing loss predominates, but also conductive hearing loss, especially in children and patients with a palatal defect, may occur. The distinct disease-causing collagen genes are associated with a different prevalence of hearing impairment, but still large phenotypic variation exists. Regular auditory follow-up is strongly advised, particularly because many Stickler patients are visually impaired.
Collapse
|
13
|
Ramdas WD, van Koolwijk LME, Ikram MK, Jansonius NM, de Jong PTVM, Bergen AAB, Isaacs A, Amin N, Aulchenko YS, Wolfs RCW, Hofman A, Rivadeneira F, Oostra BA, Uitterlinden AG, Hysi P, Hammond CJ, Lemij HG, Vingerling JR, Klaver CCW, van Duijn CM. A genome-wide association study of optic disc parameters. PLoS Genet 2010; 6:e1000978. [PMID: 20548946 PMCID: PMC2883590 DOI: 10.1371/journal.pgen.1000978] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/07/2010] [Indexed: 01/01/2023] Open
Abstract
The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR). Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA) data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72×10−19) within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67×10−33) within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15×10−11) in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93×10−10) within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612), and the TwinsUK cohort (N = 843). Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant), and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin. Morphologic characteristics of the optic nerve head are involved in many ophthalmic diseases. Its size, called the optic disc area, is an important measure and has been associated with e.g. myopia and open-angle glaucoma (OAG). Another important and clinical parameter of the optic disc is the vertical cup-disc ratio (VCDR). Although studies have shown a high heritability of optic disc area and VCDR, its genetic determinants are still undetermined. We therefore conducted a genome-wide association (GWA) study on these quantitative traits, using data of over 11,000 Caucasian participants, and related the findings to myopia and OAG. We found evidence for association of three loci with optic disc area: CDC7/TGFBR3 region, ATOH7, and SALL1; and six with VCDR: CDKN2B, SIX1, SCYL1, CHEK2, ATOH7, and DCLK1; and additionally one borderline significant locus: BCAS3. None of the loci could be related to myopia. There was marginal evidence for association of ATOH7, CDKN2B, and SIX1 with OAG, which remains to be confirmed. The present study reveals new insights into the physiological development of the optic nerve and may shed light on the pathophysiological protein pathways leading to (neuro-) ophthalmologic diseases such as OAG.
Collapse
Affiliation(s)
- Wishal D. Ramdas
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonieke M. E. van Koolwijk
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nomdo M. Jansonius
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paulus T. V. M. de Jong
- Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A. B. Bergen
- Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roger C. W. Wolfs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Hans G. Lemij
- Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Johannes R. Vingerling
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Myopia, or nearsightedness, is the most common human eye disorder in the world and is a significant global public health concern. Along with cataract, macular degeneration, infectious disease, and vitamin A deficiency, myopia is one of the most important causes of visual impairment worldwide. Severe or high-grade myopia is a leading cause of blindness because of its associated ocular comorbidities of retinal detachment, macular choroidal degeneration, premature cataract, and glaucoma. Ample epidemiologic and molecular genetic studies support heritability of the nonsyndromic forms of this condition. RECENT FINDINGS Multiple myopia genetic loci have been identified, establishing this entity as a common complex disorder and underscoring the suitability for gene inquiry studies. Animal model research, primarily using form-deprivation techniques, implicates multiple altered regulation of biological substances in the ocular wall layers, which provides important information for prioritizing human candidate gene studies. Recent epidemiologic work supports a greater role for outdoor activity in relieving myopia progression rather than the previous touted young-age near-work activity model. SUMMARY The identification of myopia susceptibility genes will not only provide insight into the molecular basis of this significant eye disorder, but will also identify pathways involved in eye growth and development. This effort may lead to effective therapies to treat or potentially prevent this common eye condition.
Collapse
|
15
|
Bibliography. Current world literature. Curr Opin Ophthalmol 2009; 20:417-22. [PMID: 19684489 DOI: 10.1097/icu.0b013e32833079c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|