1
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
2
|
de Groot NG, de Groot N, de Vos-Rouweler AJM, Louwerse A, Bruijnesteijn J, Bontrop RE. Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics 2022; 74:409-429. [PMID: 35084546 PMCID: PMC8792142 DOI: 10.1007/s00251-021-01249-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
The major histocompatibility complex (MHC) plays a key role in immune defense, and the Mhc genes of cynomolgus macaque display a high degree of polymorphism. Based on their geographic distribution, different populations of cynomolgus macaques are recognized. Here we present the characterization of the Mhc class I and II repertoire of a large pedigreed group of cynomolgus macaques originating from the mainland north of the isthmus of Kra (N = 42). Segregation analyses resulted in the definition of 81 unreported Mafa-A/B/DRB/DQ/DP haplotypes, which include 32 previously unknown DRB regions. In addition, we report 13 newly defined Mafa-A/B/DRB/DQ/DP haplotypes in a group of cynomolgus macaques originating from the mainland south of the isthmus of Kra/Maritime Southeast Asia (N = 16). A relatively high level of sharing of Mafa-A (51%) and Mafa-B (40%) lineage groups is observed between the populations native to the north and the south of isthmus of Kra. At the allelic level, however, the Mafa-A/B haplotypes seem to be characteristic of a population. An overall comparison of all currently known data revealed that each geographic population has its own specific combinations of Mhc class I and II haplotypes. This illustrates the dynamic evolution of the cynomolgus macaque Mhc region, which was most likely generated by recombination and maintained by selection due to the differential pathogenic pressures encountered in different geographic areas.
Collapse
Affiliation(s)
- Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands.
| | - Nanine de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | | | - Annet Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
3
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|
4
|
Ishigaki H, Shiina T, Ogasawara K. MHC-identical and transgenic cynomolgus macaques for preclinical studies. Inflamm Regen 2018; 38:30. [PMID: 30479676 PMCID: PMC6249769 DOI: 10.1186/s41232-018-0088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Cynomolgus macaques are useful experimental animals that are physiologically and genetically close to humans. We have developed two kinds of experimental usage of cynomolgus macaque: transplantation and disease models. First, we identified certain major histocompatibility complex (MHC) haplotypes including homozygotes and heterozygotes in cynomolgus macaques native to the Philippines, because they have less polymorphism in the MHC than that in other origins such as Vietnam and Indonesia. As a preclinical model of the induced pluripotent stem cell (iPSC) stock project, we established iPSCs from various types of MHC homozygous macaques, which were transplanted into compatible MHC heterozygous macaques, the iPSC stock project was experimentally shown to be effective. Second, to obtain disease models of cynomolgus macaques for studies on regenerative medicine including cell therapies, we established two kinds of genetic technology to modify cynomolgus macaques: transgenic technology and gene editing technology using CRISPR-Cas9. We will establish disease models, such as Alzheimer's disease and progeria (Werner syndrome). In future, we will distribute the MHC-identical cynomolgus monkeys and genetically modified macaques to researchers, especially those engaging in regenerative medicine.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| | - Takashi Shiina
- 2Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shiomokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Kazumasa Ogasawara
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan.,3Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
5
|
Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, Ng J, Trask JS, Huang R, Singh B, Du H, Smith DG. Ancestry, Plasmodium cynomolgi prevalence and rhesus macaque admixture in cynomolgus macaques (Macaca fascicularis) bred for export in Chinese breeding farms. J Med Primatol 2017; 46:31-41. [PMID: 28266719 PMCID: PMC7571188 DOI: 10.1111/jmp.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model. METHODS DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals. RESULTS All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry. CONCLUSIONS The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Anthropology, University of California, Davis, CA, USA
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Mingyu Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robert Oldt
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
| | - Jillian Ng
- Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Department of Research Compliance & Integrity, Office of Research, University of California, Davis, CA, USA
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Hongli Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Otting N, van der Wiel MKH, de Groot N, de Vos-Rouweler AJM, de Groot NG, Doxiadis GGM, Wiseman RW, O'Connor DH, Bontrop RE. The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics 2016; 69:87-99. [PMID: 27771735 DOI: 10.1007/s00251-016-0954-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The human major histocompatibility complex (MHC) region encodes three types of class II molecules designated HLA-DR, -DQ, and -DP. Both the HLA-DQ and -DP gene region comprise a duplicated tandem of A and B genes, whereas in macaques, only one set of genes is present per region. A substantial sequencing project on the DQ and DP genes in various macaque populations resulted in the detection of previously 304 unreported full-length alleles. Phylogenetic studies showed that humans and macaques share trans-species lineages for the DQA1 and DQB1 genes, whereas the DPA1 and DPB1 lineages in macaques appear to be species-specific. Amino acid variability plot analyses revealed that each of the four genes displays more allelic variation in macaques than is encountered in humans. Moreover, the numbers of different amino acids at certain positions in the encoded proteins are higher than in humans. This phenomenon is remarkably prominent at the contact positions of the peptide-binding sites of the deduced macaque DPβ-chains. These differences in the MHC class II DP regions of macaques and humans suggest separate evolutionary mechanisms in the generation of diversity.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Marit K H van der Wiel
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.,Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Song X, Zhang P, Huang K, Chen D, Guo S, Qi X, He G, Pan R, Li B. The influence of positive selection and trans-species evolution on DPB diversity in the golden snub-nosed monkeys (Rhinopithecus roxellana). Primates 2016; 57:489-99. [PMID: 27209173 DOI: 10.1007/s10329-016-0544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Genetic variation plays a significant role in the adaptive potential of the endangered species. The variation at major histocompatibility complex (MHC) genes can offer valuable information on selective pressure related to natural selection and environmental adaptation, particularly the ability of a host to continuously resist evolving parasites. Thus, the genetic polymorphism on exon 2 of the MHC DPB1 gene in the golden snub-nosed monkeys (Rhinopithecus roxellana) was specifically analyzed. The results show that the 6 Rhro-DPB1 alleles identified from 87 individuals exhibit positive selection and trans-species polymorphism. The results also imply that although the populations of the species have experienced dramatic reduction and severe habitat fragmentation in recent Chinese history, balancing selection still maintains relatively consistent, with moderate DPB1 polymorphism. Thus, the study provides valuable information and evidence in developing effective strategies and tactics for genetic health and population size expansion of the species. It also offers strong genetic background for further studies on other primate species, particularly those in Rhinopithecus-a further endeavor that would result in fully understanding the MHC genetic information of the Asian colobines.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dan Chen
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China.,The School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China. .,Xi'an Branch of Chinese Academy of Sciences, Xi'an, China.
| |
Collapse
|
8
|
Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, Miki K, Okita K, Yoshida Y, Shiina T, Ogasawara K, Miyagawa S, Toda K, Okuyama H, Sawa Y. Cardiomyocytes Derived from MHC-Homozygous Induced Pluripotent Stem Cells Exhibit Reduced Allogeneic Immunogenicity in MHC-Matched Non-human Primates. Stem Cell Reports 2016; 6:312-20. [PMID: 26905198 PMCID: PMC4788782 DOI: 10.1016/j.stemcr.2016.01.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can serve as a source of cardiomyocytes (CMs) to treat end-stage heart failure; however, transplantation of genetically dissimilar iPSCs even within species (allogeneic) can induce immune rejection. We hypothesized that this might be limited by matching the major histocompatibility complex (MHC) antigens between the donor and the recipient. We therefore transplanted fluorescence-labeled (GFP) iPSC-CMs donated from a macaque with homozygous MHC haplotypes into the subcutaneous tissue and hearts of macaques having heterozygous MHC haplotypes (MHC-matched; group I) or without identical MHC alleles (group II) in conjunction with immune suppression. Group I displayed a higher GFP intensity and less immune-cell infiltration in the graft than group II. However, MHC-matched transplantation with single or no immune-suppressive drugs still induced a substantial host immune response to the graft. Thus, the immunogenicity of allogeneic iPSC-CMs was reduced by MHC-matched transplantation although a requirement for appropriate immune suppression was retained for successful engraftment. Cardiomyocytes from iPSCs can treat heart disease iPSC-CMs were transplanted into MHC-matched or unmatched cynomolgus macacques Matched iPSC-CM grafts had better survival and less host rejection immune response Immunosuppression was still required for successful allogeneic iPSC-CM engraftment
Collapse
Affiliation(s)
- Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kashiyama
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Miki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Yoshinori Yoshida
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Jadejaroen J, Kawamoto Y, Hamada Y, Malaivijitnond S. An SNP marker at the STAT6 locus can identify the hybrids between rhesus (Macaca mulatta) and long-tailed macaques (M. fascicularis) in Thailand: a rapid and simple screening method and its application. Primates 2015; 57:93-102. [PMID: 26660683 DOI: 10.1007/s10329-015-0502-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed to genetically discriminate rhesus (Macaca mulatta) macaques from long-tailed (M. fascicularis) macaques. The 745 bp PCR amplicon of the STAT6 locus that spans a potentially species-diagnostic single nucleotide polymorphism (SNP) marker was digested with ApaI and gel electrophoresed to give (1) two (234 and 511 bp), (2) one (745 bp) and (3) three (234, 511 and 745 bp) band patterns that correspond to the genotypes G/G (long-tailed macaque specific homozygote), A/A (rhesus macaque specific homozygote) and A/G (hybrid specific heterozygote), respectively. The diagnostic robustness and efficiency of this PCR-RFLP assay was tested on wild rhesus and long-tailed macaques inhabiting Thailand and a known hybrid population. The Indochinese and Sundaic long-tailed macaque samples (n = 18) all showed a homozygous G/G pattern, while the Indochinese rhesus macaques (n = 10) all showed a homozygous A/A pattern. The rhesus/long-tailed hybrid population at Khao Khieow Open Zoo, which resulted from an introduced group of rhesus macaques that hybridized with the indigenous long-tailed macaques about 20 years ago, revealed 47% (56/118 samples analyzed) with the heterogenous A/G genotype. In addition, the frequency of the rhesus-specific allele A significantly decreased in the hybrid population during 2006-2014, where a strong association between the STAT6 genotype and the morphology of the individuals was detected. In conclusion, a robust PCR-RFLP assay allows a simple, effective and inexpensive approach, in particular for field studies, to assess hybrid individuals between rhesus and long-tailed macaques. Although this assay cannot conclusively identify all the hybrids over two or more generations, it at least can allow the evaluation of the process of hybridization, and so it is applicable to the assessment of the status of natural or anthropogenic hybridization between the two species across their geographic range.
Collapse
Affiliation(s)
- Janya Jadejaroen
- Zoological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yoshi Kawamoto
- Genome Diversity Section, Department of Evolution and Phylogeny, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Department of Evolution and Phylogeny, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Suchinda Malaivijitnond
- Zoological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand.
| |
Collapse
|
10
|
Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism. Immunogenetics 2015; 67:563-78. [PMID: 26349955 DOI: 10.1007/s00251-015-0867-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (<86%) with primate MHC class I genes, and it was also conserved in the Vietnamese and Indonesian populations. In addition, haplotype estimations revealed 17 Mafa-A, 23 Mafa-B, and 12 Mafa-E haplotypes integrated with 84 Mafa-class I haplotypes and Mafa-F alleles. Of these, the two Mafa-class I haplotypes, F/A/E/B-Hp1 and F/A/E/B-Hp2, had the highest haplotype frequencies at 10.6 and 10.2%, respectively. This suggests that large scale genetic screening of the Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.
Collapse
|
11
|
Yao YF, Dai QX, Li J, Ni QY, Zhang MW, Xu HL. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles. BMC Evol Biol 2014; 14:130. [PMID: 24930092 PMCID: PMC4070090 DOI: 10.1186/1471-2148-14-130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhesus macaques living in western Sichuan, China, have been separated into several isolated populations due to habitat fragmentation. Previous studies based on the neutral or nearly neutral markers (mitochondrial DNA or microsatellites) showed high levels of genetic diversity and moderate genetic differentiation in the Sichuan rhesus macaques. Variation at the major histocompatibility complex (MHC) loci is widely accepted as being maintained by balancing selection, even with a low level of neutral variability in some species. However, in small and isolated or bottlenecked populations, balancing selection may be overwhelmed by genetic drift. To estimate microevolutionary forces acting on the isolated rhesus macaque populations, we examined genetic variation at Mhc-DQB1 loci in 119 wild rhesus macaques from five geographically isolated populations in western Sichuan, China, and compared the levels of MHC variation and differentiation among populations with that previously observed at neutral microsatellite markers. RESULTS 23 Mamu-DQB1 alleles were identified in 119 rhesus macaques in western Sichuan, China. These macaques exhibited relatively high levels of genetic diversity at Mamu-DQB1. The Hanyuan population presented the highest genetic variation, whereas the Heishui population was the lowest. Analysis of molecular variance (AMOVA) and pairwise FST values showed moderate genetic differentiation occurring among the five populations at the Mhc-DQB1 locus. Non-synonymous substitutions occurred at a higher frequency than synonymous substitutions in the peptide binding region. Levels of MHC variation within rhesus macaque populations are concordant with microsatellite variation. On the phylogenetic tree for the rhesus and crab-eating macaques, extensive allele or allelic lineage sharing is observed between the two species. CONCLUSIONS Phylogenetic analyses confirm the apparent trans-species model of evolution of the Mhc-DQB1 genes in these macaques. Balancing selection plays an important role in sharing allelic lineages between species, but genetic drift may share balancing selection dominance to maintain MHC diversity. Great divergence at neutral or adaptive markers showed that moderate genetic differentiation had occurred in rhesus macaque populations in western Sichuan, China, due to the habitat fragmentation caused by long-term geographic barriers and human activity. The Heishui population should be paid more attention for its lowest level of genetic diversity and relatively great divergence from others.
Collapse
Affiliation(s)
- Yong-Fang Yao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Qiu-Xia Dai
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Jing Li
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing-Yong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Ming-Wang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Huai-Liang Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
- Experimental Animal Engineering Center/National Experimental Macaque Reproduce Laboratory, Sichuan Agricultural Universiy, Ya′an 625014, China
| |
Collapse
|
12
|
Xiang R, Zhang H, Deng Q, Yue R, Tang H, Zhang Y, Ling F, Zhuo M, Du H, Xu S, Xu Q, Wang X. Comprehensive identification of high-frequency and co-occurring Mafa-DPA1, Mafa-DQA1, Mafa-DRA, and Mafa-DOA alleles in Vietnamese cynomolgus macaques. Immunogenetics 2013; 65:667-74. [PMID: 23793105 DOI: 10.1007/s00251-013-0713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
Abstract
High-frequency alleles and/or co-occurring human leukocyte antigen alleles across loci appear to be more important than individual alleles as markers of disease risk and have clinical value as biomarkers for targeted screening or the development of new disease therapies. To better elucidate the major histocompatibility complex (MHC) background and to facilitate the experimental use of cynomolgus macaques, Mafa-DPA1, Mafa-DQA1, Mafa-DRA, and Mafa-DOA alleles were characterized, and their combinations were investigated in 30 Vietnamese macaques by gene cloning and sequencing. A total of 26 Mafa-DPA1, 18 Mafa-DQA1, 9 Mafa-DRA, and 15 Mafa-DOA alleles, including 7 high-frequency alleles, were identified in this study, respectively. In addition, 15 Mafa-DQA1, 17 Mafa-DPA1, 15 Mafa-DOA, and 2 Mafa-DRA alleles represented novel sequences that had not been documented in earlier studies. Our results also showed that the Vietnamese macaques might be valuable because no less than 30% of the test animals possessed Mafa-DRA*01:02:01 (90%), -DQA1*26:01:03 (37%), -DOA*01:02:07 (34%), and -DQA1*01:03:03 (30%). We previously reported that the combinations of MHC class II alleles, including the combination of DOA*01:02:07-DPA1*02:09 and DOA*01:02:07-DQA1*01:03:03, were detected in 17 and 14% of the animals, respectively. Interestingly, more than two Mafa-DQA1 and Mafa-DPA1 alleles were detected in one animal in this study, which suggested that they might be caused by a chromosomal duplication. If our findings can be validated by other studies, it will further enrich the number of known Mafa-DPA1 and Mafa-DQA1 polymorphisms. Our results identified the co-occurring MHC alleles across loci in a cohort of Vietnamese cynomolgus macaques, which emphasized the value of this species as a model for biomedical research.
Collapse
Affiliation(s)
- Ruirui Xiang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
[Polymorphic analysis of Mhc-DPB1 gene exon 2 in Tibetan macaques (Macaca thibetana)]. YI CHUAN = HEREDITAS 2012. [PMID: 23208139 DOI: 10.3724/sp.j.1005.2012.01417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background of the Tibetan macaques (Macaca thibetana), and thereby facilitate their protection and application in biomedical research, the second exon of the Mhc-DPB1 genes from 70 Tibetan macaques in Sichuan Province were characterized by PCR, cloning, sequencing, and statistical analysis. A total of 18 Mhc-DPB1 alleles were identified from Tibetan macaques, of which one (Math-DPB1*01:06N) was a pseudogene. Math-DPB1*06:01:01 (67.14%) was the most frequent allele in all the 18 alleles detected, followed by Math-DPB1* 01:03:01 (37.14%), Math-DPB1*09:02 (25.71%), and Math-DPB1*22:01 (15.71%). The alignment of putative amino acid sequences of the 18 Math-DPB1 alleles showed that 5 variable sites were species-specific to Tibetan macaques. A phylogenetic tree constructed using DPB1 alleles in difference species demonstrated that the alleles for Math-DPB1, Mamu-DPB1, and Mafa-DPB1 tended to mix together, rather than cluster into a separate branch in a species-specific fashion, and the Trans-species polymorphism was also observed in the phylogenetic tree. Selection analysis revealed that balancing selection may play an important role in maintaining the polymorphism of Math-DPB1 genes.
Collapse
|
14
|
Satkoski Trask JA, Garnica WT, Smith DG, Houghton P, Lerche N, Kanthaswamy S. Single-nucleotide polymorphisms reveal patterns of allele sharing across the species boundary between rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques. Am J Primatol 2012; 75:135-44. [PMID: 23165690 DOI: 10.1002/ajp.22091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/20/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022]
Abstract
Both phenotypic and genetic evidence for asymmetric hybridization between rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques has been observed in the region of Indochina where both species are sympatric. The large-scale sharing of major histocompatibility complex (MHC) class II alleles between the two species in this region supports the hypothesis that genes, and especially genes involved in immune response, are being transferred across the species boundary. This differential introgression has important implications for the incorporation of cynomolgus macaques of unknown geographic origin in biomedical research protocols. Our study found that for 2,808 single-nucleotide polymorphism (SNP) markers, the minor allele frequencies (MAF) and observed heterozygosity calculated from a sample of Vietnamese cynomolgus macaques was significantly different from those calculated from samples of both Chinese rhesus and Indonesian cynomolgus macaques. SNP alleles from Chinese rhesus macaques were overrepresented in a sample of Vietnamese cynomolgus macaques relative to their Indonesian conspecifics and located in genes functionally related to the primary immune system. These results suggest that Indochinese cynomolgus macaques represent a genetically and immunologically distinct entity from Indonesian cynomolgus macaques.
Collapse
|
15
|
Otting N, de Groot N, de Vos-Rouweler AJM, Louwerse A, Doxiadis GGM, Bontrop RE. Multilocus definition of MHC haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics 2012; 64:755-65. [PMID: 22772814 PMCID: PMC3438390 DOI: 10.1007/s00251-012-0632-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis) are used widely in biomedical research, and the genetics of their MHC (Mhc-Mafa) has become the focus of considerable attention in recent years. The cohort of Indonesian pedigreed macaques that we present here was typed for Mafa-A, -B, and -DR, by sequencing, as described in earlier studies. Additionally, the DRB region of these animals was characterised by microsatellite analyses. In this study, full-length sequencing of Mafa-DPA/B and -DQA/B in these animals was performed. A total of 75 different alleles were observed; 22 of which have not previously been reported, plus 18 extended exon 2 alleles that were already known. Furthermore, two microsatellites, D6S2854 and D6S2859, were used to characterise the complex Mafa-A region. Sequencing and segregation analyses revealed that the length patterns of these microsatellites are unique for each Mafa-A haplotype. In this work, we present a pedigreed colony of approximately 120 cynomolgus macaques; all of which are typed for the most significant polymorphic MHC class I and class II markers. Offspring of these pedigreed animals are easily characterised for their MHC by microsatellite analyses on the Mafa-A and -DRB regions, which makes the cumbersome sequencing analyses redundant.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Li A, Sun Z, Zeng L, Li R, Kong D, Zhao Y, Bai J, Zhao S, Shang S, Shi Y. Microsatellite variation in two subspecies of cynomolgus monkeys (Macaca fascicularis). Am J Primatol 2012; 74:561-8. [PMID: 22539270 DOI: 10.1002/ajp.21984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To estimate the genetic variability of two subspecies of cynomolgus monkeys (Macaca fascicularis fascicularis and M. f. aurea) using microsatellite markers, 26 microsatellite markers were selected from previous reports. Seventeen markers showed high polymorphism in a subset of monkeys and were used for the assessment of genetic diversity in the larger sample. The effective number of alleles, the polymorphism information content (PIC) and the expected heterozygosity of M. f. aurea monkeys were all statistically significantly higher than those of M. f. fascicularis monkeys (P < 0.05), suggesting the M. f. aurea monkeys had a higher degree of genetic variation than the M. f. fascicularis monkeys. Substantial differences in allele distribution were also detected between the two subspecies of cynomolgus monkeys. Private alleles restricted to the M. f. fascicularis or the M. f. aurea monkeys were found throughout the selected 17 loci. These private alleles may allow the discrimination of the two subspecies of cynomolgus monkeys. The selected markers could also be used to estimate the genetic variation for other subspecies of cynomolgus monkeys. Further work using additional animals obtained from native or independent sources will be important for a more complete understanding of the genetic differences between these two subgroups.
Collapse
Affiliation(s)
- Aixue Li
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
18
|
Creager HM, Becker EA, Sandman KK, Karl JA, Lank SM, Bimber BN, Wiseman RW, Hughes AL, O’Connor SL, O’Connor DH. Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques. Immunogenetics 2011; 63:611-8. [PMID: 21614582 PMCID: PMC3156323 DOI: 10.1007/s00251-011-0537-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/10/2011] [Indexed: 01/09/2023]
Abstract
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.
Collapse
Affiliation(s)
- Hannah M Creager
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Kelly K. Sandman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA 53705
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA 53705
| |
Collapse
|
19
|
Shiina T, Tanaka K, Katsuyama Y, Otabe K, Sakamoto K, Kurata M, Nomura M, Yamanaka H, Nakagawa H, Inoko H, Ota M. Mitochondrial DNA diversity among three subpopulations of cynomolgus macaques (Macaca fascicularis) originating from the Indochinese region. Exp Anim 2011; 59:567-78. [PMID: 21030784 DOI: 10.1538/expanim.59.567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The cynomolgus macaque (Macaca fascicularis) has emerged as an important experimental animal model for biomedical research in various domains, necessitating the more extensive characterization of the genetic backgrounds influencing the macaque's response to drugs and sensitivity to experimental disease. The diversity of the variable mitochondrial DNA (mtDNA) D-loop region has been analyzed phylogenetically among geographically isolated populations or within subdivisions of the same regional population. However, the genetic differences among several substructures originating from a common population have not yet been investigated. By sequencing fragments of the mtDNA D-loop region from two subpopulations from the Indochinese region (Cambodian-Chinese and Vietnamese) along with two native Indonesian and Filipino populations, we identified 87 mtDNA D-loop haplotypes, of which 67 are new. The phylogenetic relationship suggests that the Indochinese haplotypes are intermingled in comparison to the distinct divergence of the Indonesian and Filipino lineages. The subpopulations were shown by estimation of evolutionary divergence and Wright's F-statistic (Fst) to have little genetic differentiation. Altogether, the subpopulations may be used in biomedical research, even though a slight difference is observed in haplotype frequencies among them. Therefore, genetic diversity analyses will be necessary for the elucidation of genetic differences among the populations, as well as to obtain a better understanding of genetic diversity for biomedical research. This will involve the selection of macaques and the monitoring of genetic heterogeneity among and within breeding facilities.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics 2010; 63:155-66. [PMID: 21132285 PMCID: PMC7080152 DOI: 10.1007/s00251-010-0498-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.
Collapse
|
21
|
Xu HL, Wang YT, Cheng AC, Yao YF, Ni QY, Zeng W, Bi FJ, Yang ZX, Chen XY. [Polymorphism of MHC-DPB1 gene exon 2 in rhesus macaques (Macaca mulatta)]. YI CHUAN = HEREDITAS 2010; 32:588-98. [PMID: 20566463 DOI: 10.3724/sp.j.1005.2010.00588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rhesus macaque (Macaca mulatta) has long been used as an experimental model animal for biomedical research and was under the key state protection (class II) from Chinese government. In order to facilitate the use of Chinese rhesus macaques in biomedical research and their protection based on better understanding of the major mistocompability complex (MHC) genes in these macaques, the exon 2 of Mamu-DPB1 genes were determined in 106 wild rhesus macaques using DGGE, cloning and sequencing. A total of 21 Mamu-DPB1 alleles were obtained, of which 15 alleles were novel sequences that had not been documented previously. Mamu-DPB1 30 was the most frequent allele in the whole large population comprising all 106 rhesus macaque individuals (0.1120) and in Xiaojin population (0.1120), Mamu-DPB1 04 in Heishui (0.1702), -DPB1 32 in Bazhong (0.1613), -DPB1 30 in Hanyuan (0.1120), and -DPB1 04 in Jiulong (0.1139). The alignment of the amino acids sequences showed that 12 variable sites were species-specific, of which 9 sites occurred in the putative amino acids sequences of the 15 novel Mamu-DPB1 alleles. Trans-species polymorphism was observed on the phylogenetic tree based on the DPB1 alleles of rhesus macaques and cynomolgus (Macaca fascicularis). In addition, these results also demonstrated that significant genetic differentiation has occurred between Chinese and Indian rhesus macaque population.
Collapse
Affiliation(s)
- Huai-Liang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aarnink A, Estrade L, Apoil PA, Kita YF, Saitou N, Shiina T, Blancher A. Study of cynomolgus monkey (Macaca fascicularis) DRA polymorphism in four populations. Immunogenetics 2010; 62:123-36. [PMID: 20094710 DOI: 10.1007/s00251-009-0421-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/21/2009] [Indexed: 12/11/2022]
Abstract
To describe the polymorphism of the DRA gene in Macaca fascicularis, we have studied 141 animals either at cDNA level (78 animals from Mauritius, the Philippines, and Vietnam) or genomic level (63 animals from the Philippines, Indonesia, and Vietnam). In total, we characterized 22 cDNA DRA alleles, 13 of which had not been described until now. In the Mauritius population, we confirmed the presence of three DRA alleles. In the Philippine and Vietnam populations, we observed 11 and 14 DRA alleles, respectively. Only two alleles were present in all three populations. All DRA alleles but one differ from the consensus sequence by one to three mutations, most being synonymous; so, only seven DR alpha proteins were deduced from the 22 cDNA alleles. One DRA cDNA allele, Mafa-DRA*02010101, differs from all other alleles by 11 to 14 mutations of which only four are non-synonymous. The two amino acid changes inside the peptide groove of Mafa-DRA*02010101 are highly conservative. The very low proportion of non-synonymous/synonymous mutations is compatible with a purifying selection which is comparable to all previous observations concerning the evolution of the DRA gene in mammals. Homologues of the allele Mafa-DRA*02010101 are also found in two other Asian macaques (Macaca mulatta and Macaca nemestrina). The forces able to maintain this highly divergent allele in three different macaque species remain hypothetical.
Collapse
Affiliation(s)
- Alice Aarnink
- Laboratoire d'immunogénétique moléculaire, EA3034, Faculté de Médecine Purpan, Toulouse 3, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Kita YF, Hosomichi K, Kohara S, Itoh Y, Ogasawara K, Tsuchiya H, Torii R, Inoko H, Blancher A, Kulski JK, Shiina T. MHC class I A loci polymorphism and diversity in three Southeast Asian populations of cynomolgus macaque. Immunogenetics 2009; 61:635-48. [PMID: 19649628 DOI: 10.1007/s00251-009-0390-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/22/2009] [Indexed: 11/26/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex polymorphic regions. The current information on the polymorphism or diversity of the polygenetic Mafa class I A loci is limited in comparison to the more commonly studied rhesus macaque Mafa class I A loci. Therefore, in this paper, to better elucidate the degree and types of polymorphisms and genetic differences of Mafa-A1 among three native Southeast Asian populations (Indonesian, Vietnamese, and Filipino) and to investigate how the allele differences between macaques and humans might have evolved to affect their respective immune responses, we identified 83 Mafa-A loci-derived alleles by DNA sequencing of which 66 are newly described. Most alleles are unique to each population, but seven of the most frequent alleles were identical in sequence to some alleles in other macaque species. We also revealed (1) the large and dynamic genetic and structural differences and similarities in allelic variation by analyzing the population allele frequencies, Hardy-Weinberg's equilibrium, heterozygosity, nucleotide diversity profiles, and phylogeny, (2) the difference in genetic structure of populations by Wright's FST statistic and hierarchical analysis of molecular variance, and (3) the different demographic and selection pressures on the three populations by performing Tajima's D test of neutrality. The large level of diversity and polymorphism at the Mafa-A1 was less evident in the Filipino than in the Vietnam or the Indonesian populations, which may have important implications in animal capture, selection, and breeding for medical research.
Collapse
Affiliation(s)
- Yuki F Kita
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Campbell KJ, Detmer AM, Karl JA, Wiseman RW, Blasky AJ, Hughes AL, Bimber BN, O’Connor SL, O’Connor DH. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques. Immunogenetics 2009; 61:177-87. [PMID: 19107381 PMCID: PMC2666003 DOI: 10.1007/s00251-008-0351-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/08/2008] [Indexed: 11/28/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV(89.6P). We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols.
Collapse
Affiliation(s)
- Kevin J. Campbell
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Ann M. Detmer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbus, SC 29208
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
25
|
Bonhomme M, Blancher A, Jalil MF, Crouau-Roy B. Factors shaping genetic variation in the MHC of natural non-human primate populations. ACTA ACUST UNITED AC 2007; 70:398-411. [PMID: 17854428 DOI: 10.1111/j.1399-0039.2007.00925.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Across a large distribution range, population-specific factors as well as pathogen-mediated selection may shape species genetic diversity in the major histocompatibility complex (MHC). We have studied genetic diversity and population differentiation in the MHC region of the Southeast Asian cynomolgus macaque (Macaca fascicularis fascicularis), a species with large and discontinuous range, in order to investigate the role of demography vs selection. Genetic variation was assessed at seven MHC microsatellites on 272 individuals from five populations (Indochina, Java, Borneo, Philippines, and Mauritius). A high genetic diversity was observed in all populations and the Philippines but also the Mauritius populations were the most genetically differentiated. The strength and extent of linkage disequilibrium (LD) (up to 4 Mb) varies across populations mainly because of demographic factors. In Indochina, the complete lack of LD could be the signature of ancient hybridization between cynomolgus and rhesus macaques in the Indochinese peninsula. With the additional support of seven autosomal microsatellites, tests for outlier loci based on intrapopulation diversity and interpopulation differentiation (using F-statistic) allowed to dissociate demographic from selective histories: (i) demographic history may itself explain levels of MHC variability in the Mauritius populations and (ii) positive selection could be responsible for the Philippines population differentiation, especially in the MHC class II region. Among various pathogens, Plasmodium knowlesi and Plasmodium coatneyi are two likely candidates to explain the higher frequency of some MHC haplotypes. Indeed, literature describes low parasitemia in the Philippines individuals, contrasting with fatal infections provoked by these parasites in other cynomolgus macaque populations.
Collapse
Affiliation(s)
- M Bonhomme
- Laboratoire UMR 5174 Evolution et Diversité Biologique EDB, Université Paul Sabatier, Toulouse, France.
| | | | | | | |
Collapse
|
26
|
O’Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O’Connor DH. Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 2007; 59:449-62. [PMID: 17384942 PMCID: PMC2836927 DOI: 10.1007/s00251-007-0209-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.
Collapse
Affiliation(s)
- Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chad J. Pendley
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Watanabe A, Shiina T, Shimizu S, Hosomichi K, Yanagiya K, Kita YF, Kimura T, Soeda E, Torii R, Ogasawara K, Kulski JK, Inoko H. A BAC-based contig map of the cynomolgus macaque (Macaca fascicularis) major histocompatibility complex genomic region. Genomics 2006; 89:402-12. [PMID: 17174065 DOI: 10.1016/j.ygeno.2006.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/12/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022]
Abstract
The construction of a cynomolgus macaque (Macaca fascicularis, Mafa) BAC library for genomic comparison between rhesus and cynomolgus macaques is necessary to promote the cynomolgus macaque as one of the important experimental animals for future medical and biological research. In this paper, we constructed a cynomolgus macaque BAC library and a map of the MHC (Mafa) genomic region for comparison of the genomic organization and nucleotide similarities between the human, the chimpanzee, and the rhesus macaque. The BAC library consists of 221,184 clones with an average insert size of 83 kb, providing a sixfold coverage of the haploid genome. A total of 114 BAC clones and 54 PCR primer sets were used to construct a 4.3-Mb contig of the MHC region. Diversity analysis of genomic sequence from selected subregions of the MHC revealed that the cynomolgus sequence varied compared to rhesus macaque, human, and chimpanzee sequences by 0.48, 4.15, and 4.10%, respectively. From these findings, we conclude that the BAC library and Mafa genomic map are useful tools for genome analysis and will have important applications for comparative genomics and identifying regions of consequence in medical research.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|