1
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
2
|
Hall JG. The mystery of monozygotic twinning II: What can monozygotic twinning tell us about Amyoplasia from a review of the various mechanisms and types of monozygotic twinning? Am J Med Genet A 2021; 185:1822-1835. [PMID: 33765349 DOI: 10.1002/ajmg.a.62177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Monozygotic (MZ) twins ("identical twins") are essentially unique to human beings. Why and how they arise is not known. This article reviews the possible different types of MZ twinning recognized in the previous article on twins and arthrogryposis. There appear to be at least three subgroups of MZ twinning: spontaneous, familial, and those related to artificial reproductive technologies. Each is likely to have different etiologies and different secondary findings. Spontaneous MZ twinning may relate to "overripe ova." Amyoplasia, a specific nongenetic form of arthrogryposis, appears to occur in spontaneous MZ twinning and may be related to twin-twin transfusion.
Collapse
Affiliation(s)
- Judith G Hall
- University of British Columbia and Children's and Women's Health Centre of British Columbia, Department of Pediatrics and Medical Genetics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Long-term probiotic intervention mitigates memory dysfunction through a novel H3K27me3-based mechanism in lead-exposed rats. Transl Psychiatry 2020; 10:25. [PMID: 32066679 PMCID: PMC7026181 DOI: 10.1038/s41398-020-0719-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/07/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic lead exposure is associated with the development of neurodegenerative diseases, characterized by the long-term memory decline. However, whether this pathogenesis could be prevented through adjusting gut microbiota is not yet understood. To address the issue, pregnant rats and their female offspring were treated with lead (125 ppm) or separately the extra probiotics (1010 organisms/rat/day) till adulthood. For results, memory dysfunction was alleviated by the treatment of multispecies probiotics. Meanwhile, the gut microbiota composition was partially normalized against lead-exposed rats, which in turn mediated the memory repairment via fecal transplantation trials. In the molecular aspect, the decreased H3K27me3 (trimethylation of histone H3 Lys 27) in the adult hippocampus was restored with probiotic intervention, an epigenetic event mediated by EZH2 (enhancer of zeste homolog 2) at early developmental stage. In a neural cellular model, EZH2 overexpression showed the similar rescue effect with probiotics, whereas its blockade led to the neural re-damages. Regarding the gut-brain inflammatory mediators, the disrupted IL-6 (interleukin 6) expression was resumed by probiotic treatment. Intraperitoneal injection of tocilizumab, an IL-6 receptor antagonist, upregulated the hippocampal EZH2 level and consequently alleviated the memory injuries. In conclusion, reshaping gut microbiota could mitigate memory dysfunction caused by chronic lead exposure, wherein the inflammation-hippocampal epigenetic pathway of IL-6-EZH2-H3K27me3, was first proposed to mediate the studied gut-brain communication. These findings provided insight with epigenetic mechanisms underlying a unique gut-brain interaction, shedding light on the safe and non-invasive treatment of neurodegenerative disorders with environmental etiology.
Collapse
|
4
|
Sawada J, Katayama T, Tokashiki T, Kikuchi S, Kano K, Takahashi K, Saito T, Adachi Y, Okamoto Y, Yoshimura A, Takashima H, Hasebe N. The First Case of Spinocerebellar Ataxia Type 8 in Monozygotic Twins. Intern Med 2020; 59:277-283. [PMID: 31554751 PMCID: PMC7008061 DOI: 10.2169/internalmedicine.2905-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) is a rare hereditary cerebellar ataxia showing mainly pure cerebellar ataxia. We herein report cases of SCA8 in Japanese monozygotic twins that presented with nystagmus, dysarthria, and limb and truncal ataxia. Their ATXN8OS CTA/CTG repeats were 25/97. They showed similar manifestations, clinical courses, and cerebellar atrophy on magnetic resonance imaging. Some of their pedigrees had nystagmus but not ataxia. These are the first monozygotic twins with SCA8 to be reported anywhere in the world. Although not all subjects with the ATXN8OS CTG expansion develop cerebellar ataxia, these cases suggest the pathogenesis of ATXN8OS repeat expansions in hereditary cerebellar ataxia.
Collapse
Affiliation(s)
- Jun Sawada
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Takayuki Katayama
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Takashi Tokashiki
- Department of Neurology, National Hospital Organization Okinawa Hospital, Japan
| | - Shiori Kikuchi
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Kohei Kano
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Kae Takahashi
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Saito
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Yoshiki Adachi
- Department of Neurology, National Hospital Organization Matsue Medical Center, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Naoyuki Hasebe
- Division of Neurology, Department of Internal Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
5
|
Vadgama N, Pittman A, Simpson M, Nirmalananthan N, Murray R, Yoshikawa T, De Rijk P, Rees E, Kirov G, Hughes D, Fitzgerald T, Kristiansen M, Pearce K, Cerveira E, Zhu Q, Zhang C, Lee C, Hardy J, Nasir J. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. Eur J Hum Genet 2019; 27:1121-1133. [PMID: 30886340 DOI: 10.1038/s41431-019-0376-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/11/2023] Open
Abstract
Recent studies have demonstrated genetic differences between monozygotic (MZ) twins. To test the hypothesis that early post-twinning mutational events associate with phenotypic discordance, we investigated a cohort of 13 twin pairs (n = 26) discordant for various clinical phenotypes using whole-exome sequencing and screened for copy number variation (CNV). We identified a de novo variant in PLCB1, a gene involved in the hydrolysis of lipid phosphorus in milk from dairy cows, associated with lactase non-persistence, and a variant in the mitochondrial complex I gene MT-ND5 associated with amyotrophic lateral sclerosis (ALS). We also found somatic variants in multiple genes (TMEM225B, KBTBD3, TUBGCP4, TFIP11) in another MZ twin pair discordant for ALS. Based on the assumption that discordance between twins could be explained by a common variant with variable penetrance or expressivity, we screened the twin samples for known pathogenic variants that are shared and identified a rare deletion overlapping ARHGAP11B, in the twin pair manifesting with either schizotypal personality disorder or schizophrenia. Parent-offspring trio analysis was implemented for two twin pairs to assess potential association of variants of parental origin with susceptibility to disease. We identified a de novo variant in RASD2 shared by 8-year-old male twins with a suspected diagnosis of autism spectrum disorder (ASD) manifesting as different traits. A de novo CNV duplication was also identified in these twins overlapping CD38, a gene previously implicated in ASD. In twins discordant for Tourette's syndrome, a paternally inherited stop loss variant was detected in AADAC, a known candidate gene for the disorder.
Collapse
Affiliation(s)
- Nirmal Vadgama
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Alan Pittman
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael Simpson
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Takeo Yoshikawa
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Peter De Rijk
- Applied Molecular Genomics Group, University of Antwerp, Antwerp, Belgium
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Deborah Hughes
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | | | - Mark Kristiansen
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kerra Pearce
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Eliza Cerveira
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Qihui Zhu
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Chengsheng Zhang
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Charles Lee
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - John Hardy
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jamal Nasir
- Cell Biology and Genetics Research Centre, St. George's University of London, London, UK. .,Molecular Biosciences Research Group, University of Northampton, Northampton, NN1 5PH, UK.
| |
Collapse
|
6
|
Grewal DS, Polascik BW, Hoffmeyer GC, Fekrat S. Assessment of Differences in Retinal Microvasculature Using OCT Angiography in Alzheimer's Disease: A Twin Discordance Report. Ophthalmic Surg Lasers Imaging Retina 2019; 49:440-444. [PMID: 29927472 DOI: 10.3928/23258160-20180601-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
Abstract
The authors report the optical coherence tomography angiography (OCTA)-based comparative assessment of the retinal microvasculature in a rare pair of 96-year-old female monozygotic twins discordant for Alzheimer's disease (AD). Using automated mapping of the superficial capillary plexus, the authors observed that the twin with advanced AD had a significantly reduced vessel density and a larger foveal avascular zone in the superficial capillary plexus as well as a thinner choroid compared to the twin who was cognitively normal. This unique twin discordance report adds to the evidence supporting the use of retinal microvasculature changes in the superficial capillary plexus on OCTA as a possible noninvasive biomarker for AD. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:440-444.].
Collapse
|
7
|
Nethisinghe S, Lim WN, Ging H, Zeitlberger A, Abeti R, Pemble S, Sweeney MG, Labrum R, Cervera C, Houlden H, Rosser E, Limousin P, Kennedy A, Lunn MP, Bhatia KP, Wood NW, Hardy J, Polke JM, Veneziano L, Brusco A, Davis MB, Giunti P. Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Front Cell Neurosci 2018; 12:429. [PMID: 30532692 PMCID: PMC6265347 DOI: 10.3389/fncel.2018.00429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder.
Collapse
Affiliation(s)
- Suran Nethisinghe
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Wei N Lim
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Heather Ging
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Anna Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sally Pemble
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Mary G Sweeney
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robyn Labrum
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Charisse Cervera
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Angus Kennedy
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael P Lunn
- Department of Neuroimmunology, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom.,The Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - James M Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Liana Veneziano
- Istituto di Farmacologia Traslazionale - National Research Council, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Mary B Davis
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease. Twin Res Hum Genet 2018; 20:521-532. [PMID: 29192580 PMCID: PMC5729853 DOI: 10.1017/thg.2017.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.
Collapse
|
9
|
Chen F, Li Z, Li R, Li Y. Whole‑genome sequencing of a monozygotic twin discordant for systemic lupus erythematosus. Mol Med Rep 2018; 17:8391-8396. [PMID: 29693174 DOI: 10.3892/mmr.2018.8912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, and its genetic causes remain to be fully elucidated. Previous studies have identified several susceptibility genes for SLE, such as deoxyribonuclease 1‑like 3. In the present study, whole‑genome sequencing (30X coverage) was performed on the leukocytes of a monozygotic twin discordant for SLE to assess the potential association of de novo variants and copy number variations (CNVs) with the susceptibility to SLE. After analyzing the genomic data, 8 putative discordant exonic variants between the twins were selected. However, the 8 variants that were chosen for validation with Sanger sequencing exhibited no discrepancy in the leukocytes from the twins. Of note, CNV alterations in genes of SLE‑associated pathways were identified between the twins, which may be linked with the phenotype of the monozygotic twin discordant for SLE. The above results suggest that genomic sequences of leukocytes in the monozygotic twins may exhibit a rare difference, and that CNV changes may be associated with phenotype differences in the twin discordant for SLE.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Zhen Li
- Department of Breast Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Rong Li
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yunlong Li
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
Robinson N, Grabowski P, Rehman I. Alzheimer's disease pathogenesis: Is there a role for folate? Mech Ageing Dev 2017; 174:86-94. [PMID: 29037490 DOI: 10.1016/j.mad.2017.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications, including changes in DNA methylation, have been implicated in a wide range of diseases including neurological diseases such as Alzheimer's. The role of dietary folate in providing methyl groups required for maintenance and modulation of DNA methylation makes it a nutrient of interest in Alzheimer's. Late onset Alzheimer's disease is the most common form of dementia and at present its aetiology is largely undetermined. From epidemiological studies, the interactions between folate, B-vitamins and homocysteine as well as the long latency period has led to difficulties in interpretation of the data, thus current evidence exploring the role of dietary folate in Alzheimer's is contradictory and unresolved. Therefore, examining the effects at a molecular level and exploring potential epigenetic mechanisms could increase our understanding of the disease and aetiology. The aim of this review is to examine the role that folate could play in Alzheimer's disease neuropathology and will focus on the effects of folate on DNA methylation which link to disease pathology, initiation and progression.
Collapse
Affiliation(s)
- Natassia Robinson
- Institute of Health & Society, University of Newcastle upon Tyne, United Kingdom.
| | - Peter Grabowski
- Human Nutrition Unit, Department of Oncology & Metabolism, University of Sheffield, United Kingdom
| | - Ishtiaq Rehman
- Academic Urology Unit, Department of Oncology and Metabolism, University of Sheffield, United Kingdom
| |
Collapse
|
11
|
Engstrom AK, Snyder JM, Maeda N, Xia Z. Gene-environment interaction between lead and Apolipoprotein E4 causes cognitive behavior deficits in mice. Mol Neurodegener 2017; 12:14. [PMID: 28173832 PMCID: PMC5297175 DOI: 10.1186/s13024-017-0155-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by progressive cognitive decline and memory loss. Environmental factors and gene-environment interactions (GXE) may increase AD risk, accelerate cognitive decline, and impair learning and memory. However, there is currently little direct evidence supporting this hypothesis. Methods In this study, we assessed for a GXE between lead and ApoE4 on cognitive behavior using transgenic knock-in (KI) mice that express the human Apolipoprotein E4 allele (ApoE4-KI) or Apolipoprotein E3 allele (ApoE3-KI). We exposed 8-week-old male and female ApoE3-KI and ApoE4-KI mice to 0.2% lead acetate via drinking water for 12 weeks and assessed for cognitive behavior deficits during and after the lead exposure. In addition, we exposed a second (cellular) cohort of animals to lead and assessed for changes in adult hippocampal neurogenesis as a potential underlying mechanism for lead-induced learning and memory deficits. Results In the behavior cohort, we found that lead reduced contextual fear memory in all animals; however, this decrease was greatest and statistically significant only in lead-treated ApoE4-KI females. Similarly, only lead-treated ApoE4-KI females exhibited a significant decrease in spontaneous alternation in the T-maze. Furthermore, all lead-treated animals developed persistent spatial working memory deficits in the novel object location test, and this deficit manifested earlier in ApoE4-KI mice, with female ApoE4-KI mice exhibiting the earliest deficit onset. In the cellular cohort, we observed that the maturation, differentiation, and dendritic development of adult-born neurons in the hippocampus was selectively impaired in lead-treated female ApoE4-KI mice. Conclusions These data suggest that GXE between ApoE4 and lead exposure may contribute to cognitive impairment and that impaired adult hippocampal neurogenesis may contribute to these deficits in cognitive behavior. Together, these data suggest a role for GXE and sex differences in AD risk.
Collapse
Affiliation(s)
- Anna K Engstrom
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Yu Y, Mingjiao W, Yang X, Sui M, Zhang T, Liang J, Gu X, Wang X. Association between DNA methylation of SORL1 5′-flanking region and mild cognitive impairment in type 2 diabetes mellitus. ANNALES D'ENDOCRINOLOGIE 2016; 77:625-632. [DOI: 10.1016/j.ando.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
|
13
|
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 2016; 15:760-774. [PMID: 27302240 DOI: 10.1016/s1474-4422(16)00065-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease and other idiopathic dementias are associated with epigenetic transformations. These transformations connect the environment and genes to pathogenesis, and have led to the investigation of epigenetic-based therapeutic targes for the treatment of these diseases. Epigenetic changes occur over time in response to environmental effects. The epigenome-based latent early-life associated regulation (LEARn) hypothetical model indicates that accumulated environmental hits produce latent epigenetic changes. These hits can alter biochemical pathways until a pathological threshold is reached, which appears clinically as the onset of dementia. The hypotheses posed by LEARn are testable via longitudinal epigenome-wide, envirome-wide, and exposome-wide association studies (LEWAS) of the genome, epigenome, and environment. We posit that the LEWAS design could lead to effective prevention and treatments by identifying potential therapeutic strategies. Epigenetic evidence suggests that dementia is not a suddenly occurring and sharply delineated state, but rather a gradual change in crucial cellular pathways, that transforms an otherwise healthy state, as a result of neurodegeneration, to a dysfunctional state. Evidence from epigenetics could lead to ways to detect, prevent, and reverse such processes before clinical dementia.
Collapse
Affiliation(s)
- Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
15
|
Anderson KW, Turko IV. Histone post-translational modifications in frontal cortex from human donors with Alzheimer's disease. Clin Proteomics 2015; 12:26. [PMID: 26435705 PMCID: PMC4591557 DOI: 10.1186/s12014-015-9098-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the sixth leading cause of death and the most costly disease in the US. Despite the enormous impact of AD, there are no treatments that delay onset or stop disease progression currently on the market. This is partly due to the complexity of the disease and the largely unknown pathogenesis of sporadic AD, which accounts for the vast majority of cases. Epigenetics has been implicated as a critical component to AD pathology and a potential "hot spot" for treatments. Histone post-translational modifications (PTMs) are a key element in epigenetic regulation of gene expression and are known to be associated with the pathology of numerous diseases. Investigation of histone PTMs can help elucidate AD pathology and identify targets for therapies. RESULTS A multiple reaction monitoring mass spectrometry assay was used to measure changes in abundance of several histone PTMs in frontal cortex from human donors affected with AD (n = 6) and age-matched, normal donors (n = 6). Of the changes observed, notable decreases in methylation of H2B residue K108 by 25 % and H4 residue R55 by 35 % were measured and are likely associated with hydrogen bonding networks important for nucleosome stability. Additionally, a 91 % increase in ubiquitination of K120 on H2B was measured as well as an apparent loss in acetylation of the region near the N-terminus of H4. Our method of quantification was also determined to be precise and robust, signifying measured changes were representative of true biological differences between donors and sample groups. CONCLUSION We are the first to report changes in methylation of H2B K108, methylation of H4 R55, and ubiquitination of H2B K120 in frontal cortex from human donors with AD. These notable PTM changes may be of great importance in elucidating the epigenetic mechanism of AD as it relates to disease pathology. Beyond the structural and functional impacts of the changes we have measured, the sites of altered PTMs may be used to identify enzymes responsible for their modulation, which could be used as prospective drug targets for highly specific AD therapies.
Collapse
Affiliation(s)
- Kyle W Anderson
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA ; Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA ; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 USA
| | - Illarion V Turko
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA ; Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| |
Collapse
|
16
|
Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Mol Neurobiol 2015; 53:4833-64. [PMID: 26351077 DOI: 10.1007/s12035-015-9390-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/11/2015] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD.
Collapse
Affiliation(s)
- Puneet Talwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Juhi Sinha
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Sandeep Grover
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Chitra Rawat
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Suman Kushwaha
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India. .,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.
| |
Collapse
|
17
|
Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D, Casati M, Maccarrone M, D'Addario C. Global changes in DNA methylation in Alzheimer's disease peripheral blood mononuclear cells. Brain Behav Immun 2015; 45:139-44. [PMID: 25452147 DOI: 10.1016/j.bbi.2014.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Changes in epigenetic marks may help explain the late onset of Alzheimer's disease (AD). In this study we measured genome-wide DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA isolated from peripheral blood mononuclear cells of 37 subjects with late-onset AD (LOAD) and 44 healthy controls (CT). We found an increase in global DNA methylation in LOAD subjects compared to CT (p=0.0122), associated with worse cognitive performances (p=0.0002). DNA hypermethylation in LOAD group was paralleled by higher DNA methyltransferase 1 (DNMT1) gene expression and protein levels. When data were stratified on the basis of the APOE polymorphisms, higher DNA methylation levels were associated with the presence of APOE ε4 allele (p=0.0043) in the global population. Among the APOE ε3 carriers, a significant increase of DNA methylation was still observed in LOAD patients compared to healthy controls (p=0.05). Our data suggest global DNA methylation in peripheral samples as a useful marker for screening individuals at risk of developing AD.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Casati
- Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Italy; European Center for Brain Research, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Chaiyasap P, Kulawonganunchai S, Srichomthong C, Tongsima S, Suphapeetiporn K, Shotelersuk V. Whole genome and exome sequencing of monozygotic twins with trisomy 21, discordant for a congenital heart defect and epilepsy. PLoS One 2014; 9:e100191. [PMID: 24950249 PMCID: PMC4064986 DOI: 10.1371/journal.pone.0100191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/23/2014] [Indexed: 12/31/2022] Open
Abstract
Congenital heart defects (CHD) occur in 40% of patients with trisomy 21, while the other 60% have a structurally normal heart. This suggests that the increased dosage of genes on chromosome 21 is a risk factor for abnormal heart development. Interaction of genes on chromosome 21 or their gene products with certain alleles of genes on other chromosomes could contribute to CHD. Here, we identified a pair of monozygotic twins with trisomy 21 but discordant for a ventricular septal defect and epilepsy. Twin-zygosity was confirmed by microsatellite genotyping. We hypothesized that some genetic differences from post-twinning mutations caused the discordant phenotypes. Thus, next generation sequencing (NGS) technologies were applied to sequence both whole genome and exome of their leukocytes. The post-analyses of the sequencing data revealed 21 putative discordant exonic variants between the twins from either genome or exome data. However, of the 15 variants chosen for validation with conventional Sanger sequencing, these candidate variants showed no differences in both twins. The fact that no discordant DNA variants were found suggests that sequence differences of DNA from leukocytes of monozygotic twins might be extremely rare. It also emphasizes the limitation of the current NGS technology in identifying causative genes for discordant phenotypes in monozygotic twins.
Collapse
Affiliation(s)
- Pongsathorn Chaiyasap
- Interdepartment of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supasak Kulawonganunchai
- Interdepartment of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
- Genome Institute, National Center for Genetic Engineering and Biotechnology, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| | - Sissades Tongsima
- Genome Institute, National Center for Genetic Engineering and Biotechnology, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
- * E-mail:
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| |
Collapse
|
19
|
Dekosky ST, Gandy S. Environmental exposures and the risk for Alzheimer disease: can we identify the smoking guns? JAMA Neurol 2014; 71:273-5. [PMID: 24473699 DOI: 10.1001/jamaneurol.2013.6031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Steven T Dekosky
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia2Department of Neurology, University of Virginia School of Medicine, Charlottesville3Department of Psychiatry and Neurobehavioral Sciences
| | - Sam Gandy
- Department of Neurology and Psychiatry (Dual Primaries), Center for Cognitive Health and NFL Neurological Care, Mount Sinai Alzheimer's Disease Research Center, New York, New York
| |
Collapse
|
20
|
Huang W, Luo S, Ou J, Zhu F, Xia Y, Xue J, Pan Q, Wu L, Duan R. Correlation betweenFMR1expression and clinical phenotype in discordant dichorionic–diamniotic monozygotic twin sisters with the fragile x mutation. J Med Genet 2013; 51:159-64. [DOI: 10.1136/jmedgenet-2013-101978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Role of perfumes in pathogenesis of autism. Med Hypotheses 2013; 80:795-803. [PMID: 23578362 DOI: 10.1016/j.mehy.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASDs) are developmental conditions characterized by deficits in social interaction, verbal and nonverbal communication, and obsessive/stereotyped patterns of behavior. Although there is no reliable neurophysiological marker associated with ASDs, dysfunction of the parieto-frontal mirror neuron system and underdeveloped olfactory bulb (OB) has been associated with the disorder. It has been reported that the number of children who have ASD has increased considerably since the early 1990 s. In developed countries, it is now reported that 1-1.5% of children have ASD, and in the US it is estimated that one in 88 children suffer from ASD. Currently, there is no known cause for ASD. During the last three decades, the most commonly accepted paradigm about autism is that it is a genetically inherited disease. The recent trio analyses, in which both biological parents and the autistic child's exomes are sequenced, do not support this paradigm. On the other hand, the environmental factors that may induce genetic mutations in vitro have not been clearly identified, and there is little irrefutable evidence that pesticides, water born chemicals, or food preservatives play critical roles in inducing the genetic mutations associated with known intellectual deficiencies that have been linked to autism spectrum disorder (ASD). Here, we hypothesize and provide scientific evidence that ASD is the result of exposure to perfumes and cosmetics. The highly mutagenic, neurotoxic, and neuromodulatory chemicals found in perfumes are often overlooked and ignored as a result of a giant loophole in the Federal Fair Packaging and Labeling Act of 1973, which explicitly exempts fragrance producers from having to disclose perfume ingredients on product labels. We hypothesize that perfumes and cosmetics may be important factors in the pathogenesis of ASD. Synthetic perfumes have gained global utility not only as perfumes but also as essential chemicals in detergents, cosmetics, soap, and a wide variety of commonly used items, even in food flavoring to enhance product taste. Here we provide evidence that a majority of perfumes are highly mutagenic at femtomolar concentrations, and cause significant neuromodulations in human neuroblastoma cells at extremely low levels of concentration, levels that are expected to reach a developing fetal brain if the pregnant mothers are exposed to these chemicals.
Collapse
|
22
|
Fuso A. The 'golden age' of DNA methylation in neurodegenerative diseases. Clin Chem Lab Med 2013; 51:523-34. [PMID: 23183753 DOI: 10.1515/cclm-2012-0618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2023]
Abstract
DNA methylation reactions are regulated, in the first instance, by enzymes and the intermediates that constitute the 'so called' one-carbon metabolism. This is a complex biochemical pathway, also known as the homocysteine cycle, regulated by the presence of B vitamins (folate, B6, B12) and choline, among other metabolites. One of the intermediates of this metabolism is S-adenosylmethionine, which represent the methyl donor in all the DNA methyltransferase reactions in eukaryotes. The one-carbon metabolism therefore produces the substrate necessary for the transferring of a methyl group on the cytosine residues of DNA; S-adenosylmethionine also regulates the activity of the enzymes that catalyze this reaction, namely the DNA methyltransferases (DNMTs). Alterations of this metabolic cycle can therefore be responsible for aberrant DNA methylation processes possibly leading to several human diseases. As a matter of fact, increasing evidences indicate that a number of human diseases with multifactorial origin may have an epigenetic basis. This is also due to the great technical advances in the field of epigenetic research. Among the human diseases associated with epigenetic factors, aging-related and neurodegenerative diseases are probably the object of most intense research. This review will present the main evidences linking several human diseases to DNA methylation, with particular focus on neurodegenerative diseases, together with a short description of the state-of-the-art of methylation assays.
Collapse
Affiliation(s)
- Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Schneider SA, Johnson MR. Monozygotic twins with LRRK2 mutations: genetically identical but phenotypically discordant. Mov Disord 2013; 27:1203-4. [PMID: 22976776 DOI: 10.1002/mds.24991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Deshmukh RS, Chaudhary RK, Roy I. Effect of pesticides on the aggregation of mutant huntingtin protein. Mol Neurobiol 2012; 45:405-14. [PMID: 22415443 DOI: 10.1007/s12035-012-8252-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/28/2012] [Indexed: 01/08/2023]
Abstract
The classical reports on neurodegeneration concentrate on studying disruption of signalling cascades. Although it is now well recognized that misfolding and aggregation of specific proteins are associated with a majority of these diseases, their role in aggravating the symptoms is not so well understood. Huntington's disease (HD) is a neurodegenerative disorder that results from damage to complex II of mitochondria. In this work, we have studied the effect of mitochondrial complex I inhibitors, viz. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and rotenone, and complex II inhibitor, viz. 3-nitropropionic acid, on the aggregation of mutant huntingtin (mthtt) protein, whose misfolding and aggregation results in cellular abnormalities characteristic of HD. All three inhibitors were found to accelerate the aggregation of mthtt in vitro, although the amounts of aggregates formed were different in all cases. Thus, apart from their effect on mitochondrial viability, these neurotoxins are capable of interfering with the protein aggregation process and thus, hastening the onset of the disease.
Collapse
Affiliation(s)
- Ruhi S Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | | | | |
Collapse
|