1
|
Shahbaz M, Al-Maleki AR, Cheah CW, Aziz J, Bartold PM, Vaithilingam RD. Connecting the dots: NETosis and the periodontitis-rheumatoid arthritis nexus. Int J Rheum Dis 2024; 27:e15415. [PMID: 39526323 DOI: 10.1111/1756-185x.15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Periodontitis (PD) is characterized by the host's inflammatory responses to microbial dental biofilm dysbiosis, potentially resulting in tooth loss if left untreated. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease leading to synovial inflammation and destruction of joint cartilage and bone. The suggested association between PD and RA is based on the potential of chronic inflammation present in periodontitis, which could induce alterations in proteins through post-translational modifications, leading to the formation of citrullinated and carbamylated protein antigens. Antibodies directed against these antigens can serve as biomarkers for the underlying immunological processes in RA. Recent studies have also focused on bacterial proteolytic enzymes released from PD-associated bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, which are also sources of these antibodies. Chronic inflammation in PD causes increased levels of inflammatory cytokines (interferon-α, interleukins-6 and 8, tumor necrosis factor-α) and neutrophil extracellular traps (NETs). The oral microbiota in PD is also associated with the release of NETs (a process known as NETosis). Elevated NET levels are a source of citrullinated and carbamylated proteins which highlights their role in an individual's risk of developing RA (pre-RA individuals) and the progression of chronic RA. This narrative review describes periodontitis and the dysbiotic subgingival microbiota and its role in NETosis as risk factors for inducing early RA and the prospects of identifying pre-RA individuals and seronegative RA patients with these risk factors.
Collapse
Affiliation(s)
- Maliha Shahbaz
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Peter Mark Bartold
- Department of Periodontology, University of Adelaide, Adelaide, South Australia, Australia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Oral Microbiome in Nonsmoker Patients with Oral Cavity Squamous Cell Carcinoma, Defined by Metagenomic Shotgun Sequencing. Cancers (Basel) 2022; 14:cancers14246096. [PMID: 36551584 PMCID: PMC9776653 DOI: 10.3390/cancers14246096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives: Smoking is the commonest cause of oral cavity squamous cell carcinoma (OC-SCC), but the etiology of OC-SCC in nonsmokers is unknown. Our primary goal was to use metagenomic shotgun sequencing (MSS) to define the taxonomic composition and functional potential of oral metagenome in nonsmokers with OC-SCC. Methods: We conducted a case-control study with 42 OC-SCC case and 45 control nonsmokers. MSS was performed on DNA extracted from mouthwash samples. Taxonomic analysis and pathway analysis were done using MetaPhlAn2 and HUMAnN2, respectively. Statistical difference was determined using the Mann-Whitney test controlling false discovery rate. Results: There was no significant difference in age, sex, race, or alcohol consumption between OC-SCC and control patients. There was a significant difference in beta diversity between OC-SCC and controls. At the phylum level, Bacteroidetes and Synergistetes were overly represented in OC-SCC while Actinobacteria and Firmicutes were overly represented in controls. At the genus level, Fusobacterium was overly represented in OC-SCC compared with controls, while Corynebacterium, Streptococcus, Actinomyces, Cryptobacterium, and Selenomonas were overly represented in controls. Bacterial pathway analysis identified overrepresentation in OC-SCC of pathways related to metabolism of flavin, biotin, thiamin, heme, sugars, fatty acids, peptidoglycans, and tRNA and overrepresentation of nucleotides and essential amino acids in controls. Conclusions: The oral microbiome in nonsmoker patients with OC-SCC is significantly different from that of nonsmoker control patients in taxonomic compositions and functional potentials. Our study's MSS findings matched with previous 16S-based methods in taxonomic differentiation but varied greatly in functional differentiation of microbiomes in OC-SCC and controls.
Collapse
|
3
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
4
|
Eriksson K, Lundmark A, Delgado LF, Hu YOO, Fei G, Lee L, Fei C, Catrina AI, Jansson L, Andersson AF, Yucel-Lindberg T. Salivary Microbiota and Host-Inflammatory Responses in Periodontitis Affected Individuals With and Without Rheumatoid Arthritis. Front Cell Infect Microbiol 2022; 12:841139. [PMID: 35360114 PMCID: PMC8964114 DOI: 10.3389/fcimb.2022.841139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Periodontitis and rheumatoid arthritis (RA) are two widespread chronic inflammatory diseases with a previously suggested association. The objective of the current study was to compare the oral microbial composition and host´s inflammatory mediator profile of saliva samples obtained from subjects with periodontitis, with and without RA, as well as to predict biomarkers, of bacterial pathogens and/or inflammatory mediators, for classification of samples associated with periodontitis and RA. Methods Salivary samples were obtained from 53 patients with periodontitis and RA and 48 non-RA with chronic periodontitis. The microbial composition was identified using 16S rRNA gene sequencing and compared across periodontitis patients with and without RA. Levels of inflammatory mediators were determined using a multiplex bead assay, compared between the groups and correlated to the microbial profile. The achieved data was analysed using PCoA, DESeq2 and two machine learning algorithms, OPLS-DA and sPLS-DA. Results Differential abundance DESeq2 analyses showed that the four most highly enriched (log2 FC >20) amplicon sequence variants (ASVs) in the non-RA periodontitis group included Alloprevotella sp., Prevotella sp., Haemophilus sp., and Actinomyces sp. whereas Granulicatella sp., Veillonella sp., Megasphaera sp., and Fusobacterium nucleatum were the most highly enriched ASVs (log2 FC >20) in the RA group. OPLS-DA with log2 FC analyses demonstrated that the top ASVs with the highest importance included Vampirovibrio sp. having a positive correlation with non-RA group, and seven ASVs belonging to Sphingomonas insulae, Sphingobium sp., Novosphingobium aromaticivorans, Delftia acidovorans, Aquabacterium spp. and Sphingomonas echinoides with a positive correlation with RA group. Among the detected inflammatory mediators in saliva samples, TWEAK/TNFSF12, IL-35, IFN-α2, pentraxin-3, gp130/sIL6Rb, sIL-6Ra, IL-19 and sTNF-R1 were found to be significantly increased in patients with periodontitis and RA compared to non-RA group with periodontitis. Moreover, correlations between ASVs and inflammatory mediators using sPLS-DA analysis revealed that TWEAK/TNFSF12, pentraxin-3 and IL-19 were positively correlated with the ASVs Sphingobium sp., Acidovorax delafieldii, Novosphingobium sp., and Aquabacterium sp. Conclusion Our results suggest that the combination of microbes and host inflammatory mediators could be more efficient to be used as a predictable biomarker associated with periodontitis and RA, as compared to microbes and inflammatory mediators alone.
Collapse
Affiliation(s)
- Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Luis F. Delgado
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Yue O. O. Hu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Guozhong Fei
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Linkiat Lee
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Carina Fei
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Anca I. Catrina
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Jansson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
- Department of Periodontology, Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Anders F. Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| |
Collapse
|
5
|
Lopez-Oliva I, de Pablo P, Dietrich T, Chapple I. Gums and joints: is there a connection? Part two: the biological link. Br Dent J 2019; 227:611-617. [PMID: 31605072 DOI: 10.1038/s41415-019-0723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) and periodontitis (PD) are inflammatory diseases characterised by an exacerbated immune-inflammatory reaction that leads to the destruction of bone and other connective tissues that share numerous similarities. Although a significant and independent association between these two conditions has been described, the pathophysiological processes that may explain this relationship remain unknown and multiple theories have been proposed. This review presents the most important theories currently proposed to explain the biological link between RA and PD.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paola de Pablo
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Iain Chapple
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
6
|
Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease. J Clin Med 2019; 8:jcm8091339. [PMID: 31470579 PMCID: PMC6780532 DOI: 10.3390/jcm8091339] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is a chronic inflammation that develops due to a destructive tissue response to prolonged inflammation and a disturbed homeostasis (dysbiosis) in the interplay between the microorganisms of the dental biofilm and the host. The infectious nature of the microbes associated with periodontitis is unclear, as is the role of specific bacterial species and virulence factors that interfere with the host defense and tissue repair. This review highlights the impact of classical virulence factors, such as exotoxins, endotoxins, fimbriae and capsule, but also aims to emphasize the often-neglected cascade of metabolic products (e.g., those generated by anaerobic and proteolytic metabolism) that are produced by the bacterial phenotypes that survive and thrive in deep, inflamed periodontal pockets. This metabolic activity of the microbes aggravates the inflammatory response from a low-grade physiologic (homeostatic) inflammation (i.e., gingivitis) into more destructive or tissue remodeling processes in periodontitis. That bacteria associated with periodontitis are linked with a number of systemic diseases of importance in clinical medicine is highlighted and exemplified with rheumatoid arthritis, The unclear significance of a number of potential "virulence factors" that contribute to the pathogenicity of specific bacterial species in the complex biofilm-host interaction clinically is discussed in this review.
Collapse
|
7
|
Lopez-Oliva I, Paropkari AD, Saraswat S, Serban S, Yonel Z, Sharma P, de Pablo P, Raza K, Filer A, Chapple I, Dietrich T, Grant MM, Kumar PS. Dysbiotic Subgingival Microbial Communities in Periodontally Healthy Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2018. [PMID: 29513935 DOI: 10.1002/art.40485] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Studies that demonstrate an association between rheumatoid arthritis (RA) and dysbiotic oral microbiomes are often confounded by the presence of extensive periodontitis in these individuals. This study was undertaken to investigate the role of RA in modulating the periodontal microbiome by comparing periodontally healthy individuals with RA to those without RA. METHODS Subgingival plaque was collected from periodontally healthy individuals (22 with RA and 19 without RA), and the 16S gene was sequenced on an Illumina MiSeq platform. Bacterial biodiversity and co-occurrence patterns were examined using the QIIME and PhyloToAST pipelines. RESULTS The subgingival microbiomes differed significantly between patients with RA and controls based on both community membership and the abundance of lineages, with 41.9% of the community differing in abundance and 19% in membership. In contrast to the sparse and predominantly congeneric co-occurrence networks seen in controls, RA patients revealed a highly connected grid containing a large intergeneric hub anchored by known periodontal pathogens. Predictive metagenomic analysis (PICRUSt) demonstrated that arachidonic acid and ester lipid metabolism pathways might partly explain the robustness of this clustering. As expected from a periodontally healthy cohort, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were not significantly different between groups; however, Cryptobacterium curtum, another organism capable of producing large amounts of citrulline, emerged as a robust discriminant of the microbiome in individuals with RA. CONCLUSION Our data demonstrate that the oral microbiome in RA is enriched for inflammophilic and citrulline-producing organisms, which may play a role in the production of autoantigenic citrullinated peptides in RA.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | | | | | - Stefan Serban
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | - Zehra Yonel
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | - Praveen Sharma
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | - Paola de Pablo
- NIHR Birmingham Biomedical Research Centre and The University of Birmingham, Birmingham, UK
| | - Karim Raza
- NIHR Birmingham Biomedical Research Centre and The University of Birmingham, Birmingham, UK
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, Birmingham, UK
| | - Iain Chapple
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | - Thomas Dietrich
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | - Melissa M Grant
- The University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust, Birmingham, UK
| | | |
Collapse
|
8
|
Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence. Appl Environ Microbiol 2018; 84:AEM.02475-17. [PMID: 29330189 DOI: 10.1128/aem.02475-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/07/2018] [Indexed: 01/11/2023] Open
Abstract
Gut metagenomic sequences provide a rich source of microbial genes, the majority of which are annotated by homology or unknown. Genes and gene pathways that encode enzymes catalyzing biotransformation of host bile acids are important to identify in gut metagenomic sequences due to the importance of bile acids in gut microbiome structure and host physiology. Hydroxysteroid dehydrogenases (HSDHs) are pyridine nucleotide-dependent enzymes with stereospecificity and regiospecificity for bile acid and steroid hydroxyl groups. HSDHs have been identified in several protein families, including medium-chain and short-chain dehydrogenase/reductase families as well as the aldo-keto reductase family. These protein families are large and contain diverse functionalities, making prediction of HSDH-encoding genes difficult and necessitating biochemical characterization. We located a gene cluster in Eggerthella sp. CAG:298 predicted to encode three HSDHs (CDD59473, CDD59474, and CDD59475) and synthesized the genes for heterologous expression in Escherichia coli We then screened bile acid substrates against the purified recombinant enzymes. CDD59475 is a novel 12α-HSDH, and we determined that CDD59474 (3α-HSDH) and CDD59473 (3β-HSDH) constitute novel enzymes in an iso-bile acid pathway. Phylogenetic analysis of these HSDHs with other gut bacterial HSDHs and closest homologues in the database revealed predictable clustering of HSDHs by function and identified several likely HSDH sequences from bacteria isolated or sequenced from diverse mammalian and avian gut samples.IMPORTANCE Bacterial HSDHs have the potential to significantly alter the physicochemical properties of bile acids, with implications for increased/decreased toxicity for gut bacteria and the host. The generation of oxo-bile acids is known to inhibit host enzymes involved in glucocorticoid metabolism and may alter signaling through nuclear receptors such as farnesoid X receptor and G-protein-coupled receptor TGR5. Biochemical or similar approaches are required to fill in many gaps in our ability to link a particular enzymatic function with a nucleic acid or amino acid sequence. In this regard, we have identified a novel 12α-HSDH and a novel set of genes encoding an iso-bile acid pathway (3α-HSDH and 3β-HSDH) involved in epimerization and detoxification of harmful secondary bile acids.
Collapse
|
9
|
Hiranmayi KV, Sirisha K, Ramoji Rao MV, Sudhakar P. Novel Pathogens in Periodontal Microbiology. J Pharm Bioallied Sci 2017; 9:155-163. [PMID: 28979069 PMCID: PMC5621177 DOI: 10.4103/jpbs.jpbs_288_16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a polymicrobial disease caused by complex interactions between distinct pathogens in a biofilm resulting in the destruction of periodontal tissues. It seems evident that unknown microorganisms might be involved in onset or progression of periodontitis. For many decades, research in the field of oral microbiology failed to identify certain subgingival microbiota due to technical limitations but, over a period of 12 years using molecular approaches and sequencing techniques, it became feasible to reveal the existence of new periodontal pathogens. Therefore, it is evident that in addition to conventional periodontal pathogens, other microbes might be involved in onset and progression of periodontitis. The novel pathogens enlisted under periodontal phylogeny include Cryptobacterium curtum, Dialister pneumosintes, Filifactor alocis, Mitsuokella dentalis, Slackia exigua, Selenomonas sputigena, Solobacterium moorei, Treponema lecithinolyticum, and Synergistes. The polymicrobial etiology of periodontitis has been elucidated by comprehensive techniques, and studies throwing light on the possible virulence mechanisms possessed by these novel periodontal pathogens are enlisted.
Collapse
Affiliation(s)
- K Vidya Hiranmayi
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - K Sirisha
- Reader, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - M V Ramoji Rao
- HOD, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - P Sudhakar
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| |
Collapse
|
10
|
Shi D, Yu X, Zhao G, Ho J, Lu S, Allewell NM, Tuchman M. Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: Assembly, active site, and allosteric regulation. Proteins 2012; 80:1436-47. [PMID: 22328207 DOI: 10.1002/prot.24042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
Abstract
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C-terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C-terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C-terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240's loop. PTCase lacks the proline-rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram-positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C-terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research and Department of Integrative Systems Biology, Children's National Medical Center, The George Washington University, Washington, District of Columbia 20010, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Mavrommatis K, Pukall R, Rohde C, Chen F, Sims D, Brettin T, Kuske C, Detter JC, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Ovchinnikova G, Pati A, Ivanova N, Chen A, Palaniappan K, Chain P, D'haeseleer P, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Rohde M, Klenk HP, Kyrpides NC. Complete genome sequence of Cryptobacterium curtum type strain (12-3). Stand Genomic Sci 2009; 1:93-100. [PMID: 21304644 PMCID: PMC3035227 DOI: 10.4056/sigs.12260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cryptobacterium curtum Nakazawa etal. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
12
|
Würdemann D, Tindall BJ, Pukall R, Lünsdorf H, Strömpl C, Namuth T, Nahrstedt H, Wos-Oxley M, Ott S, Schreiber S, Timmis KN, Oxley APA. Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn's disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2009; 59:1405-15. [PMID: 19502325 DOI: 10.1099/ijs.0.005900-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, Gram-positive, short-rod/coccobacillus-shaped bacterial strain, designated 7-10-1-b(T), was isolated from the colon of a patient suffering from acute Crohn's disease. The isolate formed small, pale-white, semi-translucent colonies on solid cultivation media. The strain was catalase-positive and metabolized only a small number of carbon sources. Whole-cell fatty acids consisted predominantly of saturated fatty acids (89 %), of which 15 : 0 anteiso was the major component. The polar lipids phosphatidylglycerol and diphosphatidylglycerol as well as four glycolipids were identified. 16S rRNA gene sequence analysis revealed that the isolate represents a distinct lineage within the family Coriobacteriaceae and has 94.6 % identity to the type strain of [Eggerthella] hongkongensis, the phylogenetically closest bacterial species. On the basis of the analyses performed, the new genus and species Gordonibacter pamelaeae gen. nov., sp. nov. is described, with strain 7-10-1-b(T) (=DSM 19378(T) =CCUG 55131(T)) as the type and only strain of Gordonibacter pamelaeae. Also, based on the chemotaxonomic data obtained for all type strains of the neighbouring genus Eggerthella, we propose that Eggerthella hongkongensis Lau et al. 2006 be transferred to a new genus as Paraeggerthella hongkongensis gen. nov., comb. nov.; the type strain of Paraeggerthella hongkongensis is HKU10(T) (=DSM 16106(T) =CCUG 49250(T)).
Collapse
Affiliation(s)
- Dieco Würdemann
- Environmental Microbiology Laboratory, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Uematsu H, Hossain MZ, Alam T, Ikeda T, Kuvatanasuchati J, Hoshino E. Degradation of serine-containing oligopeptides by Peptostreptococcus micros ATCC 33270. ACTA ACUST UNITED AC 2007; 22:381-3. [PMID: 17949340 DOI: 10.1111/j.1399-302x.2007.00374.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIMS Microorganisms of Peptostreptococcus micros are asaccharolytic, anaerobic gram-positive cocci that are frequently isolated from human oral sites such as periodontal pockets. Preliminary study showed that several amino acids, including serine, enhanced slightly the growth of P. micros. Therefore, we investigated the degradation of serine and serine-containing oligopeptides. METHODS Metabolic end products were determined with high-performance liquid chromatography. The related enzymatic activities in cell-free extract were also assayed. RESULTS Washed P. micros degraded serine-tripeptides (Ser-Ser-Ser), and produced formate, pyruvate, acetate, and ammonia. They also degraded serinyl-tyrosine (Ser-Tyr) to the same products. Related enzymatic activities, such as serine dehydratase, pyruvate formate-lyase, formate dehydrogenase, pyruvate oxidoreductase, phosphate acetyltransferase, and acetate kinase, were detected in the cell-free extract, indicating that the organisms produced ATP in the serine metabolism. CONCLUSION P. micros utilized serine-containing oligopeptides as exogenous metabolic substrates rather than serine itself, and degraded Ser-Ser-Ser and Ser-Tyr to formate, pyruvate, acetate, and ammonia with ATP generation.
Collapse
Affiliation(s)
- H Uematsu
- Oral Ecology in Health and Infection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|