1
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Sonne A, Antonovic AK, Melhedegaard E, Akter F, Andersen JL, Jungbluth H, Witting N, Vissing J, Zanoteli E, Fornili A, Ochala J. Abnormal myosin post-translational modifications and ATP turnover time associated with human congenital myopathy-related RYR1 mutations. Acta Physiol (Oxf) 2023; 239:e14035. [PMID: 37602753 PMCID: PMC10909445 DOI: 10.1111/apha.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
AIM Conditions related to mutations in the gene encoding the skeletal muscle ryanodine receptor 1 (RYR1) are genetic muscle disorders and include congenital myopathies with permanent weakness, as well as episodic phenotypes such as rhabdomyolysis/myalgia. Although RYR1 dysfunction is the primary mechanism in RYR1-related disorders, other downstream pathogenic events are less well understood and may include a secondary remodeling of major contractile proteins. Hence, in the present study, we aimed to investigate whether congenital myopathy-related RYR1 mutations alter the regulation of the most abundant contractile protein, myosin. METHODS We used skeletal muscle tissues from five patients with RYR1-related congenital myopathy and compared those with five controls and five patients with RYR1-related rhabdomyolysis/myalgia. We then defined post-translational modifications on myosin heavy chains (MyHCs) using LC/MS. In parallel, we determined myosin relaxed states using Mant-ATP chase experiments and performed molecular dynamics (MD) simulations. RESULTS LC/MS revealed two additional phosphorylations (Thr1309-P and Ser1362-P) and one acetylation (Lys1410-Ac) on the β/slow MyHC of patients with congenital myopathy. This method also identified six acetylations that were lacking on MyHC type IIa of these patients (Lys35-Ac, Lys663-Ac, Lys763-Ac, Lys1171-Ac, Lys1360-Ac, and Lys1733-Ac). MD simulations suggest that modifying myosin Ser1362 impacts the protein structure and dynamics. Finally, Mant-ATP chase experiments showed a faster ATP turnover time of myosin heads in the disordered-relaxed conformation. CONCLUSIONS Altogether, our results suggest that RYR1 mutations have secondary negative consequences on myosin structure and function, likely contributing to the congenital myopathic phenotype.
Collapse
Affiliation(s)
- Alexander Sonne
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anna Katarina Antonovic
- Department of Chemistry, School of Physical and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Elise Melhedegaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Fariha Akter
- Department of Chemistry, School of Physical and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Jesper L. Andersen
- Department of Orthopaedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Heinz Jungbluth
- Department of Paediatric NeurologyEvelina London Children's HospitalLondonUK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of NeurologyUniversity of CopenhagenCopenhagenDenmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of NeurologyUniversity of CopenhagenCopenhagenDenmark
| | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina, Hospital das ClínicasUniversidade de São PauloSão PauloBrazil
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Atemin S, Todorov T, Maver A, Chamova T, Georgieva B, Tincheva S, Pacheva I, Ivanov I, Taneva A, Zlatareva D, Tournev I, Guergueltcheva V, Gospodinova M, Chochkova L, Peterlin B, Mitev V, Todorova A. MYH7-related disorders in two Bulgarian families: Novel variants in the same region associated with different clinical manifestation and disease penetrance. Neuromuscul Disord 2021; 31:633-641. [PMID: 34053846 DOI: 10.1016/j.nmd.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Pathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement. Interestingly, variants in MYH7 gene appeared to be the cause in all the cases. A novel nonsense variant c.5746C>T, p.(Gln1916Ter) was found in the patient in Family 1 who deceased at the age of 2 years 4 months with the clinical diagnosis of dilated cardiomyopathy, whose father died before the age of 40 years, due to cardiac failure with clinical diagnosis of suspected limb-girdle muscular dystrophy. A splice acceptor variant c.5560-2A>C in MYH7 was detected in the second proband and her sister, with late onset distal myopathy without cardiac involvement. These different phenotypes (muscular involvement with severe cardiomyopathy and pure late onset neuromuscular phenotype without heart involvement) may result from novel MYH7 variants, which most probably impact the LMM (light meromyosin) domain's function of the mature protein.
Collapse
Affiliation(s)
- Slavena Atemin
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria.
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ales Maver
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Teodora Chamova
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Bilyana Georgieva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Savina Tincheva
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ani Taneva
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| | | | | | - Lyubov Chochkova
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| |
Collapse
|
4
|
Yu M, Zhu Y, Lu Y, Lv H, Zhang W, Yuan Y, Wang Z. Clinical features and genotypes of Laing distal myopathy in a group of Chinese patients, with in-frame deletions of MYH7 as common mutations. Orphanet J Rare Dis 2020; 15:344. [PMID: 33298082 PMCID: PMC7727133 DOI: 10.1186/s13023-020-01626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Laing distal myopathy is a rare autosomal dominant inherited distal myopathy caused by mutations of the MYH7 gene affecting mainly the rod region. We described the clinical features, muscle MRI and pathological changes as well as genetic mutations in a group of Chinese patients with Laing distal myopathy. Results Six patients with the confirmed diagnoses of Laing distal myopathy were recruited. Ankle dorsiflexion and finger extension weakness, as well as neck flexion weakness were common in our patients. Myopathic as well as neurogenic lesions were suggested by electromyography in different patients. Respiratory abnormality of sleep apnea was detected in two of our patients stressing the necessity of close respiratory monitoring in this disease. Muscle MRIs showed similar features of concentric fatty infiltration of anterior thigh muscles together with early involvement of tibialis anterior and extensor hallucis longus. However, muscle pathological presentations were varied depending on the biopsied muscles and the severity of the disease. In-frame deletions of the MYH7 gene made up 3/4 of mutations in our patients, suggesting that these are common mutations of Laing distal myopathy. Conclusions Our study further expanded the phenotypes and genotypes of Laing distal myopathy. In-frame deletions of the MYH7 gene are common causes of Laing distal myopathy.
Collapse
Affiliation(s)
- Meng Yu
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yuanyuan Lu
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
| |
Collapse
|
5
|
Recessive MYH7-related myopathy in two families. Neuromuscul Disord 2019; 29:456-467. [PMID: 31130376 DOI: 10.1016/j.nmd.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Myopathies due to recessive MYH7 mutations are exceedingly rare, reported in only two families to date. We describe three patients from two families (from Australia and the UK) with a myopathy caused by recessive mutations in MYH7. The Australian family was homozygous for a c.5134C > T, p.Arg1712Trp mutation, whilst the UK patient was compound heterozygous for a truncating (c.4699C > T; p.Gln1567*) and a missense variant (c.4664A > G; p.Glu1555Gly). All three patients shared key clinical features, including infancy/childhood onset, pronounced axial/proximal weakness, spinal rigidity, severe scoliosis, and normal cardiac function. There was progressive respiratory impairment necessitating non-invasive ventilation despite preserved ambulation, a combination of features often seen in SEPN1- or NEB-related myopathies. On biopsy, the Australian proband showed classical myosin storage myopathy features, while the UK patient showed multi-minicore like areas. To establish pathogenicity of the Arg1712Trp mutation, we expressed mutant MYH7 protein in COS-7 cells, observing abnormal mutant myosin aggregation compared to wild-type. We describe skinned myofiber studies of patient muscle and hypertrophy of type II myofibers, which may be a compensatory mechanism. In summary, we have expanded the phenotype of ultra-rare recessive MYH7 disease, and provide novel insights into associated changes in muscle physiology.
Collapse
|
6
|
Carbonell-Corvillo P, Tristán-Clavijo E, Cabrera-Serrano M, Servián-Morilla E, García-Martín G, Villarreal-Pérez L, Rivas-Infante E, Area-Gómez E, Chamorro-Muñoz M, Gil-Gálvez A, Miranda-Vizuete A, Martinez-Mir A, Laing N, Paradas C. A novel MYH7 founder mutation causing Laing distal myopathy in Southern Spain. Neuromuscul Disord 2018; 28:828-836. [DOI: 10.1016/j.nmd.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/11/2023]
|
7
|
Chahin N, Uribe LA, Debela AM, Thorimbert S, Hasenknopf B, Ortiz M, Katakis I, O'Sullivan CK. Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms. Biosens Bioelectron 2018; 117:201-206. [PMID: 29906767 DOI: 10.1016/j.bios.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Polyoxymetalates (POMs) ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-), and [SiW11O39{Sn(CH2)2CO)}]4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis.
Collapse
Affiliation(s)
- Nassif Chahin
- Departament d'Enginyeria Quıímica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Laura A Uribe
- Departament d'Enginyeria Quıímica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ahmed M Debela
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - Serge Thorimbert
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - Bernold Hasenknopf
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - Mayreli Ortiz
- Departament d'Enginyeria Quıímica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.
| | - Ioannis Katakis
- Departament d'Enginyeria Quıímica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Quıímica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
8
|
van der Linde IHM, Hiemstra YL, Bökenkamp R, van Mil AM, Breuning MH, Ruivenkamp C, Ten Broeke SW, Veldkamp RF, van Waning JI, van Slegtenhorst MA, van Spaendonck-Zwarts KY, Lekanne Deprez RH, Herkert JC, Boven L, van der Zwaag PA, Jongbloed JDH, Bootsma M, Barge-Schaapveld DQCM. A Dutch MYH7 founder mutation, p.(Asn1918Lys), is associated with early onset cardiomyopathy and congenital heart defects. Neth Heart J 2017; 25:675-681. [PMID: 28864942 PMCID: PMC5691818 DOI: 10.1007/s12471-017-1037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Mutations in the myosin heavy chain 7 (MYH7) gene commonly cause cardiomyopathy but are less frequently associated with congenital heart defects. Methods In this study, we describe a mutation in the MYH7 gene, c. 5754C > G; p. (Asn1918Lys), present in 15 probands and 65 family members. Results Of the 80 carriers (age range 0–88 years), 46 (57.5%) had cardiomyopathy (mainly dilated cardiomyopathy (DCM)) and seven (8.8%) had a congenital heart defect. Childhood onset of cardiomyopathy was present in almost 10% of carriers. However, in only a slight majority (53.7%) was the left ventricular ejection fraction reduced and almost no arrhythmias or conduction disorders were noted. Moreover, only one carrier required heart transplantation and nine (11.3%) an implantable cardioverter defibrillator. In addition, the standardised mortality ratio for MYH7 carriers was not significantly increased. Whole exome sequencing in several cases with paediatric onset of DCM and one with isolated congenital heart defects did not reveal additional known disease-causing variants. Haplotype analysis suggests that the MYH7 variant is a founder mutation, and is therefore the first Dutch founder mutation identified in the MYH7 gene. The mutation appears to have originated in the western region of the province of South Holland between 500 and 900 years ago. Conclusion Clinically, the p. (Asn1918Lys) mutation is associated with congenital heart defects and/or cardiomyopathy at young age but with a relatively benign course. Electronic supplementary material The online version of this article (10.1007/s12471-017-1037-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I H M van der Linde
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y L Hiemstra
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Bökenkamp
- Department of Paediatric Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A M van Mil
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M H Breuning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - C Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - S W Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - R F Veldkamp
- Department of Cardiology, Haaglanden Medical Centre, The Hague, The Netherlands
| | - J I van Waning
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - M A van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - R H Lekanne Deprez
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - J C Herkert
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - L Boven
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - P A van der Zwaag
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - J D H Jongbloed
- University Medical Centre Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | - M Bootsma
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
9
|
Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, Pedemonte M, Trovato R, Ruggiero L, Vercelli L, D'Amico A, Tasca G, Pane M, Fanin M, Bello L, Broda P, Musumeci O, Rodolico C, Messina S, Vita GL, Sframeli M, Gibertini S, Morandi L, Mora M, Maggi L, Petrucci A, Massa R, Grandis M, Toscano A, Pegoraro E, Mercuri E, Bertini E, Mongini T, Santoro L, Nigro V, Minetti C, Santorelli FM, Bruno C. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis 2016; 11:91. [PMID: 27387980 PMCID: PMC4936326 DOI: 10.1186/s13023-016-0476-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/22/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Myosin heavy chain 7 (MYH7)-related myopathies are emerging as an important group of muscle diseases of childhood and adulthood, with variable clinical and histopathological expression depending on the type and location of the mutation. Mutations in the head and neck domains are a well-established cause of hypertrophic cardiomyopathy whereas mutation in the distal regions have been associated with a range of skeletal myopathies with or without cardiac involvement, including Laing distal myopathy and Myosin storage myopathy. Recently the spectrum of clinical phenotypes associated with mutations in MYH7 has increased, blurring this scheme and adding further phenotypes to the list. A broader disease spectrum could lead to misdiagnosis of different congenital myopathies, neurogenic atrophy and other neuromuscular conditions. RESULTS As a result of a multicenter Italian study we collected clinical, histopathological and imaging data from a population of 21 cases from 15 families, carrying reported or novel mutations in MYH7. Patients displayed a variable phenotype including atypical pictures, as dropped head and bent spine, which cannot be classified in previously described groups. Half of the patients showed congenital or early infantile weakness with predominant distal weakness. Conversely, patients with later onset present prevalent proximal weakness. Seven patients were also affected by cardiomyopathy mostly in the form of non-compacted left ventricle. Muscle biopsy was consistent with minicores myopathy in numerous cases. Muscle MRI was meaningful in delineating a shared pattern of selective involvement of tibialis anterior muscles, with relative sparing of quadriceps. CONCLUSION This work adds to the genotype-phenotype correlation of MYH7-relatedmyopathies confirming the complexity of the disorder.
Collapse
Affiliation(s)
- C Fiorillo
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy. .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy.
| | - G Astrea
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - M Savarese
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - D Cassandrini
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - G Brisca
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | - F Trucco
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - M Pedemonte
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - R Trovato
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - L Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - L Vercelli
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - A D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Tasca
- Don Carlo Gnocchi ONLUS Foundation, Rome, Italy
| | - M Pane
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - M Fanin
- Department of Neurosciences, University of Padua, Padua, Italy
| | - L Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - P Broda
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - O Musumeci
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - C Rodolico
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Messina
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - G L Vita
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - M Sframeli
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - M Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - A Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - R Massa
- Department of Systems Medicine (Neurology), University of Tor Vergata, Rome, Italy
| | - M Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - A Toscano
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - E Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - T Mongini
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - L Santoro
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - V Nigro
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - C Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - F M Santorelli
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - C Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
10
|
Roda RH, Schindler AB, Blackstone C, Mammen AL, Corse AM, Lloyd TE. Laing distal myopathy pathologically resembling inclusion body myositis. Ann Clin Transl Neurol 2014; 1:1053-8. [PMID: 25574480 PMCID: PMC4284131 DOI: 10.1002/acn3.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022] Open
Abstract
Mutations in MYH7 cause autosomal dominant Laing distal myopathy. We present a family with a previously reported deletion (c.5186_5188delAGA, p.K1729del). Muscle pathology in one family member was characterized by an inflammatory myopathy with rimmed vacuoles, increased MHC Class I expression, and perivascular and endomysial muscle inflammation comprising CD3+, CD4+, CD8+, and CD68+ inflammatory cells. Interestingly, this biopsy specimen contained TDP-43, p62, and SMI-31-positive protein aggregates typical of inclusion body myositis. These findings should alert physicians to the possibility that patients with MYH7 mutations may have muscle biopsies showing pathologic findings similar to inclusion body myositis.
Collapse
Affiliation(s)
- Ricardo H Roda
- Neuromuscular Disorders and Neurogenetics Divisions, Department of Neurology, New York University Langone Medical Center New York, New York ; Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, Maryland
| | - Alice B Schindler
- Hereditary Neurological Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, Maryland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, Maryland
| | - Andrew L Mammen
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, Maryland ; Department of Medicine, Johns Hopkins University School of Medicine Baltimore, Maryland ; Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda, Maryland
| | - Andrea M Corse
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, Maryland
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, Maryland ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
11
|
Finsterer J, Brandau O, Stöllberger C, Wallefeld W, Laing NG, Laccone F. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation. Neuromuscul Disord 2014; 24:721-5. [PMID: 24953931 DOI: 10.1016/j.nmd.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 11/25/2022]
Abstract
Myosin-heavy-chain 7 (MYH7)-myopathy manifests clinically with a distal, scapuloperoneal, limb-girdle (proximal), or axial distribution and may involve the respiratory muscles. Cardiac involvement is frequent, ranging from relaxation impairment to severe dilative cardiomyopathy. Progression and earlier onset of cardiac disease in successive generations with MYH7-myopathy is unreported. In a five-generation family MYH7-myopathy due to the novel c.5566G > A (p.E1856K) mutation manifested with late-onset, distal > proximal myopathy and variable degree of cardiac involvement. The index patient developed distal myopathy since age 49 y and anginal chest pain. Her mother had distal myopathy and impaired myocardial relaxation. The daughter of the index patient had discrete myopathy but left ventricular hypertrabeculation/noncompaction and ventricular arrhythmias requiring an implantable cardioverter defibrillator. The granddaughter of the index patient had infantile dilated cardiomyopathy without overt myopathy. Cardiac involvement may be present in MYH7-myopathy and may be progressive between the generations, ranging from relaxation abnormality to noncompaction, ventricular arrhythmias, and dilated cardiomyopathy.
Collapse
Affiliation(s)
| | - Oliver Brandau
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - William Wallefeld
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria
| |
Collapse
|
12
|
Exome sequencing identifies Laing distal myopathy MYH7 mutation in a Roma family previously diagnosed with distal neuronopathy. Neuromuscul Disord 2014; 24:156-61. [DOI: 10.1016/j.nmd.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
|
13
|
Park JM, Kim YJ, Yoo JH, Hong YB, Park JH, Koo H, Chung KW, Choi BO. A novel MYH7 mutation with prominent paraspinal and proximal muscle involvement. Neuromuscul Disord 2013; 23:580-6. [PMID: 23707328 DOI: 10.1016/j.nmd.2013.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
Laing distal myopathy (LDM) is caused by mutations in the MYH7 gene, and known to have muscle weakness of distal limbs and neck flexors. Through whole exome sequencing, we identified a novel p.Ala1439Pro MYH7 mutation in a Korean LDM family. This missense mutation is located in more N-terminal than any reported rod domain LDM mutations. In the early stage of disease, the present patients showed similar clinical patterns to the previously described patients of LDM. However, in the later stage, fatty replacement and atrophy of paraspinal or proximal leg muscles was more severely marked than lower leg muscles, and asymmetric atrophies were observed in trapezius, subscapularis and adductor magnus muscles. Distal myopathy like LDM showed marked and predominant fatty infiltrations in paraspinal or proximal leg muscles with marked asymmetry. These observations expand the clinical spectrum of LDM with the MYH7 mutation.
Collapse
Affiliation(s)
- Jin-Mo Park
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:3-18. [PMID: 22918376 PMCID: PMC3535372 DOI: 10.1007/s00401-012-1024-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 11/24/2022]
Abstract
The myosin heavy chain (MyHC) is the molecular motor of muscle and forms the backbone of the sarcomere thick filaments. Different MyHC isoforms are of importance for the physiological properties of different muscle fiber types. Hereditary myosin myopathies have emerged as an important group of diseases with variable clinical and morphological expression depending on the mutated isoform and type and location of the mutation. Dominant mutations in developmental MyHC isoform genes (MYH3 and MYH8) are associated with distal arthrogryposis syndromes. Dominant or recessive mutations affecting the type IIa MyHC (MYH2) are associated with early-onset myopathies with variable muscle weakness and ophthalmoplegia as a consistent finding. Myopathies with scapuloperoneal, distal or limb-girdle muscle weakness including entities, such as myosin storage myopathy and Laing distal myopathy are the result of usually dominant mutations in the gene for slow/β cardiac MyHC (MYH7). Protein aggregation is part of the features in some of these myopathies. In myosin storage myopathy protein aggregates are formed by accumulation of myosin beneath the sarcolemma and between myofibrils. In vitro studies on the effects of different mutations associated with myosin storage myopathy and Laing distal myopathy indicate altered biochemical and biophysical properties of the light meromyosin, which is essential for thick filament assembly. Protein aggregates in the form of tubulofilamentous inclusions in association with vacuolated muscle fibers are present at late stage of dominant myosin IIa myopathy and sometimes in Laing distal myopathy. These protein aggregates exhibit features indicating defective degradation of misfolded proteins. In addition to protein aggregation and muscle fiber degeneration some of the myosin mutations cause functional impairment of the molecular motor adding to the pathogenesis of myosinopathies.
Collapse
Affiliation(s)
- Homa Tajsharghi
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Anders Oldfors
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|