1
|
Jing Q, Liu R, Jiang Q, Liu Y, He J, Zhou X, Yu OY, Chu CH, Cheng L, Ren B, Li M. Staphylococcus aureus wraps around Candida albicans and synergistically escapes from Neutrophil extracellular traps. Front Immunol 2024; 15:1422440. [PMID: 39050841 PMCID: PMC11266059 DOI: 10.3389/fimmu.2024.1422440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background NETs, a unique neutrophil immune mechanism, are vital in defending against microbial invasions. Understanding the mechanisms of co-infection by Candida albicans and Staphylococcus aureus, which often leads to higher mortality and poorer prognosis, is crucial for studying infection progression. Methods In our study, we established a mouse model of subcutaneous infection to characterize the inflammation induced by co-infection. By purifying and extracting NETs to interact with microorganisms, we delve into the differences in their interactions with various microbial species. Additionally, we investigated the differences in NETs production by neutrophils in response to single or mixed microorganisms through the interaction between neutrophils and these microorganisms. Furthermore, we analyzed the gene expression differences during co-infection using transcriptomics. Results In vivo, C. albicans infections tend to aggregate, while S. aureus infections are more diffuse. In cases of co-infection, S. aureus adheres to and wraps C. albicans. NETs exhibit strong killing capability against C. albicans but weaker efficacy against S. aureus. When NETs interact with mixed microorganisms, they preferentially target and kill the outer layer of S. aureus. In the early stages, neutrophils primarily rely on phagocytosis to kill S. aureus, but as the bacteria accumulate, they stimulate neutrophils to produce NETs. Interestingly, in the presence of neutrophils, S. aureus promotes the proliferation and hyphal growth of C. albicans. Conclusion Our research has showed substantial differences in the progression of co-infections compared to single-microbial infections, thereby providing scientific evidence for NETs as potential therapeutic targets in the treatment of co-infections.
Collapse
Affiliation(s)
- Qi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yingshuang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun-Hung Chu
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Han P, Sun D, Yang J. Interaction between periodontitis and liver diseases. Biomed Rep 2016; 5:267-276. [PMID: 27588170 PMCID: PMC4998044 DOI: 10.3892/br.2016.718] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is an oral disease that is highly prevalent worldwide, with a prevalence of 30–50% of the population in developed countries, but only ~10% present with severe forms. It is also estimated that periodontitis results in worldwide productivity losses amounting to ~54 billion USD yearly. In addition to the damage it causes to oral health, periodontitis also affects other types of disease. Numerous studies have confirmed the association between periodontitis and systemic diseases, such as diabetes, respiratory disease, osteoporosis and cardiovascular disease. Increasing evidence also indicated that periodontitis may participate in the progression of liver diseases, such as non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma, as well as affecting liver transplantation. However, to the best of our knowledge, there are currently no reviews elaborating upon the possible links between periodontitis and liver diseases. Therefore, the current review summarizes the human trials and animal experiments that have been conducted to investigate the correlation between periodontitis and liver diseases. Furthermore, in the present review, certain mechanisms that have been postulated to be responsible for the role of periodontitis in liver diseases (such as bacteria, pro-inflammatory mediators and oxidative stress) are considered. The aim of the review is to introduce the hypothesis that periodontitis may be important in the progression of liver disease, thus providing dentists and physicians with an improved understanding of this issue.
Collapse
Affiliation(s)
- Pengyu Han
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Jie Yang
- Department of Public Healthcare, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
3
|
Taubman MA, Smith DJ. Mucosal Vaccines for Dental Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Raja M, Ummer F, Dhivakar CP. Aggregatibacter actinomycetemcomitans - a tooth killer? J Clin Diagn Res 2014; 8:ZE13-6. [PMID: 25302290 DOI: 10.7860/jcdr/2014/9845.4766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/13/2014] [Indexed: 11/24/2022]
Abstract
Strong evidence is available on Aggregatibacter actinomycetemcomitans (A.a) on its role as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro. The organism has a number of means of evading host defences which include: (i) production of leukotoxin; (ii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding.
Collapse
Affiliation(s)
- Manoj Raja
- Reader, Department of Periodontics, Karpaga Vinayaga Institute of Dental Sciences , Chennai, India
| | - Fajar Ummer
- Reader, Department of Periodontics, MES Dental College , Perintalmanna, India
| | - C P Dhivakar
- Senior Lecturer, Department of Periodontics, Karpagavinayaga Institute of Dental Sciences , Chennai, India
| |
Collapse
|
5
|
Mucosal Vaccines for Dental Diseases. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
do Vale CHB, de Oliveira Fraga LA, Costa AS, Tavares CAP, Martins-Filho OA, de Macedo Farias L, Roque de Carvalho MA. Antiproliferative activity of Actinobacillus (Haemophilus) actinomycetemcomitans and Fusobacterium nucleatum in peripheral blood mononuclear cells. Res Microbiol 2004; 155:731-40. [PMID: 15501650 DOI: 10.1016/j.resmic.2004.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 05/18/2004] [Indexed: 11/24/2022]
Abstract
Several studies indicate Actinobacillus (Haemophilus) actinomycetemcomitans and Fusobacterium nucleatum as etiologic agents of periodontal disease. Immunosuppressive factors produced by microorganisms probably contribute to the initiation and evolution of this disease. This study evaluated the antiproliferative activity of ammonium precipitate fractions of A. (H.) actinomycetemcomitans and F. nucleatum isolates from humans and marmosets both with and without periodontal disease. All A. (H.) actinomycetemcomitans and most F. nucleatum strains inhibited PBMC proliferation in a dose-dependent manner. The degree of cell proliferative inhibition of each bacterial species differed among the strains and was independent of host clinical status. The in vitro inhibition of stimulated lymphocyte proliferation induced by different A. (H.) actinomycetemcomitans and F. nucleatum isolates demonstrated the importance of this phenomenon in bacterial virulence, playing a possible suppressor role in host defense mechanisms in vivo. Moreover, our findings pointed out a marked difference between A. (H.) actinomycetemcomitans and F. nucleatum cytoplasmic extracts in their antiproliferative activity, regarding the antigen concentration required for maximum inhibition and their vulnerability to heating and proteolytic treatment.
Collapse
Affiliation(s)
- Carmen Helena Barbosa do Vale
- Núcleo de Pesquisa em Imunologia, Faculdade de Ciências da Saúde-FACS, Universidade Vale do Rio Doce-UNIVALE, Gov. Valadares, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Schreiner HC, Sinatra K, Kaplan JB, Furgang D, Kachlany SC, Planet PJ, Perez BA, Figurski DH, Fine DH. Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci U S A 2003; 100:7295-300. [PMID: 12756291 PMCID: PMC165869 DOI: 10.1073/pnas.1237223100] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 04/16/2003] [Indexed: 02/05/2023] Open
Abstract
Actinobacillus actinomycetemcomitans is a Gram-negative coccobacillus that has been associated with localized aggressive periodontitis and infections of the heart, brain, and urinary tract. Wild-type clinical isolates have the remarkable ability to adhere tenaciously and nonspecifically to solid surfaces such as glass, plastic, and hydroxyapatite. Adherence by A. actinomycetemcomitans is mediated by the tight-adherence (tad) gene locus, which consists of 14 genes (flp-1-flp-2-tadV-rcpCAB-tadZABCDEFG). All but 2 of the genes have been shown to be required for the secretion and assembly of long, bundled Flp1 fibrils. To test whether the tad locus is required for colonization and disease, we developed a rat model for periodontal disease. To mimic the natural route of infection, Sprague-Dawley rats were inoculated orally by adding bacteria directly to their food for 8 days. After inoculation with wild-type or mutant strains defective in adherence (flp-1 and tadA), the rats were assessed for colonization of the oral cavity and pathogenesis. Wild-type A. actinomycetemcomitans was able to colonize and persist for at least 12 weeks in the oral cavity, elicit a humoral immune response, and cause significant bone loss in rats. In contrast, rats fed flp-1 or tadA mutant strains showed no bone loss and their immune responses were indistinguishable from those of the uninoculated controls. These results demonstrate the critical importance of the tad locus in the colonization and pathogenesis of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Helen C Schreiner
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
| | - Michael Wilson
- Cellular Microbiology Research Group and *Microbiology Department, Eastman Dental Institute, University College London and †Department of Biochemistry and Molecular Biology, University College London, London
| | | | - John M Ward
- Cellular Microbiology Research Group and *Microbiology Department, Eastman Dental Institute, University College London and †Department of Biochemistry and Molecular Biology, University College London, London
| |
Collapse
|
10
|
Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 1999; 20:136-67. [PMID: 10522226 DOI: 10.1111/j.1600-0757.1999.tb00161.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A. actinomycetemcomitans has clearly adapted well to its environs; its armamentarium of virulence factors (Table 2) ensures its survival in the oral cavity and enables it to promote disease. Factors that promote A. actinomycetemcomitans colonization and persistence in the oral cavity include adhesins, bacteriocins, invasins and antibiotic resistance. It can interact with and adhere to all components of the oral cavity (the tooth surface, other oral bacteria, epithelial cells or the extracellular matrix). The adherence is mediated by a number of distinct adhesins that are elements of the cell surface (outer membrane proteins, vesicles, fimbriae or amorphous material). A. actinomycetemcomitans enhances its chance of colonization by producing actinobacillin, an antibiotic that is active against both streptococci and Actinomyces, primary colonizers of the tooth surface. The fact that A. actinomycetemcomitans resistance to tetracyclines, a drug often used in the treatment of periodontal disease, is on the rise is an added weapon. Periodontal pathogens or their pathogenic products must be able to pass through the epithelial cell barrier in order to reach and cause destruction to underlying tissues (the gingiva, cementum, periodontal ligament and alveolar bone). A. actinomycetemcomitans is able to elicit its own uptake into epithelial cells and its spread to adjacent cells by usurping normal epithelial cell function. A. actinomycetemcomitans may utilize these remarkable mechanisms for host cell infection and migration to deeper tissues. A. actinomycetemcomitans also orchestrates its own survival by elaborating factors that interfere with the host's defense system (such as factors that kill phagocytes and impair lymphocyte activity, inhibit phagocytosis and phagocyte chemotaxis or interfere with antibody production). Once the organisms are firmly established in the gingiva, the host responds to the bacterial onslaught, especially to the bacterial lipopolysaccharide, by a marked and continual inflammatory response, which results in the destruction of the periodontal tissues. A. actinomycetemcomitans has at least three individual factors that cause bone resorption (lipopolysaccharide, proteolysis-sensitive factor and GroEL), as well as a number of activities (collagenase, fibroblast cytotoxin, etc.) that elicit detrimental effects on connective tissue and the extracellular matrix. It is of considerable interest to know that A. actinomycetemcomitans possesses so many virulence factors but unfortunate that only a few have been extensively studied. If we hope to understand and eradicate this pathogen, it is critical that in-depth investigations into the biochemistry, genetic expression, regulation and mechanisms of action of these factors be initiated.
Collapse
Affiliation(s)
- P M Fives-Taylor
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, USA
| | | | | | | |
Collapse
|
11
|
Teng YT, Nguyen H, Hassanloo A, Ellen RP, Hozumi N, Gorczynski RM. Periodontal immune responses of human lymphocytes in Actinobacillus actinomycetemcomitans-inoculated NOD/SCID mice engrafted with peripheral blood leukocytes of periodontitis patients. J Periodontal Res 1999; 34:54-61. [PMID: 10086887 DOI: 10.1111/j.1600-0765.1999.tb02222.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y T Teng
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, the University of Western Ontario, London, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Kesavalu L, Holt SC, Ebersole JL. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:373-7. [PMID: 9872114 DOI: 10.1111/j.1399-302x.1998.tb00694.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of a polymicrobic infection employing Treponema denticola and Porphyromonas gingivalis in the murine lesion model was used to determine the synergistic virulence of these two periodontopathic bacteria. At high doses of P. gingivalis W50, addition of T. denticola in the infection mixture had no effect on the formation and size of the spreading lesion caused by this microorganism. However, at low P. gingivalis challenge doses, T. denticola significantly enhanced the virulence of P. gingivalis compared with monoinfection of this microorganism. A potential role of the trypsin-like protease enzyme activity of P. gingivalis in this synergistic virulence was tested using P. gingivalis mutants deficient (i.e., BEI) or devoid (i.e., NG4B19) of this protease activity. These findings demonstrated that T. denticola-P. gingivalis complexes exhibit enhanced virulence in this model and that even using a polymicrobic challenge infection, the trypsin-like protease activity was important to P. gingivalis virulence expression.
Collapse
Affiliation(s)
- L Kesavalu
- Department of Periodontics, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | |
Collapse
|
13
|
Kesavalu L, Holt SC, Ebersole JL. Porphyromonas gingivalis virulence in a murine lesion model: effects of immune alterations. Microb Pathog 1997; 23:317-26. [PMID: 9441858 DOI: 10.1006/mpat.1997.0161] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study utilized various mouse strains with documented alterations in immune system components to assess their contribution to modify the virulence of Porphyromonas gingivalis. P. gingivalis W50 was cultivated on blood agar plates, harvested and used to challenge mice by subcutaneous injection on the dorsolateral surface of the back. Soft tissue lesion development was estimated by measuring the area of the spreading lesion formed by this microorganism over a period of 15 days. Challenge of various normal inbred and outbred mouse strains including: BALB/cN, BALB/cJ, BALB/c nu/+, ICR, B10.A(4R), B10.MBR, A/J, C57BL/6J, CBA/CaH, C.B-17/Icv Tacf DF and C3H/HeN with 2 x 10(10) bacteria showed similar lesion size among these strains (approximately 400 mm2). Genetically deficient mouse strains [C.B-17/Icr Tac (SCID); DBA/2 (C5 deficient); BALB/c nu/nu (T cell deficient); CBA/CaHN-XID/J (B cell deficient) and C3H/HeJ (LPS hyporesponsive)] demonstrated a lesion size which was similar to normal animals. C57BL/6J-BgJ (NK cell deficient) mice exhibited a significantly more severe lesion than the other strains tested. Following healing of the lesions, we initiated a secondary infection of the surviving animals to estimate the acquisition of protective immunity following recovery from the primary infection. Normal mice demonstrated a delayed onset and decrease in lesion size of 15 to 30% compared with the primary infection. In contrast, each of the immunodeficient strains appeared unable to develop immune protection to the secondary challenge. The findings suggest that protection against primary infections with P. gingivalis are mediated by innate immune mechanisms (PMN. NK cells). Additionally, it appears that T-cell-dependent humoral responses are critical to developing immunity to subsequent P. gingivalis infection.
Collapse
Affiliation(s)
- L Kesavalu
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA
| | | | | |
Collapse
|
14
|
Ebersole JL, Feuille F, Kesavalu L, Holt SC. Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Microb Pathog 1997; 23:23-32. [PMID: 9250777 DOI: 10.1006/mpat.1996.0129] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
These studies determined the ability of selected periodontopathogens to synergistically initiate soft tissue destruction in a murine abscess model. The development of immunity following recovery from infection or by active immunization was also examined. Mice were infected with P. gingivalis W50, F. nucleatum T18, or a combination of the two microorganisms. F. nucleatum caused only a localized lesion in contrast to P. gingivalis which caused a spreading suppurative inflammatory lesion of the skin and subcutaneous tissues, which, depending upon the dose, could result in death. Infection of mice with a combination of P. gingivalis and F. nucleatum elicited a significantly greater lesion size (P<0.001) and lethality compared with P. gingivalis alone. Mice infected with a subclinical dose (no visible lesion) of P. gingivalis failed to develop protective immunity to a secondary P. gingivalis challenge. Mice that had recovered from P. gingivalis lesions demonstrated partial protection against subsequent P. gingivalis challenge; however, the immunity was less protective against the mixed F. nucleatum + P. gingivalis infection. Active immunization with P. gingivalis protected against both the P. gingivalis and F. nucleatum + P. gingivalis challenges and this protection was correlated with the levels of specific serum immunoglobulin G (IgG) antibody. The results indicated that the murine model is ideally suited to examine bacterially-mediated mixed infections that result in soft tissue destruction. This destruction can be minimized, but not abrogated, with development of immunity. Challenge with sufficient numbers of the pathogens can overwhelm the acquired immunity.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Periodontics, University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- J J Zambon
- Department of Periodontology, State University of New York, School of Dental Medicine, Buffalo, USA
| |
Collapse
|
16
|
Chen PB, Davern LB, Katz J, Eldridge JH, Michalek SM. Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:274-81. [PMID: 9002881 DOI: 10.1111/j.1399-302x.1996.tb00181.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, evidence is presented that mixed infection with the periodontal pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans results in a synergistic effect in their pathogenicity and in their ability to induce humoral and cellular host responses. BALB/c mice were injected subcutaneously on the back with P. gingivalis ATCC 53977, A. actinomycetemocomitans 75 or a mixture of both bacteria. Samples of blood and fluid from abscesses formed at the site of injection (first degree) or distant from the injection site were collected for microbiologic analysis. Serum and spleens were obtained for evaluation of humoral and cellular responses to P. gingivalis and A actinomycetemocomitans. Mice injected with A. actinomycetemcomitans had first-degree lesions only, whereas mice injected with P. gingivalis and A. actinomycetemcomitans had lesions at first- and second-degree sites from which both bacterial species were isolated. A serum anti-P. gingivalis response was induced in P. gingivalis-injected mice, which was higher in mice injected with P. gingivalis and A. actinomycetemcomitans. This pattern was not seen in the anti-A, actinomycetemcomitans response. Lymphoproliferative responses to phytohemagglutinin, Escherichia coli lipopolysaccharide and P. gingivalis of spleen cells from infected mice were decreased, especially following co-infection. Furthermore, co-infection of mice resulted in the greatest decrease in the number of CD5+, especially CD4+ lymphocytes.
Collapse
Affiliation(s)
- P B Chen
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, USA
| | | | | | | | | |
Collapse
|
17
|
Wilson M, Henderson B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev 1995; 17:365-79. [PMID: 8845187 DOI: 10.1111/j.1574-6976.1995.tb00220.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There is strong evidence implicating Actinobacillus actinomycetemcomitans as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro although the mechanisms involved are poorly understood. The organism has a number of means of evading host defences which include: (i) inhibiting poloymorphonuclear leukocyte (PMN) chemotaxis; (ii) killing PMNs and monocytes; (iii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding proteins. Surface components of A. actinomycetemcomitans are potent stimulators of bone resorption and can induce the release of a range of cytokines which can initiate tissue destruction. A number of surface components can also inhibit the proliferation of fibroblasts and their production of components of the extracellular matrix. Little is known, however, regarding the way in which these factors operate in vivo to produce the pathological features of the disease.
Collapse
Affiliation(s)
- M Wilson
- Department of Microbiology Eastman Dental Institute for Oral Health Care Sciences, University of London, UK
| | | |
Collapse
|
18
|
Ebersole JL, Kesavalu L, Schneider SL, Machen RL, Holt SC. Comparative virulence of periodontopathogens in a mouse abscess model. Oral Dis 1995; 1:115-28. [PMID: 8705817 DOI: 10.1111/j.1601-0825.1995.tb00174.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE(S) This report compares the virulence of selected strains of P. gingivalis, A. actinomycetemcomitans, C. rectus, F. nucleatum and T. denticola in a murine model as a measure of pathogenic potential of these oral microorganisms. The characteristics of the tissue destruction associated with these monoinfections were then related to a potential model for bacterial synergism in progressing periodontitis. DESIGN AND METHODS All bacterial strains were grown to mid-logarithmic to early stationary growth phase, harvested and used at various doses to challenge BALB/c normal and BALB/c dexamethasone (DEX) treated mice to mimic a neutrophil dysfunction. The characteristics of tissue destruction, and overt tissue destructive capacity of these species were examined as a function of challenge dose and time. OUTCOME MEASURES The mice were examined for an interval of approximately 15 days post-challenge and the presence/absence of lesions, localized or generalized nature of the lesion (including size in mm2), and lethality of the infection were assessed. RESULTS Comparison of the virulence of the various P. gingivalis strains related to lethality and lesion size associated with destruction of the connective tissue, indicated a virulence capacity of P. gingivalis strains 53977>W50 = T22>3079>33277>381. C. rectus elicited localized necrotic lesions which were limited to the epithelial layers of the skin. The size of the lesions also indicated a graded difference in virulence, such that C. rectus strains 234>576>>33238. A. actinomycetemcomitans caused the formation of classic localized abscesses with a PMN infiltrate and inflammatory exudates. Although each of the A. actinomycetemcomitans strains exhibited a similar virulence pattern in this murine model, A. actinomycetemcomitans serotype b representative strains were potentially more pathogenic with a virulence capacity of 3113D-N = 3975A>JP2 > or = Y4>29523>33384. Both C. rectus and A. actinomycetemcomitans strains showed clear evidence that recent clinical isolates were more virulent than laboratory strains. Challenge with F. nucleatum resulted in tissue destructive responses which were different from those observed with the other strains used in this study. A rapid onset of dose-dependent lesion development, related to the formation of either closed abscesses or open lesions, was observed with F. nucleatum. Tissue involvement was also greater at lower F. nucleatum doses when compared to the other bacteria. F. nucleatum challenge of DEX-treated mice resulted in a shift to open lesions. T. denticola appeared to be more tissue invasive than the other species examined in this study. Challenge of mice with T. denticola resulted in involvement of multiple tissues, including epithelial and connective tissues, as well as appearing to invade muscle layers and deeper tissues. In addition to invading deeper tissues, the resulting lesions took considerably longer to resolve. In the DEX-treated mice (neutrophil depleted), P. gingivalis, C. rectus, and A. actinomycetemcomitans were significantly more virulent. In contrast, while DEX treatment altered the characteristics of lesions caused by F. nucleatum, the extent of lesions produced by F. nucleatum and T. denticola was not substantially enhanced. CONCLUSIONS The results obtained from this study suggest that different microorganisms have the ability to provide individual pathologies which may act in an additive/synergistic fashion contributing to the tissue destruction noted in periodontitis.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Periodontics, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- A D Haffajee
- Department of Periodontology, Forsyth Dental Center, Boston, Massachusetts, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- J L Ebersole
- Department of Periodontics, University of Texas Health Science Center at San Antonio, USA
| | | |
Collapse
|
21
|
Saito S, Hayakawa M, Takiguchi H, Abiko Y. Suppression of proliferation of a human B-cell leukaemic cell line derived from acute lymphoblastic leukaemia by soluble factor(s) from Campylobacter rectus. Arch Oral Biol 1993; 38:449-55. [PMID: 8343067 DOI: 10.1016/0003-9969(93)90180-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soluble sonic extracts of several strains were examined for their ability to alter proliferation of a cell line derived from acute lymphoblastic leukaemia (BALL-1). Extracts of all strains tested caused dose-dependent suppression of proliferation when assessed by DNA (tritiated thymidine incorporation), RNA (tritiated uridine incorporation) and protein (tritiated leucine incorporation) synthesis. There was no effect on the viability of BALL-1 as measured by either trypan-blue exclusion or extracellular release of the cytoplasmic enzyme lactate dehydrogenase. The suppressive factor(s) was separated in a well-defined peak by high-pressure liquid DEAE ion-exchange chromatography, which revealed a single active peak with a molecular mass of 48 kDa. Characterization of the peak indicated that the suppressive factor(s) was heat labile (activity destroyed at 80 degrees C) and sensitive to the proteolytic enzyme pronase P. The soluble suppressive factor(s) from Campylobacter rectus thus has protein-like properties and no cytotoxicity to a human B-cell leukaemic cell line.
Collapse
Affiliation(s)
- S Saito
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|