1
|
Alabbasi L, Ben Turkia H, Nass M, Sahin I. Diagnostic Challenges in the Myopathic Variant of Carnitine Palmitoyltransferase II Deficiency: A Case Report. Cureus 2024; 16:e64728. [PMID: 39156350 PMCID: PMC11328625 DOI: 10.7759/cureus.64728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Carnitine palmitoyltransferase II deficiency is a rare metabolic disorder affecting the mitochondrial oxidation of fatty acids. We present a case of the myopathic form in a 10-year-old Bahraini male following an initial presentation of exercise-induced rhabdomyolysis and transaminitis. There was no consanguinity or findings suggestive of an underlying inborn metabolic disorder. Tandem mass spectrometry on dried blood spots showed no abnormal acyl-carnitines profile. The condition improved with hyperhydration, high glucose intake, carnitine, and alkalinization. Genetic testing revealed a compound heterozygous pathogenic variant c.338C>T (p.Ser113Leu) and a variant of unknown significance c.729_731del (p.Leu244del). The patient was kept on a high carbohydrate and low-fat diet with medium chain triglycerides supplementation and advised to avoid long fasting periods and strenuous exercise. Within the four years of follow-up, he had three further attacks. Exercise-induced myalgia or rhabdomyolysis should raise the suspicion of inherited metabolic disorders. Metabolic investigations should be taken during the acute illness, and an acylcarnitines profile should preferably be performed in the serum.
Collapse
Affiliation(s)
- Lana Alabbasi
- Pediatrics, King Hamad University Hospital, Muharraq, BHR
| | | | - Maram Nass
- Pediatrics, King Hamad University Hospital, Muharraq, BHR
| | - Ibrahim Sahin
- Medical Genetics, King Hamad University Hospital, Muharraq, BHR
| |
Collapse
|
2
|
Zhang Y, Qiu W, Zhang H, Chen T, Xu F, Gu X, Han L. Clinical characteristics and genetic analysis of six children with carnitine palmitoyltransferase 2 deficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:207-212. [PMID: 38650450 PMCID: PMC11057986 DOI: 10.3724/zdxbyxb-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2 (CPT2) deficiency. METHODS The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed. The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing, respectively. RESULTS There were 4 males and 2 females with a mean age of 32 months (15 d-9 years) at diagnosis. One case was asymptomatic and with normal laboratory test results, 2 had delayed onset, and 3 were of infantile type. Three cases were diagnosed at neonatal screening, and 3 cases presented with clinical manifestations of fever, muscle weakness, and increased muscle enzymes. Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines. CPT2 gene variants were detected at 8 loci in 6 children (4 harboring biallelic mutations and 2 harboring single locus mutations), including 3 known variants (p.R631C, p.T589M, and p.D255G) and 5 newly reported variants (p.F352L, p.R498L, p.F434S, p.A515P, and c.153-2A>G). It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants, while p.R498L, p.F434S and p.A515P were variants of unknown clinical significance. CONCLUSIONS The clinical phenotypes of CPT2 deficiency are diverse. An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing, and most patients have good prognosis after a timely diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Hangzhou Children's Hospital, Hangzhou 310005, China.
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| |
Collapse
|
3
|
Serra G, Antona V, Insinga V, Morgante G, Vassallo A, Placa SL, Piro E, Salerno S, Schierz IAM, Gitto E, Giuffrè M, Corsello G. Carnitine palmitoyltransferase II (CPT II) deficiency responsible for refractory cardiac arrhythmias, acute multiorgan failure and early fatal outcome. Ital J Pediatr 2024; 50:67. [PMID: 38616285 PMCID: PMC11017661 DOI: 10.1186/s13052-024-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Carnitine palmitoyltransferase II (CPT II) deficiency is a rare inborn error of mitochondrial fatty acid metabolism with autosomal recessive pattern of inheritance. Its phenotype is highly variable (neonatal, infantile, and adult onset) on the base of mutations of the CPT II gene. In affected subjects, long-chain acylcarnitines cannot be subdivided into carnitine and acyl-CoA, leading to their toxic accumulation in different organs. Neonatal form is the most severe, and all the reported patients died within a few days to 6 months after birth. Hereby, we report on a male late-preterm newborn who presented refractory cardiac arrhythmias and acute multiorgan (hepatic, renal, muscular) injury, leading to cerebral hemorrhage, hydrocephalus, cardiovascular failure and early (day 5 of life) to death. Subsequently, extended metabolic screening and target next generation sequencing (NGS) analysis allowed the CPT II deficiency diagnosis. CASE PRESENTATION The male proband was born at 36+ 4 weeks of gestation by spontaneous vaginal delivery. Parents were healthy and nonconsanguineous, although both coming from Nigeria. Family history was unremarkable. Apgar score was 9/9. At birth, anthropometric measures were as follows: weight 2850 g (47th centile, -0.07 standard deviations, SD), length 50 cm (81st centile, + 0.89 SD) and occipitofrontal circumference (OFC) 35 cm (87th centile, + 1.14 SD). On day 2 of life our newborn showed bradycardia (heart rate around 80 bpm) and hypotonia, and was then transferred to the Neonatal Intensive Care Unit (NICU). There, he subsequently manifested many episodes of ventricular tachycardia, which were treated with pharmacological (magnesium sulfate) and electrical cardioversion. Due to the critical conditions of the baby (hepatic, renal and cardiac dysfunctions) and to guarantee optimal management of the arrythmias, he was transferred to the Pediatric Cardiology Reference Center of our region (Sicily, Italy), where he died 2 days later. Thereafter, the carnitines profile evidenced by the extended metabolic screening resulted compatible with a fatty acid oxidation defect (increased levels of acylcarnitines C16 and C18, and low of C2); afterwards, the targeted next generation sequencing (NGS) analysis revealed the known c.680 C > T p. (Pro227Leu) homozygous missense mutation of the CPTII gene, for diagnosis of CPT II deficiency. Genetic investigations have been, then, extended to the baby's parents, who were identified as heterozygous carriers of the same variant. When we meet again the parents for genetic counseling, the mother was within the first trimester of her second pregnancy. Therefore, we offered to the couple and performed the prenatal target NGS analysis on chorionic villi sample, which did not detect any alterations, excluding thus the CPT II deficiency in their second child. CONCLUSIONS CPTII deficiency may be suspected in newborns showing cardiac arrhythmias, associated or not with hypertrophic cardiomyopathy, polycystic kidneys, brain malformations, hepatomegaly. Its diagnosis should be even more suspected and investigated in cases of increased plasmatic levels of creatine phosphokinase and acylcarnitines in addition to kidney, heart and liver dysfunctions, as occurred in the present patient. Accurate family history, extended metabolic screening, and multidisciplinary approach are necessary for diagnosis and adequate management of affected subjects. Next generation sequencing (NGS) techniques allow the identification of the CPTII gene mutation, essential to confirm the diagnosis before or after birth, as well as to calculate the recurrence risk for family members. Our report broads the knowledge of the genetic and molecular bases of such rare disease, improving its clinical characterization, and provides useful indications for the treatment of patients.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy.
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Vincenzo Insinga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giusy Morgante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Alessia Vassallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Simona La Placa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Sergio Salerno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Yazıcı H, Ak G, Çelik MY, Erdem F, Yanbolu AY, Er E, Bozacı AE, Güvenç MS, Aykut A, Durmaz A, Canda E, Uçar SK, Çoker M. Experience with carnitine palmitoyltransferase II deficiency: diagnostic challenges in the myopathic form. J Pediatr Endocrinol Metab 2024; 37:33-41. [PMID: 37925743 DOI: 10.1515/jpem-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive disorder of long-chain fatty acid oxidation. Three clinical phenotypes, lethal neonatal form, severe infantile hepatocardiomuscular form, and myopathic form, have been described in CPT II deficiency. The myopathic form is usually mild and can manifest from infancy to adulthood, characterised by recurrent rhabdomyolysis episodes. The study aimed to investigate the clinical features, biochemical, histopathological, and genetic findings of 13 patients diagnosed with the myopathic form of CPT II deficiency at Ege University Hospital. METHODS A retrospective study was conducted with 13 patients with the myopathic form of CPT II deficiency. Our study considered demographic data, triggers of recurrent rhabdomyolysis attacks, biochemical metabolic screening, and molecular analysis. RESULTS Ten patients were examined for rhabdomyolysis of unknown causes. Two patients were diagnosed during family screening, and one was diagnosed during investigations due to increased liver function tests. Acylcarnitine profiles were normal in five patients during rhabdomyolysis. Genetic studies have identified a c.338C>T (p.Ser113Leu) variant homozygous in 10 patients. One patient showed a novel frameshift variant compound heterozygous with c.338C>T (p.Ser113Leu). CONCLUSIONS Plasma acylcarnitine analysis should be preferred as it is superior to DBS acylcarnitine analysis in diagnosing CPT II deficiency. Even if plasma acylcarnitine analysis is impossible, CPT2 gene analysis should be performed. Our study emphasizes that CPT II deficiency should be considered in the differential diagnosis of recurrent rhabdomyolysis, even if typical acylcarnitine elevation does not accompany it.
Collapse
Affiliation(s)
- Havva Yazıcı
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Gunes Ak
- Department of Clinical Biochemistry, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Merve Yoldas Çelik
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Fehime Erdem
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ayse Yuksel Yanbolu
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Esra Er
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ayse Ergül Bozacı
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Merve Saka Güvenç
- Department of Medical Genetics, Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Ayca Aykut
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Asude Durmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ebru Canda
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Sema Kalkan Uçar
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Mahmut Çoker
- Department of Inborn Errors of Metabolism, Ege University Faculty of Medicine, Izmir, Türkiye
| |
Collapse
|
5
|
Angelini C, Burlina A, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic disorders: X. Metabolic myopathies. Mol Genet Metab 2022; 137:213-222. [PMID: 36155185 PMCID: PMC10507680 DOI: 10.1016/j.ymgme.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Metabolic myopathies are characterized by the deficiency or dysfunction of essential metabolites or fuels to generate energy for muscle contraction; they most commonly manifest with neuromuscular symptoms due to impaired muscle development or functioning. We have summarized associations of signs and symptoms in 358 inherited metabolic diseases presenting with myopathies. This represents the tenth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Corrado Angelini
- Laboratory for Neuromuscular Diseases, Campus Pietro d'Abano, University of Padova, Padova, Italy.
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Center for Expanded Newborn Screening, University Hospital Padova, 35128, Padua, Italy.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Shelihan I, Rossignol E, Décarie J, Bonnefont J, Brivet M, Brunel‐Guitton C, Mitchell GA. Infantile onset carnitine palmitoyltransferase 2 deficiency: Cortical polymicrogyria, schizencephaly, and gray matter heterotopias in an adolescent with normal development. JIMD Rep 2022; 63:3-10. [PMID: 35028265 PMCID: PMC8743346 DOI: 10.1002/jmd2.12243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To report an adolescent with infantile-onset carnitine palmitoyltransferase 2 (CPT2) deficiency and cerebral malformations and to review the occurrence of brain malformations in CPT2 deficiency. The patient presented clinically at age 5 months with dehydration and hepatomegaly. He also has an unrelated condition, X-linked nephrogenic diabetes insipidus. He had recurrent rhabdomyolysis but normal psychomotor development. At age 17 years, he developed spontaneous focal seizures. Cerebral magnetic resonance imaging revealed extensive left temporo-parieto-occipital polymicrogyria, white matter heterotopias, and schizencephaly. Neuronal migration defects were previously reported in lethal neonatal CPT2 deficiency but not in later-onset forms. DESIGN AND METHODS We searched PubMed, Google Scholar, and the bibliographies of the articles found by these searches, for cerebral malformations in CPT2 deficiency. All antenatal, neonatal, infantile, and adult-onset cases were included. Exclusion criteria included insufficient information about age of clinical onset and lack of confirmation of CPT2 deficiency by enzymatic assay or genetic testing. For each report, we noted the presence of cerebral malformations on brain imaging or pathological examination. RESULTS Of 26 neonatal-onset CPT2-deficient patients who met the inclusion criteria, brain malformations were reported in 16 (61.5%). In 19 infantile-onset cases, brain malformations were not reported, but only 3 of the 19 reports (15.8%) include brain imaging or neuropathology data. In 276 adult-onset cases, no brain malformations were reported. CONCLUSION To the best of our knowledge, this is the first report of cerebral malformations in an infantile onset CPT2-deficient patient. Brain imaging should be considered in patients with CPTII deficiency and neurological manifestations, even in those with later clinical onset.
Collapse
Affiliation(s)
- Ivan Shelihan
- Divisions of Medical Genetics (IS, CBG, GM) and Neurology (ER), Department of PediatricsCHU Sainte‐Justine and Université de MontréalMontrealQuebecCanada
| | - Elsa Rossignol
- Divisions of Medical Genetics (IS, CBG, GM) and Neurology (ER), Department of PediatricsCHU Sainte‐Justine and Université de MontréalMontrealQuebecCanada
- Department of NeurosciencesCHU Sainte‐Justine and Université de MontréalMontreal, QCQuebecCanada
| | - Jean‐Claude Décarie
- Department of Medical ImagingCHU Sainte‐Justine and Université de MontréalMontrealQuebecCanada
| | - Jean‐Paul Bonnefont
- Medical Genetics FederationNecker Enfants Malades Hospital and IMAGINE InstituteParisFrance
| | - Michèle Brivet
- Medical Genetics FederationNecker Enfants Malades Hospital and IMAGINE InstituteParisFrance
| | - Catherine Brunel‐Guitton
- Biochemical Diseases, Department of Pediatrics, Faculty of MedicineUniversity of British Columbia, BC Children's HospitalVancouverBritishColumbia
| | - Grant A. Mitchell
- Divisions of Medical Genetics (IS, CBG, GM) and Neurology (ER), Department of PediatricsCHU Sainte‐Justine and Université de MontréalMontrealQuebecCanada
| |
Collapse
|
7
|
Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021; 12:704290. [PMID: 34408664 PMCID: PMC8365340 DOI: 10.3389/fphys.2021.704290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Alberto Ravazzani
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Fausto Feletti
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Parimbelli M, Pezzotti E, Negro M, Calanni L, Allemano S, Bernardi M, Berardinelli A, D'Antona G. Nutrition and Exercise in a Case of Carnitine Palmitoyl-Transferase II Deficiency. Front Physiol 2021; 12:637406. [PMID: 33815142 PMCID: PMC8009997 DOI: 10.3389/fphys.2021.637406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
In the mild subtype of inherited carnitine palmitoyltransferase II (CPTII) deficiency, muscular mitochondrial fatty acid β-oxidation is impaired. In this condition, interventions involve daily dietary restriction of fats and increase of carbohydrates, whereas physical exercise is commonly contraindicated due to the risk of muscle pain and rhabdomyolysis. We present the case of a 14-year-old female with CPTII deficiency who underwent a 1-h session of unsupervised exercise training for 6 months, 3 days per week, including interval and resistance exercises, after diet assessment and correction. Before and after intervention, the resting metabolic rate (RMR) and respiratory quotient (RQ) were measured by indirect calorimetry, and a cardiopulmonary exercise test (CPET, 10 W/30 s to exhaustion) was performed. Interval training consisted of a 1 min run and a 5 min walk (for 15 min progressively increased to 30 min). During these efforts, the heart rate was maintained over 70% HR max corresponding to respiratory exchange ratio (RER) of 0.98. Resistance training included upper/lower split workouts (3 sets of 8 repetitions each, with 2 min rest between sets). Blood CK was checked before and 36 h after two training sessions chosen randomly without significant difference. After training, RMR increased (+8.1%) and RQ lowered into the physiological range (from 1.0 to 0.85). CPET highlighted an increase of peak power output (+16.7%), aerobic performance (VO2 peak, 8.3%) and anaerobic threshold (+5.7%), oxygen pulse (+4.5%) and a much longer isocapnic buffering duration (+335%). No muscle pain or rhabdomyolysis was reported. Results from our study highlight that training based on short-duration high-intensity exercise improves overall metabolism and aerobic fitness, thus being feasible, at least in a case of CPTII deficiency.
Collapse
Affiliation(s)
- Mauro Parimbelli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Elena Pezzotti
- Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Massimo Negro
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Luca Calanni
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Silvia Allemano
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | | | - Giuseppe D'Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
Angelini C, Marozzo R, Pegoraro V, Sacconi S. Diagnostic challenges in metabolic myopathies. Expert Rev Neurother 2020; 20:1287-1298. [PMID: 32941087 DOI: 10.1080/14737175.2020.1825943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metabolic myopathies comprise a clinically etiological diverse group of disorders caused by defects in cellular energy metabolism including the breakdown of carbohydrates and fatty acids, which include glycogen storage diseases and fatty acid oxidation disorders. Their wide clinical spectrum ranges from infantile severe multisystemic disorders to adult-onset myopathies. To suspect in adults these disorders, clinical features such as exercise intolerance and recurrent myoglobinuria need investigation while another group presents fixed weakness and cardiomyopathy as a clinical pattern. AREAS COVERED In metabolic myopathies, clinical manifestations are important to guide diagnostic tests used in order to lead to the correct diagnosis. The authors searched in literature the most recent techniques developed. The authors present an overview of the most common phenotypes of Pompe disease and what is currently known about the mechanism of ERT treatment. The most common disorders of lipid metabolism are overviewed, with their possible dietary or supplementary treatments. EXPERT COMMENTARY The clinical suspicion is the clue to conduct in-depth investigations in suspected cases of metabolic myopathies that lead to the final diagnosis with biochemical molecular studies and often nowadays by the use of Next Generation Sequencing (NGS) to determine gene mutations.
Collapse
Affiliation(s)
- Corrado Angelini
- Neuromuscular Center, IRCCS San Camillo Hospital , Venice, Italy
| | - Roberta Marozzo
- Neuromuscular Center, IRCCS San Camillo Hospital , Venice, Italy
| | | | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Université Cote d'Azur, CHU , Nice, France
| |
Collapse
|
11
|
Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience. Mol Genet Metab Rep 2020; 24:100632. [PMID: 32793418 PMCID: PMC7414009 DOI: 10.1016/j.ymgmr.2020.100632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Mitochondrial fatty acid oxidation disorders (FAODs) are a heterogeneous group of hereditary autosomal recessive diseases included in newborn screening (NBS) program in Italy. The aim of this study was to analyse FAODs cases, identified either clinically or by NBS,for clinical and genetic characterization and to evaluate a five years' experience of NBS, in the attempt to figure out the complexity of genotype-phenotype correlation and to confirm the clinical impact of NBS in our centre experience. Materials and methods We analysed FAODs patients diagnosed either by NBS or clinically, followed since February 2014 to April 2019 at the Regional Screening Centre and Inherited Metabolic Diseases Unit of Verona. Diagnosis was confirmed by plasma acylcarnitines, urinary organic acids, enzymatic and genetic testing. For not clear genotypes due to the presence of variants of uncertain significance, in silico predictive tools have been used as well as enzymatic activity assays. Patients underwent clinical, nutritional and biochemical follow up. Results We diagnosed 30 patients with FAODs. 20 by NBS: 3 CUD, 6 SCADD, 5 MCADD, 4 VLCADD, 2 MADD. Overall incidence of FAODs diagnosed by NBS was 1:4316 newborns. No one reported complications during the follow up period. 10 patients were diagnosed clinically: 2 CUD, 2 CPT2D, 1 VLCADD, 5 MADD. Mean age at diagnosis was 29.3 years. Within this group, complications or symptoms were reported at diagnosis, but not during follow-up. 12 mutations not previously reported in literature were found, all predicted as pathogenic or likely pathogenic. Discussion and conclusions Our study highlighted the great phenotypic variability and molecular heterogeneity of FAODs and confirmed the importance of a tailored follow up and treatment. Despite the short duration of follow up, early identification by NBS prevented diseases related complications and resulted in normal growth and psycho-motor development as well. Early identification by newborn screening prevents disease related complications. Newborn screening is changing prevalence clinical and molecular heterogeneity of FAODs. Genotype-phenotype correlation helps to achieve personalized follow-up and treatment. Enzymatic assay may be pivotal in predicting phenotype and symptoms severity. Diagnosis on clinical grounds is anyway important to change disease course.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- CACTD, carnitine-acylcarnitine translocase deficiency
- CK, creatine kinase
- CPT1/2 D, carnitine palmitoyl-CoA transferase 1/2 deficiency
- CUD, carnitine uptake defect
- DBS, dried blood spots
- DNA, Deoxyribonucleic acid
- Enzymatic activity
- Expanded newborn screening
- FAODs, fatty acid oxidation disorders
- Fatty acid oxidation defects
- Hypoglycaemia
- LCHADD, Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency
- MADD, multiple acyl-CoA dehydrogenase deficiency
- MCADD, medium-chain acyl-CoA dehydrogenase deficiency
- Myopathy
- NBS, newborn screening
- NGS, next generation sequencing
- PCR, polymerase chain reaction
- SCADD, short chain acyl-CoA dehydrogenase deficiency
- Synergistic heterozygosity
- TFPD, trifunctional protein deficiency
- TMS, tandem mass spectrometry
- VLCADD, very-long-chain acyl-CoA dehydrogenase deficiency
Collapse
|
12
|
Joshi PR, Zierz S. Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach. Molecules 2020; 25:molecules25081784. [PMID: 32295037 PMCID: PMC7221885 DOI: 10.3390/molecules25081784] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) catalyzes the transfer of long- and medium-chain fatty acids from cytoplasm into mitochondria, where oxidation of fatty acids takes place. Deficiency of CPT enzyme is associated with rare diseases of fatty acid metabolism. CPT is present in two subforms: CPT I at the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) inside the mitochondria. Deficiency of CPT II results in the most common inherited disorder of long-chain fatty acid oxidation affecting skeletal muscle. There is a lethal neonatal form, a severe infantile hepato-cardio-muscular form, and a rather mild myopathic form characterized by exercise-induced myalgia, weakness, and myoglobinuria. Total CPT activity (CPT I + CPT II) in muscles of CPT II-deficient patients is generally normal. Nevertheless, in some patients, not detectable to reduced total activities are also reported. CPT II protein is also shown in normal concentration in patients with normal CPT enzymatic activity. However, residual CPT II shows abnormal inhibition sensitivity towards malonyl-CoA, Triton X-100 and fatty acid metabolites in patients. Genetic studies have identified a common p.Ser113Leu mutation in the muscle form along with around 100 different rare mutations. The biochemical consequences of these mutations have been controversial. Hypotheses include lack of enzymatically active protein, partial enzyme deficiency and abnormally regulated enzyme. The recombinant enzyme experiments that we recently conducted have shown that CPT II enzyme is extremely thermoliable and is abnormally inhibited by different emulsifiers and detergents such as malonyl-CoA, palmitoyl-CoA, palmitoylcarnitine, Tween 20 and Triton X-100. Here, we present a conceptual overview on CPT II deficiency based on our own findings and on results from other studies addressing clinical, biochemical, histological, immunohistological and genetic aspects, as well as recent advancements in diagnosis and therapeutic strategies in this disorder.
Collapse
|
13
|
Bhattacharya K, Matar W, Tolun AA, Devanapalli B, Thompson S, Dalkeith T, Lichkus K, Tchan M. The use of sodium DL-3-Hydroxybutyrate in severe acute neuro-metabolic compromise in patients with inherited ketone body synthetic disorders. Orphanet J Rare Dis 2020; 15:53. [PMID: 32070364 PMCID: PMC7029565 DOI: 10.1186/s13023-020-1316-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ketone bodies form a vital energy source for end organs in a variety of physiological circumstances. At different times, the heart, brain and skeletal muscle in particular can use ketones as a primary substrate. Failure to generate ketones in such circumstances leads to compromised energy delivery, critical end-organ dysfunction and potentially death. There are a range of inborn errors of metabolism (IEM) affecting ketone body production that can present in this way, including disorders of carnitine transport into the mitochondrion, mitochondrial fatty acid oxidation deficiencies (MFAOD) and ketone body synthesis. In situations of acute energy deficit, management of IEM typically entails circumventing the enzyme deficiency with replenishment of energy requirements. Due to profound multi-organ failure it is often difficult to provide optimal enteral therapy in such situations and rescue with sodium DL-3-hydroxybutyrate (S DL-3-OHB) has been attempted in these conditions as documented in this paper. Results We present 3 cases of metabolic decompensation, one with carnitine-acyl-carnitine translocase deficiency (CACTD) another with 3-hydroxyl, 3-methyl, glutaryl CoA lyase deficiency (HMGCLD) and a third with carnitine palmitoyl transferase II deficiency (CPT2D). All of these disorders are frequently associated with death in circumstance where catastrophic acute metabolic deterioration occurs. Intensive therapy with adjunctive S DL-3OHB led to rapid and sustained recovery in all. Alternative therapies are scarce in these situations. Conclusion S DL-3-OHB has been utilised in multiple acyl co A dehydrogenase deficiency (MADD) in cases with acute neurological and cardiac compromise with long-term data awaiting publication. The use of S DL-3-OHB is novel in non-MADD fat oxidation disorders and contribute to the argument for more widespread use.
Collapse
Affiliation(s)
- Kaustuv Bhattacharya
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia. .,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
| | - Walid Matar
- Department of Neurology, St George Hospital, Kogarah, NSW, Australia
| | | | | | - Sue Thompson
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Troy Dalkeith
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Kate Lichkus
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Michel Tchan
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Westmead Hospital, University of Sydney, Westmead, Australia
| |
Collapse
|
14
|
Yıldız Y, Tokatlı A. Comment on: “Multiple acyl‑CoA dehydrogenase deficiency in elderly carriers”. J Neurol 2020; 267:1209-1210. [DOI: 10.1007/s00415-020-09752-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/01/2023]
|
15
|
Tucci S, Behringer S, Sturm M, Grünert SC, Spiekerkoetter U. Implementation of a fast method for the measurement of carnitine palmitoyltransferase 2 activity in lymphocytes by tandem mass spectrometry as confirmation for newborn screening. J Inherit Metab Dis 2019; 42:850-856. [PMID: 30957255 DOI: 10.1002/jimd.12098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022]
Abstract
Carnitine palmitoyltransferase II (CPT2) is a rare autosomal recessive inherited disorder affecting mitochondrial β-oxidation. Confirmation diagnostics are mostly based on molecular sequencing of the CPT2 gene, especially to distinguish CPT2 and carnitine:aclycarnitine translocase deficiencies, which present with identical acylcarnitine profiles on newborn screening (NBS). In the past, different enzyme tests in muscle biopsies have been developed in order to study the functional effect in one of the main target organs. In this study, we implemented a method for measurement of CPT2 enzyme activity in human lymphocytes with detection of the reaction products via liquid chromatography mass spectrometry to enable the simultaneous evaluation of the functional impairment and the clear diagnosis of the disease. CPT2 activity was measured in samples collected from CPT2 patients (n = 11), heterozygous carriers (n = 6), and healthy individuals (n = 52). Seven patients out of 11 were homozygous for the common mutation c.338T>C and showed a residual activity with median values of 19.2 ± 3.7% of healthy controls. Heterozygous carriers showed a residual activity in the range of 42% to 75%. Four individuals carrying the heterozygous mutation c.338T>C showed a 2-fold higher residual activity as compared to homozygous individuals. Our optimized method for the measurement of CPT2 activity is able to clearly discriminate between patients and healthy individuals and offers the possibility to determine CPT2 activity in human lymphocytes avoiding the need of an invasive muscle biopsy. This method can be successfully used for confirmation diagnosis in case of positive NBS and would markedly reduce the time to define diagnosis.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sidney Behringer
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Marga Sturm
- Department of General Pediatrics, University Children's Hospital Duesseldorf, Duesseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
16
|
Rubegni A, Malandrini A, Dosi C, Astrea G, Baldacci J, Battisti C, Bertocci G, Donati MA, Dotti MT, Federico A, Giannini F, Grosso S, Guerrini R, Lenzi S, Maioli MA, Melani F, Mercuri E, Sacchini M, Salvatore S, Siciliano G, Tolomeo D, Tonin P, Volpi N, Santorelli FM, Cassandrini D. Next-generation sequencing approach to hyperCKemia: A 2-year cohort study. NEUROLOGY-GENETICS 2019; 5:e352. [PMID: 31517061 PMCID: PMC6705647 DOI: 10.1212/nxg.0000000000000352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023]
Abstract
Objective Next-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition. Methods Sixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies. Results A molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%. Variants of unknown significance were found in 17 patients (26%), whereas 16 cases (24%) remained molecularly undefined. The major features of the diagnosed cases were mild proximal muscle weakness (found in 27%) and myalgia (in 24%). Fourteen patients with a molecular diagnosis and mild myopathic features on muscle biopsy remained asymptomatic at a 24-month follow-up. Conclusions This study of patients with undiagnosed hyperCKemia, highlighting the advantages of NGS used as a first-tier diagnostic approach in genetically heterogeneous conditions, illustrates the ongoing evolution of molecular diagnosis in the field of clinical neurology. Isolated hyperCKemia can be the sole feature alerting to a progressive muscular disorder requiring careful surveillance.
Collapse
Affiliation(s)
- Anna Rubegni
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Alessandro Malandrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Claudia Dosi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Guja Astrea
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Jacopo Baldacci
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Carla Battisti
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Giulia Bertocci
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - M Alice Donati
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - M Teresa Dotti
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Antonio Federico
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Fabio Giannini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Salvatore Grosso
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Renzo Guerrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Sara Lenzi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Maria A Maioli
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Melani
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Eugenio Mercuri
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Michele Sacchini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Simona Salvatore
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Gabriele Siciliano
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Deborah Tolomeo
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Paola Tonin
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Nila Volpi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Filippo M Santorelli
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Denise Cassandrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
17
|
Zach C, Unterkofler K, Fraunberger P, Drexel H, Muendlein A. Unrecognized High Occurrence of Genetically Confirmed Hereditary Carnitine Palmitoyltransferase II Deficiency in an Austrian Family Points to the Ongoing Underdiagnosis of the Disease. Front Genet 2019; 10:497. [PMID: 31191612 PMCID: PMC6540962 DOI: 10.3389/fgene.2019.00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022] Open
Abstract
Adult muscle carnitine palmitoyltransferase (CPT) II deficiency is a rare autosomal recessive disorder of long-chain fatty acid metabolism. It is typically associated with recurrent episodes of exercise-induced rhabdomyolysis and myoglobinuria, in most cases caused by a c.338C > T mutation in the CPT2 gene. Here we present the pedigree of one of the largest family studies of CPT II deficiency caused by the c.338C > T mutation, documented so far. The pedigree comprises 24 blood relatives of the index patient, a 32 year old female with genetically proven CPT II deficiency. In total, the mutation was detected in 20 family members, among them five homozygotes and 15 heterozygotes. Among all homozygotes, first symptoms of CPT II deficiency occurred during childhood. Additionally, two already deceased relatives of the index patient were carriers of at least one copy of the genetic variant, revealing a remarkably high prevalence of the c.338C > T mutation within the tested family. Beside the index patient, only one individual had been diagnosed with CPT II deficiency prior to this study and three cases of CPT II deficiency were newly detected by this family study, pointing to a general underdiagnosis of the disease. Therefore, this study emphasizes the need to raise awareness of CPT II deficiency for correct diagnosis and accurate management of the disease.
Collapse
Affiliation(s)
- Christina Zach
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria.,Medical Central Laboratories, Feldkirch, Austria
| | - Karl Unterkofler
- Breath Research Institute, University of Innsbruck, Dornbirn, Austria.,Vorarlberg University of Applied Sciences, Dornbirn, Austria
| | - Peter Fraunberger
- Medical Central Laboratories, Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Division of Angiology, Swiss Cardiovascular Center, University Hospital of Bern, Bern, Switzerland.,Drexel University College of Medicine, Philadelphia, PA, United States
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| |
Collapse
|
18
|
Angelini C, Pennisi E, Missaglia S, Tavian D. Metabolic lipid muscle disorders: biomarkers and treatment. Ther Adv Neurol Disord 2019; 12:1756286419843359. [PMID: 31040882 PMCID: PMC6477769 DOI: 10.1177/1756286419843359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Lipid storage myopathies (LSMs) are metabolic disorders of the utilization of fat in muscles due to several different defects. In this review, a molecular update of LSMs is presented and recent attempts of finding treatment options are discussed. The main topics discussed are: primary carnitine deficiency, riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency, neutral lipid storage disorders and carnitine palmitoyl transferase deficiency. The most frequent presentations and genetic abnormalities are summarized. We present their diagnosis utilizing biomedical and morphological biomarkers and possible therapeutic interventions. The treatment of these metabolic disorders is a subject of active translational research but appears, in some cases, still elusive.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via Alberoni 70, Venezia 30126, Italia
| | - Elena Pennisi
- Division of Neurology, S Filippo Neri Hospital, Rome, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan, Italy Psychology Department, Catholic University of the Sacred Heart, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan, Italy Psychology Department, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
19
|
Carnitine palmitoyltransferase II deficiency with a focus on newborn screening. J Hum Genet 2018; 64:87-98. [PMID: 30514913 DOI: 10.1038/s10038-018-0530-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022]
Abstract
Carnitine palmitoyltransferase (CPT) II deficiency is one of the most common forms of mitochondrial fatty acid oxidation disorder. Its clinical phenotypes are classified into the muscle, severe infantile, and lethal neonatal forms. Among Caucasians, the muscle form predominates, and the c.338C > T (p.S113L) variant is detected in most cases, whereas among the Japanese, c.1148T > A (p.F383Y) is the variant allele occurring with the highest frequency and can apparently cause symptoms of the severe infantile form. Newborn screening (NBS) for this potentially fatal disease has not been established. We encountered an infantile case of CPT II deficiency not detected in NBS using C16 and C18:1 concentrations as indices, and therefore we adopted the (C16 + C18:1)/C2 ratio as an alternative primary index. As a result, the disease was diagnosed in nine of 31 NBS-positive subjects. The values for (C16 + C18:1)/C2 in the affected newborns partly overlapped with those in unaffected ones. Among several other indices proposed previously, C14/C3 has emerged as a more promising index. Based on these findings, nationwide NBS for CPT II deficiency using both (C16 + C18:1)/C2 and C14/C3 as indices was officially approved and started in April 2018. We diagnosed the disease in four young children presenting with symptoms of the muscle form, whose values for the new indices were not elevated. Although it is still difficult to detect all cases of the muscle form of CPT II deficiency in NBS, our system is expected to save many affected children in Japan with the severe infantile form predominating.
Collapse
|
20
|
Blah N, Sudrié-Arnaud B, Torre S, Marret S, Bekri S, Tebani A. Acute Respiratory Infection Unveiling CPT II Deficiency. Int J Mol Sci 2018; 19:ijms19102950. [PMID: 30262761 PMCID: PMC6213613 DOI: 10.3390/ijms19102950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023] Open
Abstract
Carnitine Palmitoyl transferase 2 (CPT II) is involved in long-chain fatty-acid mitochondrial transport. Three clinical phenotypes of CPT II deficiency have been described: Lethal neonatal onset, infantile severe form, and the late onset more common muscular form. The muscular form of CPT II deficiency is characterized by pain crises and rhabdomyolysis triggered by energy-dependent factors. This form has been described as a benign condition; however, the acute crises are insidious and thus, pose a risk of death. We report a 3-year-old female child with an acute pulmonary infection and a concomitant rhabdomyolysis. The acylcarnitine profile was consistent with CPT II deficiency and a molecular study allowed the identification of the common missense variant (NM_000098.2: c.338C>T – p. Ser113Leu) at the homozygous state. The striking difference between the initial cause and the decompensation severity prompted us to consider other diagnoses. Deciphering the symptoms linked to CPT II deficiency among those of the initial decompensation results in initiating a timely a targeted therapy.
Collapse
Affiliation(s)
- Nicolas Blah
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France.
- Department of Internal Medicine, Rouen University Hospital, 76000 Rouen, France.
| | | | - Stéphanie Torre
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France.
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France.
- Normandie Université, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France.
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France.
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France.
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France.
| |
Collapse
|
21
|
Avila-Smirnow D, Boutron A, Beytía-Reyes MDLÁ, Contreras-Olea O, Caicedo-Feijoo A, Gejman-Enríquez R, Escobar-Henríquez R, Förster-Mujica J. Carnitine palmitoyltransferase type 2 deficiency: novel mutation in a Native South American family with whole-body muscle magnetic resonance imaging findings: two case reports. J Med Case Rep 2018; 12:249. [PMID: 30149802 PMCID: PMC6112146 DOI: 10.1186/s13256-018-1702-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background The myopathic form of carnitine palmitoyltransferase type II deficiency is an inherited autosomal recessive metabolic myopathy usually starting in childhood. Most reports have been on European and Japanese populations, and no Native South American patients have been reported to date. The p.Ser113Leu mutation is the most frequent in the European population. Only lower-leg magnetic resonance imaging findings have been reported, with gluteus maximus involvement in one case and normal imaging in other patients. Case presentation Two Native South American siblings, a boy and a girl, presented to our neuromuscular clinic with recurrent rhabdomyolysis associated with transient muscle weakness after prolonged exercise. During episodes, their creatine kinase concentrations were markedly increased, up to 148,000 (1.48 × 105) IU/L in the boy and 18,000 (1.8 × 104) IU/L in the girl. The results of electroneuromyography and histopathology suggested a nonspecific myopathy. CPT2 gene sequencing showed two heterozygous mutations: the p.Ser113Leu variant and a novel one (predicted to be deleterious by in silico analysis), the p.Ser373Pro variant. The patients’ parents were asymptomatic carriers. Whole-body magnetic resonance imaging showed mild selective involvement in the thoracic extensors and pelvic girdle in both siblings, and in the thighs and lower legs in one of them. Dietary and bezafibrate treatment was started, and symptomatic relief was observed. Conclusions To the best of our knowledge, this is the first reported Native South American family with a CPT2 deficiency carrying a novel mutation and particular features visualized by whole-body magnetic resonance imaging.
Collapse
Affiliation(s)
- Daniela Avila-Smirnow
- Unidad de Neurología, Servicio de Pediatría, Complejo Asistencial Dr. Sotero del Río, Avenida Concha y Toro 3459, Puente Alto, Santiago, Chile. .,Unidad Docente Asistencial-Sótero del Río, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Unidad de Neurología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Audrey Boutron
- Biochemistry Department, CHU Bicetre, Hôpitaux Paris-Sud, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - María de Los Ángeles Beytía-Reyes
- Unidad de Neurología, Servicio de Pediatría, Complejo Asistencial Dr. Sotero del Río, Avenida Concha y Toro 3459, Puente Alto, Santiago, Chile.,Unidad Docente Asistencial-Sótero del Río, Pontificia Universidad Católica de Chile, Santiago, Chile.,Unidad de Neurología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Contreras-Olea
- Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Roger Gejman-Enríquez
- Departamento de Anatomía Patológica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raúl Escobar-Henríquez
- Unidad de Neurología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Förster-Mujica
- Unidad de Neurología, Servicio de Pediatría, Complejo Asistencial Dr. Sotero del Río, Avenida Concha y Toro 3459, Puente Alto, Santiago, Chile.,Unidad Docente Asistencial-Sótero del Río, Pontificia Universidad Católica de Chile, Santiago, Chile.,Unidad de Neurología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Phowthongkum P, Ittiwut C, Shotelersuk V. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation. JIMD Rep 2017; 41:11-16. [PMID: 29159461 DOI: 10.1007/8904_2017_74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. CASE PRESENTATION We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. CONCLUSION Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.
Collapse
Affiliation(s)
- P Phowthongkum
- Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Medical Genetics Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| | - C Ittiwut
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - V Shotelersuk
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
23
|
Muscle Carnitine Palmitoyltransferase II Deficiency: A Review of Enzymatic Controversy and Clinical Features. Int J Mol Sci 2017; 18:ijms18010082. [PMID: 28054946 PMCID: PMC5297716 DOI: 10.3390/ijms18010082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
CPT (carnitine palmitoyltransferase) II muscle deficiency is the most common form of muscle fatty acid metabolism disorders. In contrast to carnitine deficiency, it is clinically characterized by attacks of myalgia and rhabdomyolysis without persistent muscle weakness and lipid accumulation in muscle fibers. The biochemical consequences of the disease-causing mutations are still discussed controversially. CPT activity in muscles of patients with CPT II deficiency ranged from not detectable to reduced to normal. Based on the observation that in patients, total CPT is completely inhibited by malony-CoA, a deficiency of malonyl-CoA-insensitive CPT II has been suggested. In contrast, it has also been shown that in muscle CPT II deficiency, CPT II protein is present in normal concentrations with normal enzymatic activity. However, CPT II in patients is abnormally sensitive to inhibition by malonyl-CoA, Triton X-100 and fatty acid metabolites. A recent study on human recombinant CPT II enzymes (His6-N-hCPT2 and His6-N-hCPT2/S113L) revealed that the wild-type and the S113L variants showed the same enzymatic activity. However, the mutated enzyme showed an abnormal thermal destabilization at 40 and 45 °C and an abnormal sensitivity to inhibition by malony-CoA. The thermolability of the mutant enzyme might explain why symptoms in muscle CPT II deficiency mainly occur during prolonged exercise, infections and exposure to cold. In addition, the abnormally regulated enzyme might be mostly inhibited when the fatty acid metabolism is stressed.
Collapse
|
24
|
Ferrara AM, Sciacco M, Zovato S, Rizzati S, Colombo I, Boaretto F, Moggio M, Opocher G. Coexistence of VHL Disease and CPT2 Deficiency: A Case Report. Cancer Res Treat 2016; 48:1438-1442. [PMID: 27034144 PMCID: PMC5080814 DOI: 10.4143/crt.2015.450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/14/2016] [Indexed: 01/02/2023] Open
Abstract
von Hippel-Lindau (VHL) disease is an inherited syndrome manifesting with benign and malignant tumors. Deficiency of carnitine palmitoyltransferase type II (CPT2) is a disorder of lipid metabolism that, in the muscle form, manifests with recurrent attacks of myalgias often associated with myoglobinuria. Rhabdomyolytic episodes may be complicated by life-threatening events, including acute renal failure (ARF). We report on a male patient who was tested, at 10 years of age, for VHL disease because of family history of VHL. He was diagnosed with VHL but without VHL-related manifestation at the time of diagnosis. During childhood, the patient was hospitalized several times for diffuse muscular pain, muscle weakness, and dark urine. These recurrent attacks of rhabdomyolysis were never accompanied by ARF. The patient was found to be homozygous for the mutation p.S113L of the CPT2 gene. To the best of our knowledge, this is the first report of the coexistence of VHL disease and CPT2 deficiency in the same individual. Based on findings from animal models, the case illustrates that mutations in the VHL gene might protect against renal damage caused by CPT2 gene mutations.
Collapse
Affiliation(s)
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Zovato
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Silvia Rizzati
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Irene Colombo
- Neuromuscular and Rare Disease Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Boaretto
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giuseppe Opocher
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Medicine, DIMED University of Padua, Padua, Italy
| |
Collapse
|
25
|
Motlagh L, Golbik R, Sippl W, Zierz S. Stabilization of the thermolabile variant S113L of carnitine palmitoyltransferase II. NEUROLOGY-GENETICS 2016; 2:e53. [PMID: 27123472 PMCID: PMC4830186 DOI: 10.1212/nxg.0000000000000053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Muscle carnitine palmitoyltransferase (CPT) II deficiency, the most common defect of lipid metabolism in muscle, is characterized by attacks of myoglobinuria without persistent muscle weakness. METHODS His6-N-hCPT2 (wild-type) and His6-N-hCPT2/S113L (variant) were produced recombinantly in prokaryotic host and characterized according to their functional and regulatory properties. RESULTS The wild-type and the variant S113L showed the same enzymatic activity and thermostability at 30°C. The mutated enzyme, however, revealed an abnormal thermal destabilization at 40°C and 45°C. This was consistent with an increased flexibility (B-factor) of the variant at 40°C compared with that of the wild-type shown by molecular dynamics analysis. Preincubation of the enzymes with l-carnitine and acyl-l-carnitines containing more than 10 carbons in the acyl side-chain stabilized the mutated enzyme against thermal inactivation. In contrast, palmitoyl-CoA destabilized both enzymes. CONCLUSIONS The problems in CPT II deficiency originating from the S113L mutation are not caused by the loss of catalytically active enzyme. They might be at least partially related to an impaired thermal stability of the protein. The lower thermodynamic stability of the variant might explain why fever and prolonged exertion provoke attacks of myoglobinuria in CPT II deficiency. The stabilization by acyl-l-carnitines might provide the basis for possible preventive therapy of CPT II deficiency.
Collapse
Affiliation(s)
- Leila Motlagh
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralph Golbik
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
26
|
Missaglia S, Tasca E, Angelini C, Moro L, Tavian D. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol Genet Metab 2015; 115:110-7. [PMID: 25956450 DOI: 10.1016/j.ymgme.2015.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/18/2022]
Abstract
Neutral lipid storage disease with myopathy (NLSD-M) is a rare autosomal recessive disorder characterised by an abnormal accumulation of triacylglycerol into cytoplasmic lipid droplets (LDs). NLSD-M patients are mainly affected by progressive myopathy, cardiomyopathy and hepatomegaly. Mutations in the PNPLA2 gene cause variable phenotypes of NLSD-M. PNPLA2 codes for adipose triglyceride lipase (ATGL), an enzyme that hydrolyses fatty acids from triacylglycerol. This report outlines the clinical and genetic findings in a NLSD-M Italian family with three affected members. In our patients, we identified two novel PNPLA2 missense mutations (p.L56R and p.I193F). Functional data analysis demonstrated that these mutations caused the production of ATGL proteins able to bind to LDs, but with decreased lipase activity. The oldest brother, at the age of 38, had weakness and atrophy of the right upper arm and kyphosis. Now he is 61 years old and is unable to raise arms in the horizontal position. The second brother, from the age of 44, had exercise intolerance, cramps and pain in lower limbs. He is currently 50 years old and has an asymmetric distal amyotrophy. One of the two sisters, 58 years old, presents the same PNPLA2 mutations, but she is still oligo-symptomatic on neuromuscular examination with slight triceps muscle involvement. She suffered from diabetes and liver steatosis. This NLSD-M family shows a wide range of intra-familial phenotypic variability in subjects carrying the same mutations, both in terms of target-organs and in terms of rate of disease progression.
Collapse
Affiliation(s)
- Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan, Italy
| | | | | | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan, Italy; Psychology Department, Catholic University of the Sacred Heart, Milan, Italy.
| |
Collapse
|
27
|
Boemer F, Deberg M, Schoos R, Caberg JH, Gaillez S, Dugauquier C, Delbecque K, François A, Maton P, Demonceau N, Senterre G, Ferdinandusse S, Debray FG. Diagnostic pitfall in antenatal manifestations of CPT II deficiency. Clin Genet 2015; 89:193-7. [PMID: 25827434 DOI: 10.1111/cge.12593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022]
Abstract
Carnitine palmitoyltransferase II (CPT2) deficiency is a rare inborn error of mitochondrial fatty acid metabolism associated with various phenotypes. Whereas most patients present with postnatal signs of energetic failure affecting muscle and liver, a small subset of patients presents antenatal malformations including brain dysgenesis and neuronal migration defects. Here, we report recurrence of severe cerebral dysgenesis with Dandy-Walker malformation in three successive pregnancies and review previously reported antenatal cases. Interestingly, we also report that acylcarnitines profile, tested retrospectively on the amniotic fluid of last pregnancy, was not sensitive enough to allow reliable prenatal diagnosis of CPT2 deficiency. Finally, because fetuses affected by severe cerebral malformations are frequently aborted, CPT2 deficiency may be underestimated and fatty acid oxidation disorders should be considered when faced with a fetus with Dandy-Walker anomaly or another brain dysgenesis.
Collapse
Affiliation(s)
- F Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - M Deberg
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - R Schoos
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - J-H Caberg
- Molecular Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - S Gaillez
- Clinical Genetics, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - C Dugauquier
- Department of Pathology, Institut de Pathologie et de Génétique, Charleroi, Belgium
| | - K Delbecque
- Department of Pathology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - A François
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - P Maton
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - N Demonceau
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - G Senterre
- Department of Gynecology-Obstetrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - S Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - F-G Debray
- Clinical Genetics, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium.,Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium.,Metabolic Unit, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| |
Collapse
|
28
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
29
|
Abbreviated half-lives and impaired fuel utilization in carnitine palmitoyltransferase II variant fibroblasts. PLoS One 2015; 10:e0119936. [PMID: 25781464 PMCID: PMC4364069 DOI: 10.1371/journal.pone.0119936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/28/2015] [Indexed: 12/17/2022] Open
Abstract
Carnitine palmitoyltransferase II (CPT II) deficiency is one of the most common causes of fatty acid oxidation metabolism disorders. However, the molecular mechanism between CPT2 gene polymorphisms and metabolic stress has not been fully clarified. We previously reported that a number of patients show a thermal instable phenotype of compound hetero/homozygous variants of CPT II. To understand the mechanism of the metabolic disorder resulting from CPT II deficiency, the present study investigated CPT II variants in patient fibroblasts, [c.1102 G>A (p.V368I)] (heterozygous), [c.1102 G>A (p.V368I)] (homozygous), and [c.1055 T>G (p.F352C)] (heterozygous) + [c.1102 G>A (p.V368I)] (homozygous) compared with fibroblasts from healthy controls. CPT II variants exerted an effect of dominant negative on the homotetrameric proteins that showed thermal instability, reduced residual enzyme activities and a short half-life. Moreover, CPT II variant fibroblasts showed a significant decrease in fatty acid β-oxidation and adenosine triphosphate generation, combined with a reduced mitochondrial membrane potential, resulting in cellular apoptosis. Collectively, our data indicate that the CPT II deficiency induces an energy crisis of the fatty acid metabolic pathway. These findings may contribute to the elucidation of the genetic factors involved in metabolic disorder encephalopathy caused by the CPT II deficiency.
Collapse
|
30
|
Abstract
Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days after an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. Clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbances, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid β-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle-cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. Muscle Nerve 51: 793-810, 2015.
Collapse
Affiliation(s)
- Jessica R Nance
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew L Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1146, Bethesda, Maryland, 20892, USA
| |
Collapse
|
31
|
Spectrum of metabolic myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:615-21. [PMID: 24997454 DOI: 10.1016/j.bbadis.2014.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022]
Abstract
Metabolic myopathies are disorders of utilization of carbohydrates or fat in muscles. The acute nature of energy failure is manifested either by a metabolic crisis with weakness, sometimes associated with respiratory failure, or by myoglobinuria. A typical disorder where permanent weakness occurs is glycogenosis type II (GSDII or Pompe disease) both in infantile and late-onset forms, where respiratory insufficiency is manifested by a large number of cases. In GSDII the pathogenetic mechanism is still poorly understood, and has to be attributed more to structural muscle alterations, possibly in correlation to macro-autophagy, rather than to energetic failure. This review is focused on recent advances about GSDII and its treatment, and the most recent notions about the management and treatment of other metabolic myopathies will be briefly reviewed, including glycogenosis type V (McArdle disease), glycogenosis type III (debrancher enzyme deficiency or Cori disease), CPT-II deficiency, and ETF-dehydrogenase deficiency (also known as riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency or RR-MADD). The discovery of the genetic defect in ETF dehydrogenase confirms the etiology of this syndrome. Other metabolic myopathies with massive lipid storage and weakness are carnitine deficiency, neutral lipid storage-myopathy (NLSD-M), besides RR-MADD. Enzyme replacement therapy is presented with critical consideration and for each of the lipid storage disorders, representative cases and their response to therapy is included. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
|
32
|
Joshi PR, Deschauer M, Zierz S. Carnitine palmitoyltransferase II (CPT II) deficiency: genotype-phenotype analysis of 50 patients. J Neurol Sci 2013; 338:107-11. [PMID: 24398345 DOI: 10.1016/j.jns.2013.12.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
Clinical, biochemical and molecular genetic data in a cohort of 50 patients with muscle CPT II deficiency are reported. Attacks of myoglobinuria occurred in 86% of patients. In 94% of patients the triggering factor was exercise. Although the myopathic form is often called the adult from, in 60% of patients, the age of onset was in childhood (1-12 years). All the patients in whom biochemical activity was measured had normal enzyme activity of total CPT I+II but the activity was significantly inhibited by malonyl-CoA and Triton. The p.S113L mutation was detected in 38/40 index patients (95%) in at least one allele. Sixty percent of index patients were homozygous for this mutation. Thirteen other mutations, all in compound heterozygote form, were also identified. There was no significant difference in ages of onset, clinical and biochemical phenotype of patients with p.S113L mutation in homozygous or compound heterozygous form. The exception was a tendency of slightly higher residual enzyme activity upon malonyl-CoA inhibition in compound heterozygotes. Phenotype was also not significantly different in patients with missense mutations on both alleles and patients with truncating mutation on one allele and missense mutation on the other allele. However, the only exception was that, attacks were triggered by fasting in almost all the patients with truncating mutations. In contrast, fasting triggered the attacks only in one third of patients with missense mutations on both alleles. The data indicate that within the muscle form of CPT II deficiency, the various genotypes have only marginal influence on the clinical and biochemical phenotype.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Angelini C, Nascimbeni AC, Semplicini C. Therapeutic advances in the management of Pompe disease and other metabolic myopathies. Ther Adv Neurol Disord 2013; 6:311-21. [PMID: 23997816 DOI: 10.1177/1756285613487570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The world of metabolic myopathies has been dramatically modified by the advent of enzyme replacement therapy (ERT), the first causative treatment for glycogenosis type II (GSDII) or Pompe disease, which has given new impetus to research into that disease and also other pathologies. This article reviews new advances in the treatment of GSDII, the consensus about ERT, and its limitations. In addition, the most recent knowledge regarding the pathophysiology, phenotype, and genotype of the disease is discussed. Pharmacological, immunotherapy, nutritional, and physical/rehabilitative treatments for late-onset Pompe disease and other metabolic myopathies are covered, including treatments for defects in glycogen metabolism, such as glycogenosis type V (McArdle disease), and glycogenosis type III (debrancher enzyme deficiency), and defects in lipid metabolism, such as carnitine palmitoyltransferase II deficiency and electron transferring flavoprotein dehydrogenase deficiency, or riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency.
Collapse
|
34
|
Khan HA, Alhomida AS. Single nucleotide polymorphism in CPT1B and CPT2 genes and its association with blood carnitine levels in acute myocardial infarction patients. Gene 2013; 523:76-81. [PMID: 23566841 DOI: 10.1016/j.gene.2013.03.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 02/05/2023]
Abstract
Ischemic and reperfusion injuries in acute myocardial infarction (AMI) lead to mitochondrial dysfunction in heart cells. Lipid metabolism takes place in mitochondria where carnitine palmitoyltransferase (CPT) enzyme system facilitates the transport of long-chain fatty acids into matrix to provide substrates for beta-oxidation. We sequenced the coding regions of CPT1B and CPT2 genes to identify the single nucleotide polymorphism (SNP) in 23 AMI patients and 23 normal subjects. We also determined blood carnitine levels in these samples to study the impact of these SNPs on carnitine homeostasis. The sequencing of coding regions revealed 4 novel variants in CPT1B gene (G320D, S427C, E531K, and A627E) and 2 variants in CPT2 gene (V368I and M647V). There were significant increases in total carnitine (54.18±3.11 versus 21.49±1.03μmol/l) and free carnitine (37.78±1.87 versus 10.06±0.80μmol/l) levels in AMI patients as compared to normal subjects. CPT1B heterozygous variants of G320D and S427C among control subjects showed significantly higher levels of total and free carnitine in the blood. The homozygous genotype (AA) of CPT2 variant V368I had significantly less blood carnitine in AMI patients. Serum troponin T was significantly less in GG genotype of CPT1B variant S427C whereas the genotype AA of CPT2 variant V368I showed significantly higher serum troponin T levels. Further studies on large number of patients are necessary to confirm the role of CPT1B and CPT2 polymorphism in AMI.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
35
|
Joshi PR, Young P, Deschauer M, Zierz S. Expanding mutation spectrum in CPT II gene: identification of four novel mutations. J Neurol 2013; 260:1412-4. [PMID: 23475205 DOI: 10.1007/s00415-013-6887-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|