1
|
Khan MA, Khan S, Windpassinger C, Badar M, Nawaz Z, Mohammad RM. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet 2017; 80:342-368. [PMID: 27870114 DOI: 10.1111/ahg.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) is a clinical manifestation of the central nervous system without any major dysmorphologies of the brain. Biologically it affects learning capabilities, memory, and cognitive functioning. The basic defining features of ID are characterized by IQ<70, age of onset before 18 years, and impairment of at least two of the adaptive skills. Clinically it is classified in a syndromic (with additional abnormalities) and a nonsyndromic form (with only cognitive impairment). The study of nonsyndromic intellectual disability (NSID) can best explain the pathophysiology of cognition, intelligence and memory. Genetic analysis in autosomal recessive nonsyndrmic ID (ARNSID) has mapped 51 disease loci, 34 of which have revealed their defective genes. These genes play diverse physiological roles in various molecular processes, including methylation, proteolysis, glycosylation, signal transduction, transcription regulation, lipid metabolism, ion homeostasis, tRNA modification, ubiquitination and neuromorphogenesis. High-density SNP array and whole exome sequencing has increased the pace of gene discoveries and many new mutations are being published every month. The lack of uniform criteria has assigned multiple identifiers (or accession numbers) to the same MRT locus (e.g. MRT7 and MRT22). Here in this review we describe the molecular genetics of ARNSID, prioritize the candidate genes in uncharacterized loci, and propose a new nomenclature to reorganize the mutation data that will avoid the confusion of assigning duplicate accession numbers to the same ID locus and to make the data manageable in the future as well.
Collapse
Affiliation(s)
- Muzammil Ahmad Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Saadullah Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | | | - Muhammad Badar
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Zafar Nawaz
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ramzi M Mohammad
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
2
|
Shamseldin H, Faqeih E, Alasmari A, Zaki M, Gleeson J, Alkuraya F. Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause Autosomal-Recessive Severe Infantile Encephalopathy. Am J Hum Genet 2016; 98:210-5. [PMID: 26708753 DOI: 10.1016/j.ajhg.2015.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022] Open
Abstract
Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex.
Collapse
|
3
|
Alkuraya FS. Genetics and genomic medicine in Saudi Arabia. Mol Genet Genomic Med 2014; 2:369-78. [PMID: 25333061 PMCID: PMC4190871 DOI: 10.1002/mgg3.97] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/01/2023] Open
Affiliation(s)
- Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia ; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Genetics of recessive cognitive disorders. Trends Genet 2013; 30:32-9. [PMID: 24176302 DOI: 10.1016/j.tig.2013.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 01/23/2023]
Abstract
Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention.
Collapse
|