1
|
Speake C, Bahnson HT, Wesley JD, Perdue N, Friedrich D, Pham MN, Lanxon-Cookson E, Kwok WW, Sehested Hansen B, von Herrath M, Greenbaum CJ. Systematic Assessment of Immune Marker Variation in Type 1 Diabetes: A Prospective Longitudinal Study. Front Immunol 2019; 10:2023. [PMID: 31572352 PMCID: PMC6753618 DOI: 10.3389/fimmu.2019.02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023] Open
Abstract
Immune analytes have been widely tested in efforts to understand the heterogeneity of disease progression, risk, and therapeutic responses in type 1 diabetes (T1D). The future clinical utility of such analytes as biomarkers depends on their technical and biological variability, as well as their correlation with clinical outcomes. To assess the variability of a panel of 91 immune analytes, we conducted a prospective study of adults with T1D (<3 years from diagnosis), at 9–10 visits over 1 year. Autoantibodies and frequencies of T-cell, natural killer cell, and myeloid subsets were evaluated; autoreactive T-cell frequencies and function were also measured. We calculated an intraclass correlation coefficient (ICC) for each marker, which is a relative measure of between- and within-subject variability. Of the 91 analytes tested, we identified 35 with high between- and low within-subject variability, indicating their potential ability to be used to stratify subjects. We also provide extensive data regarding technical variability for 64 of the 91 analytes. To pilot the concept that ICC can be used to identify analytes that reflect biological outcomes, the association between each immune analyte and C-peptide was also evaluated using partial least squares modeling. CD8 effector memory T-cell (CD8 EM) frequency exhibited a high ICC and a positive correlation with C-peptide, which was also seen in an independent dataset of recent-onset T1D subjects. More work is needed to better understand the mechanisms underlying this relationship. Here we find that there are a limited number of technically reproducible immune analytes that also have a high ICC. We propose the use of ICC to define within- and between-subject variability and measurement of technical variability for future biomarker identification studies. Employing such a method is critical for selection of analytes to be tested in the context of future clinical trials aiming to understand heterogeneity in disease progression and response to therapy.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Henry T Bahnson
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Johnna D Wesley
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - Nikole Perdue
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - David Friedrich
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - Minh N Pham
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | | | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | | - Carla J Greenbaum
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
2
|
Longino NV, Yang J, Iyer JG, Ibrani D, Chow IT, Laing KJ, Campbell VL, Paulson KG, Kulikauskas RM, Church CD, James EA, Nghiem P, Kwok WW, Koelle DM. Human CD4 + T Cells Specific for Merkel Cell Polyomavirus Localize to Merkel Cell Carcinomas and Target a Required Oncogenic Domain. Cancer Immunol Res 2019; 7:1727-1739. [PMID: 31405946 DOI: 10.1158/2326-6066.cir-19-0103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/07/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
Although CD4+ T cells likely play key roles in antitumor immune responses, most immuno-oncology studies have been limited to CD8+ T-cell responses due to multiple technical barriers and a lack of shared antigens across patients. Merkel cell carcinoma (MCC) is an aggressive skin cancer caused by Merkel cell polyomavirus (MCPyV) oncoproteins in 80% of cases. Because MCPyV oncoproteins are shared across most patients with MCC, it is unusually feasible to identify, characterize, and potentially augment tumor-specific CD4+ T cells. Here, we report the identification of CD4+ T-cell responses against six MCPyV epitopes, one of which included a conserved, essential viral oncogenic domain that binds/disables the cellular retinoblastoma (Rb) tumor suppressor. We found that this epitope (WEDLT209-228) could be presented by three population-prevalent HLA class II alleles, making it a relevant target in 64% of virus-positive MCC patients. Cellular staining with a WEDLT209-228-HLA-DRB1*0401 tetramer indicated that specific CD4+ T cells were detectable in 78% (14 of 18) of evaluable MCC patients, were 250-fold enriched within MCC tumors relative to peripheral blood, and had diverse T-cell receptor sequences. We also identified a modification of this domain that still allowed recognition by these CD4+ T cells but disabled binding to the Rb tumor suppressor, a key step in the detoxification of a possible therapeutic vaccine. The use of these new tools for deeper study of MCPyV-specific CD4+ T cells may provide broader insight into cancer-specific CD4+ T-cell responses.
Collapse
Affiliation(s)
- Natalie V Longino
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| | - Junbao Yang
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Jayasri G Iyer
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Dafina Ibrani
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - I-Ting Chow
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington
| | - Victoria L Campbell
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington
| | - Kelly G Paulson
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Rima M Kulikauskas
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Candice D Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Eddie A James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington. .,Department of Pathology, University of Washington, Seattle, Washington
| | - William W Kwok
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - David M Koelle
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington.,Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
3
|
Spanier JA, Sahli NL, Wilson JC, Martinov T, Dileepan T, Burrack AL, Finger EB, Blazar BR, Michels AW, Moran A, Jenkins MK, Fife BT. Increased Effector Memory Insulin-Specific CD4 + T Cells Correlate With Insulin Autoantibodies in Patients With Recent-Onset Type 1 Diabetes. Diabetes 2017; 66:3051-3060. [PMID: 28842400 PMCID: PMC5697953 DOI: 10.2337/db17-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from T cell-mediated destruction of insulin-producing β-cells. Insulin represents a key self-antigen in disease pathogenesis, as recent studies identified proinsulin-responding T cells from inflamed pancreatic islets of organ donors with recent-onset T1D. These cells respond to an insulin B-chain (InsB) epitope presented by the HLA-DQ8 molecule associated with high T1D risk. Understanding insulin-specific T-cell frequency and phenotype in peripheral blood is now critical. We constructed fluorescent InsB10-23:DQ8 tetramers, stained peripheral blood lymphocytes directly ex vivo, and show DQ8+ patients with T1D have increased tetramer+ CD4+ T cells compared with HLA-matched control subjects without diabetes. Patients with a shorter disease duration had higher frequencies of insulin-reactive CD4+ T cells, with most of these cells being antigen experienced. We also demonstrate that the number of insulin tetramer+ effector memory cells is directly correlated with insulin antibody titers, suggesting insulin-specific T- and B-cell interactions. Notably, one of four control subjects with tetramer+ cells was a first-degree relative who had insulin-specific cells with an effector memory phenotype, potentially representing an early marker of T-cell autoimmunity. Our results suggest that studying InsB10-23:DQ8 reactive T-cell frequency and phenotype may provide a biomarker of disease activity in patients with T1D and those at risk.
Collapse
Affiliation(s)
- Justin A Spanier
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Nathanael L Sahli
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Joseph C Wilson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Thamotharampillai Dileepan
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Adam L Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Erik B Finger
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Aaron W Michels
- Department of Pediatrics and Medicine, University of Colorado, Denver, CO
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
4
|
Ton TGN, Watson NF, Koepsell TD, Longstreth WT. Narcolepsy and the Sickness Impact Profile: A general health status measure. ACTA ACUST UNITED AC 2014; 7:5-12. [PMID: 26483895 PMCID: PMC4521654 DOI: 10.1016/j.slsci.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
Abstract
Objective We characterized functional impact of narcolepsy on patients using a general health status measure, the Sickness Impact Profile (SIP). It has 136 items grouped into 12 categories and 2 dimensions. Methods We ascertained patients with physician-diagnosed narcolepsy in King County, Washington using multiple overlapping methods over four years starting July 2001. We recruited 226 patients (mean age 48 years, 65% female) who underwent in-person interviews and completed: Epworth Sleepiness Scale (ESS), Ullanlinna Narcolepsy Scale (UNS), and SIP. Linear regression was used to assess correlations between measures. Results Mean percent of total dysfunction was higher for psychosocial dimension (13.2) and independent categories (13.4) than physical dimension (5.0). Mean percent of total dysfunction in descending order for categories was: Sleep and Rest (23.6), Alertness Behavior (22.6), and Recreation and Pastimes (20.6). Ten items were endorsed by at least a third of all patients but only two of them concerned sleep. Unexpectedly, among the top ten items were, “My sexual activity is decreased,” and “I forget a lot, for example, things that happened recently, where I put things, appointments.” Percent of overall dysfunction on SIP (mean 10.3) was significantly correlated with ESS (r=0.36, p<0.001) and UNS (r=0.47, p<0.001). In this population-based sample, mean percent of total dysfunction on SIP in patients with narcolepsy (10.3) was higher than previously reported in the general population (3.6) and similar to that in other chronic disabling conditions. Discussion The SIP correlated with ESS and UNS, and captured unique aspects of the impact of narcolepsy on patients.
Collapse
Affiliation(s)
- Thanh G N Ton
- University of Washington, Department of Neurology, USA
| | - Nathaniel F Watson
- University of Washington, Department of Neurology, USA ; University of Washington (UW), UW Medicine Sleep Center, USA
| | - Thomas D Koepsell
- University of Washington, Department of Epidemiology, USA ; University of Washington, Department of Health Services, USA ; University of Washington, Department of Medicine, USA
| | - William T Longstreth
- University of Washington, Department of Neurology, Medicine and Epidemiology, USA
| |
Collapse
|
5
|
Mason MJ, Speake C, Gersuk VH, Nguyen QA, O'Brien KK, Odegard JM, Buckner JH, Greenbaum CJ, Chaussabel D, Nepom GT. Low HERV-K(C4) copy number is associated with type 1 diabetes. Diabetes 2014; 63:1789-95. [PMID: 24430436 DOI: 10.2337/db13-1382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement component C4 (C4) is a highly variable complement pathway gene situated ∼500 kb from DRB1 and DQB1, the genes most strongly associated with many autoimmune diseases. Variations in C4 copy number (CN), length, and isotype create a highly diverse gene cluster in which insertion of an endogenous retrovirus in the ninth intron of C4, termed HERV-K(C4), is a notable component. We investigated the relationship between C4 variation/CN and type 1 diabetes. We found that individuals with type 1 diabetes have significantly fewer copies of HERV-K(C4) and that this effect is not solely due to linkage with known major histocompatibility complex class II susceptibility alleles. We show that HERV-K(C4) is a novel marker of type 1 diabetes that accounts for the disease association previously attributed to some key HLA-DQB1 alleles, raising the possibility that this retroviral insertion element contributes to functional protection against type 1 diabetes.
Collapse
Affiliation(s)
- Mike J Mason
- Systems Immunology, Benaroya Research Institute, Seattle, WA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brooks-Worrell BM, Iyer D, Coraza I, Hampe CS, Nalini R, Ozer K, Narla R, Palmer JP, Balasubramanyam A. Islet-specific T-cell responses and proinflammatory monocytes define subtypes of autoantibody-negative ketosis-prone diabetes. Diabetes Care 2013; 36:4098-103. [PMID: 24130366 PMCID: PMC3836121 DOI: 10.2337/dc12-2328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Ketosis-prone diabetes (KPD) is characterized by diabetic ketoacidosis (DKA) in patients lacking typical features of type 1 diabetes. A validated classification scheme for KPD includes two autoantibody-negative ("A-") phenotypic forms: "A-β-" (lean, early onset, lacking β-cell functional reserve) and "A-β+" (obese, late onset, with substantial β-cell functional reserve after the index episode of DKA). Recent longitudinal analysis of a large KPD cohort revealed that the A-β+ phenotype includes two distinct subtypes distinguished by the index DKA episode having a defined precipitant ("provoked," with progressive β-cell function loss over time) or no precipitant ("unprovoked," with sustained β-cell functional reserve). These three A- KPD subtypes are characterized by absence of humoral islet autoimmune markers, but a role for cellular islet autoimmunity is unknown. RESEARCH DESIGN AND METHODS Islet-specific T-cell responses and the percentage of proinflammatory (CD14+CD16+) blood monocytes were measured in A-β- (n = 7), provoked A-β+ (n = 15), and unprovoked A-β+ (n = 13) KPD patients. Genotyping was performed for type 1 diabetes-associated HLA class II alleles. RESULTS Provoked A-β+ and A-β- KPD patients manifested stronger islet-specific T-cell responses (P < 0.03) and higher percentages of proinflammatory CD14+CD16+ monocytes (P < 0.01) than unprovoked A-β+ KPD patients. A significant relationship between type 1 diabetes HLA class II protective alleles and negative T-cell responses was observed. CONCLUSIONS Provoked A-β+ KPD and A-β- KPD are associated with a high frequency of cellular islet autoimmunity and proinflammatory monocyte populations. In contrast, unprovoked A-β+ KPD lacks both humoral and cellular islet autoimmunity.
Collapse
|
7
|
Watson NF, Ton TGN, Koepsell TD, Longstreth WT. Birth order and narcolepsy risk among genetically susceptible individuals: a population-based case-control study. Sleep Med 2012; 13:310-3. [PMID: 22281000 DOI: 10.1016/j.sleep.2011.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/17/2011] [Accepted: 09/06/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Birth order may play a role in autoimmune diseases and early childhood infections, both factors implicated in the etiology of narcolepsy. We investigated the association between birth order and narcolepsy risk in a population-based case-control study in which all study subjects were HLA-DQB1*0602 positive. METHODS Subjects were 18-50 years old, residents of King County, Washington, and positive for HLA-DQB1*0602. Birth order was obtained from administered interviews. We used logistic regression to generate odds ratios adjusted for income and African American race. RESULTS Analyses included 67 cases (mean age 34.3 [SD=9.1], 70.2% female) and 95 controls (mean age 35.1 [SD=8.8], 58.1% female). Associations for birth order were as follows: first born (cases 38.8% vs. controls 50.2%, OR=1.0; reference), second born (cases 29.9% vs. controls 32.9%, OR=1.6; 95% CI 0.7, 3.7), and third born or higher (cases 31.3% vs. controls 16.8%, OR=2.5; 95% CI 1.0, 6.0). A linear trend was significant (p<0.05). Sibling number, sibling gender, having children, and number of children did not differ significantly between narcolepsy cases and controls. CONCLUSIONS Narcolepsy risk was significantly associated with higher birth order in this population-based study of genetically susceptible individuals. This finding supports an environmental influence on narcolepsy risk through an autoimmune mechanism, early childhood infections, or both.
Collapse
Affiliation(s)
- Nathaniel F Watson
- Sleep Center, Harborview Medical Center, 325 Ninth Ave, Seattle, WA 98104, USA.
| | | | | | | |
Collapse
|
8
|
Ton TGN, Longstreth WT, Koepsell TD. Environmental toxins and risk of narcolepsy among people with HLA DQB1*0602. ENVIRONMENTAL RESEARCH 2010; 110:565-570. [PMID: 20519130 PMCID: PMC2930404 DOI: 10.1016/j.envres.2010.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 04/21/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
One etiologic model for narcolepsy suggests that some environmental toxin selectively and irreversibly destroys hypocretin-producing cells in individuals with human leukocyte antigen (HLA) DQB1(*)0602. Between 2001 and 2005, the authors conducted a population-based case-control study in King County, Washington to examine narcolepsy risk in relation to toxins found in jobs, hobbies, and other non-vocational activities. Sixty-seven cases and 95 controls were enrolled; all were between ages 18 and 50 and positive for HLA DQB1(*)0602. All were administered in-person interviews about jobs, hobbies or other non-vocational activities before age 21. All analyses were adjusted for African-American race and income. Risk increased significantly for jobs involving heavy metals (odds ratio [OR]=4.7; 95% confidence interval [CI]: 1.5, 14.5) and for highest levels of exposure to woodwork (OR: 3.0; 95% CI: 1.0, 8.9), fertilizer (OR=3.1; 95% CI: 1.1, 9.1), and bug or weed killer (OR=4.5; 95% CI: 1.5, 13.4). Associations were of borderline significance for activities involving ceramics, pesticides, and painting projects. Significant dose-response relationships were evident for jobs involving metals (p<0.03), paints (p<0.03), and bug or weed killer (p<0.02). Additional studies are needed to replicate these findings and continue the search for specific toxins that could damage hypocretin neurons in genetically susceptible people.
Collapse
Affiliation(s)
- Thanh G N Ton
- Neuroepidemiology Group, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
9
|
Cisneros E, Moraru M, de Pablo R, Vilches C. A method for simple and accurate identification of the multiple sclerosis associated allele HLA-DRB1*1501 in neuroscience research laboratories. J Neuroimmunol 2010; 225:143-8. [PMID: 20493561 DOI: 10.1016/j.jneuroim.2010.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 01/11/2023]
Abstract
Research on multiple sclerosis (MS) frequently requires typing for allele HLA-DRB1*1501, which the complexities of the HLA system can restrict to specialised histocompatibility laboratories. To overcome this limitation, we have implemented a simple, robust and highly specific method for DRB1*1501 detection. One single-tube polymerase-chain reaction (PCR) per DNA sample allows for detecting DR2 individuals. The spare PCR products of these are then sequenced to identify allele DRB1*1501 by comparison with the official, publicly accessible HLA database. This approach, much simpler than previously available methods, should facilitate research on MS by making accurate identification of DRB1*1501 accessible to neuroscience laboratories.
Collapse
Affiliation(s)
- E Cisneros
- Inmunogenética-HLA, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | |
Collapse
|
10
|
Watson NF, Ton TGN, Koepsell TD, Gersuk VH, Longstreth WT. Does narcolepsy symptom severity vary according to HLA-DQB1*0602 allele status? Sleep 2010; 33:29-35. [PMID: 20120618 DOI: 10.1093/sleep/33.1.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To investigate associations between HLA-DQB1*0602 allele status and measures of narcolepsy symptom severity. DESIGN Cross-sectional study of population-based narcolepsy patients. SETTING King County, Washington. PARTICIPANTS All prevalent cases (n = 279) of physician-diagnosed narcolepsy ascertained from 2001-2005. INTERVENTIONS N/A. MEASUREMENTS Narcolepsy diagnosis was based on cataplexy status, diagnostic sleep study results, and chart review. The number of HLA-DQB1 alleles was determined from buccal genomic DNA. Symptom severity instruments included the Epworth Sleepiness Scale (ESS), the Ullanlinna Narcolepsy Scale (UNS), age of symptom onset, subjective sleep latency and duration, and various clinical sleep parameters. We used linear regression adjusted for African American race and an extended chi-square test of trend to assess relationships across ordered groups defined by allele number (0, 1, or 2). RESULTS Narcolepsy patients were 63% female and 82% Caucasian, with a mean age of 47.6 years (SD = 17.1). One hundred forty-one (51%) patients had no DQB1*0602 alleles; 117 (42%) had one; and 21 (7%) had two. In the complete narcolepsy sample after adjustment for African American race, we observed a linear relationship between HLA-DQB1*0602 frequency and sleepiness as defined by the ESS (P < 0.01), narcolepsy severity as defined by UNS (P < 0.001), age of symptom onset (P < 0.05), and sleep latency (P < 0.001). In univariate analyses, HLA-DQB1*0602 frequency was also associated with napping (P < 0.05) and increased car and work accidents or near accidents (both P < 0.01). Habitual sleep duration was not associated with HLA status. These race-adjusted associations remained for the ESS (P < 0.05), UNS (P < 0.01), and sleep latency (P < 0.001) when restricting to narcolepsy with cataplexy. CONCLUSIONS Narcolepsy symptom severity varies in a linear manner according to HLA-DQB1*0602 allele status. These findings support the notion that HLA-DQ is a disease-modifying gene.
Collapse
|
11
|
ORFeome approach to the clonal, HLA allele-specific CD4 T-cell response to a complex pathogen in humans. J Immunol Methods 2009; 347:36-45. [PMID: 19520082 DOI: 10.1016/j.jim.2009.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
The CD4 T-cell response to vaccinia promotes antibody and long-term CD8 responses. HLA class II molecules present microbial epitopes to CD4 T-cells. In humans, at least 3 loci encode cell-surface peptide-binding HLA class II heterodimers. Using intracellular cytokine cytometry (ICC) assays, we determined that HLA DR had the strongest contribution to vaccinia antigen presentation. Among panels of vaccinia-restricted T-cell clones, most were DR-restricted but rare DQ-restricted clones were also recovered. Vaccinia has over 200 open reading frames (ORFs), providing a significant bottleneck to assigning fine specificity. To overcome this, we expressed each predicted vaccinia ORF using in vitro transcription and translation. Array-based pool proteins were used to rapidly assign fine specificity to each DQ-restricted clone and to a sample of HLA DR-restricted clones. Reactivity was confirmed using synthetic peptides for selected CD4 T-cell clones. This method should be broadly applicable to the study of large-genome, sequenced pathogens, and could also be used to investigate T-cell responses to cDNAs expressed in neoplastic and autoimmune disorders in which CD4 responses might be adaptive or harmful.
Collapse
|