1
|
Deng L, Gillis JE, Chiu IM, Kaplan DH. Sensory neurons: An integrated component of innate immunity. Immunity 2024; 57:815-831. [PMID: 38599172 PMCID: PMC11555576 DOI: 10.1016/j.immuni.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob E Gillis
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
3
|
Liang H, Jing D, Zhu Y, Li D, Zhou X, Tu W, Liu H, Pan P, Zhang Y. Association of genetic risk and lifestyle with incident adult-onset asthma in the UK Biobank cohort. ERJ Open Res 2023; 9:00499-2022. [PMID: 37057096 PMCID: PMC10086697 DOI: 10.1183/23120541.00499-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 04/15/2023] Open
Abstract
Background Both genetic and lifestyle factors contribute to the development of asthma, but whether unfavourable lifestyle is associated with similar increases in risk of developing asthma among individuals with varying genetic risk levels remains unknown. Methods A healthy lifestyle score was constructed using body mass index, smoking status, physical activities and dietary pattern to further categorise into ideal, intermediate and poor groups. Genetic risk of asthma was also categorised as three groups based on the tertiles of polygenic risk score established using 212 reported and verified single-nucleotide polymorphisms of European ancestry in the UK Biobank study. We examined the risk of incident asthma related with each lifestyle level in each genetic risk group by Cox regression models. Results Finally, 327 124 participants without baseline asthma were included, and 157 320 (48.1%) were male. During follow-up, 6238 participants (1.9%) developed asthma. Compared to ideal lifestyle in a low genetic risk group, poor lifestyle was associated with a hazard ratio of up to 3.87 (95% CI, 2.98-5.02) for developing asthma in a high genetic risk group. There was interaction between genetic risk and lifestyle, and the population-attributable fraction of lifestyle and genetic risk were 30.2% and 30.0% respectively. Conclusion In this large contemporary population, lifestyle and genetic factors jointly play critical roles in the development of asthma, and the effect values of lifestyle on incident adult-onset asthma were greater than that of genetic risk. Our findings highlighted the necessity of a comprehensive intervention for the prevention of asthma despite the genetic risk.
Collapse
Affiliation(s)
- Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- These authors contributed equally to this work
| | - Danrong Jing
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
- These authors contributed equally to this work
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xin Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wei Tu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Hong Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
- These authors contributed equally to this work
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- These authors contributed equally to this work
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- These authors contributed equally to this work
- Corresponding author: Yan Zhang (); Pinhua Pan (); Hong Liu ()
| |
Collapse
|
4
|
CD30-targeted therapy induces apoptosis of inflammatory cytokine-stimulated synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice. Inflamm Res 2022; 71:215-226. [DOI: 10.1007/s00011-021-01537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/20/2021] [Indexed: 11/05/2022] Open
|
5
|
Fan H, Lu B, Cao C, Li H, Yang D, Huang L, Ding T, Wu M, Lu G. Plasma TNFSF13B and TNFSF14 Function as Inflammatory Indicators of Severe Adenovirus Pneumonia in Pediatric Patients. Front Immunol 2021; 11:614781. [PMID: 33542721 PMCID: PMC7851050 DOI: 10.3389/fimmu.2020.614781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background Human adenoviruses (HAdV) infection caused pneumonia remains a major threat to global children health. Currently, diagnosis of severe HAdV pneumonia in children is hampered by the lack of specific biomarkers. Also, the severity of adenovirus pneumonia in pediatric patients is generally based on clinical features and existing biomarkers do not reliably correlate to clinical severity. Here, we asked whether local and systemic inflammatory mediators could act as biomarkers predicting severe HAdV pneumonia in children. Methods Totally 37 common inflammatory protein levels were determined by Luminex assay in plasma and bronchoalveolar lavage (BAL) from pediatric patients who were diagnosed with HAdV pneumonia, and their correlation with the disease severity and lung lesion were assessed using statistical and bioinformatic analysis. Results Among 37 inflammatory cytokines, the protein levels of 4 TNF superfamily (TNFSF) members and their receptors (TNF receptor superfamily, TNFRSF) [TNFSF13B, TNFSF14, sTNF-R1 and sTNF-R2] in the plasma and 7 TNFSF/TNFRSF members [TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFRSF8, sTNF-R1, and sTNF-R2] in the BAL were enhanced in patients with HAdV pneumonia compared with control subjects with airway foreign body. Moreover, the protein levels of all the tested TNFSF/TNFRSF members (except TNFSF12) were elevated in the BAL of severe group compared with non-severe HAdV pneumonia patients, while only TNFSF13B and TNFSF14 were dramatically increased in the plasma of severe cases, and positively related to the plasma CRP levels. In addition, ROC analysis indicated that TNFSF13B and TNFSF14 displayed a great potential to predict severe HAdV pneumonia. Conclusion In pediatric HAdV pneumonia, TNFSF/TNFRSF members function as key molecules in local and systemic inflammatory network, and the plasma TNFSF13B and TNFSF14 may be the potential local and systemic inflammatory indicators of severe HAdV pneumonia in pediatric patients.
Collapse
Affiliation(s)
- Huifeng Fan
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Can Cao
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Diyuan Yang
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Ding
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Steer CA, Mathä L, Shim H, Takei F. Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight 2020; 5:135961. [PMID: 32573494 DOI: 10.1172/jci.insight.135961] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) in mouse lungs are activated by the epithelium-derived alarmin IL-33. Activated ILC2s proliferate and produce IL-5 and IL-13 that drive allergic responses. In neonatal lungs, the occurrence of spontaneous activation of lung ILC2s is dependent on endogenous IL-33. Here, we report that neonatal lung ILC2 activation by endogenous IL-33 has significant effects on ILC2 functions in adulthood. Most neonatal lung ILC2s incorporated 5-bromo-2'-deoxyuridine (BrdU) and persisted into adulthood. BrdU+ ILC2s in adult lungs responded more intensely to IL-33 treatment compared with BrdU- ILC2s. In IL-33-deficient (KO) mice, lung ILC2s develop normally, but they are not activated in the neonatal period. Lung ILC2s in KO mice responded less intensely to IL-33 in adulthood compared with WT ILC2s. While there was no difference in the number of lung ILC2s, there were fewer IL-13+ ILC2s in KO mice compared with those in WT mice. The impaired responsiveness of ILC2s in KO mice was reversed by i.n. administrations of IL-33 in the neonatal period. These results suggest that activation of lung ILC2s by endogenous IL-33 in the neonatal period may "train" ILC2s seeding the lung after birth to become long-lasting resident cells that respond more efficiently to challenges later in life.
Collapse
Affiliation(s)
- Catherine A Steer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Laura Mathä
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Interdisciplinary Oncology Program and
| | - Hanjoo Shim
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Han Y, Jia Q, Jahani PS, Hurrell BP, Pan C, Huang P, Gukasyan J, Woodward NC, Eskin E, Gilliland FD, Akbari O, Hartiala JA, Allayee H. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat Commun 2020; 11:1776. [PMID: 32296059 PMCID: PMC7160128 DOI: 10.1038/s41467-020-15649-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic and genetically complex respiratory disease that affects over 300 million people worldwide. Here, we report a genome-wide analysis for asthma using data from the UK Biobank and the Trans-National Asthma Genetic Consortium. We identify 66 previously unknown asthma loci and demonstrate that the susceptibility alleles in these regions are, either individually or as a function of cumulative genetic burden, associated with risk to a greater extent in men than women. Bioinformatics analyses prioritize candidate causal genes at 52 loci, including CD52, and demonstrate that asthma-associated variants are enriched in regions of open chromatin in immune cells. Lastly, we show that a murine anti-CD52 antibody mimics the immune cell-depleting effects of a clinically used human anti-CD52 antibody and reduces allergen-induced airway hyperreactivity in mice. These results further elucidate the genetic architecture of asthma and provide important insight into the immunological and sex-specific relevance of asthma-associated risk variants.
Collapse
Affiliation(s)
- Yi Han
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qiong Jia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Pin Huang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Janet Gukasyan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicholas C Woodward
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Eleazar Eskin
- Department of Computer Science and Inter-Departmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank D Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jaana A Hartiala
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Olafsdottir TA, Theodors F, Bjarnadottir K, Bjornsdottir US, Agustsdottir AB, Stefansson OA, Ivarsdottir EV, Sigurdsson JK, Benonisdottir S, Eyjolfsson GI, Gislason D, Gislason T, Guðmundsdóttir S, Gylfason A, Halldorsson BV, Halldorsson GH, Juliusdottir T, Kristinsdottir AM, Ludviksdottir D, Ludviksson BR, Masson G, Norland K, Onundarson PT, Olafsson I, Sigurdardottir O, Stefansdottir L, Sveinbjornsson G, Tragante V, Gudbjartsson DF, Thorleifsson G, Sulem P, Thorsteinsdottir U, Norddahl GL, Jonsdottir I, Stefansson K. Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis. Nat Commun 2020; 11:393. [PMID: 31959851 PMCID: PMC6971247 DOI: 10.1038/s41467-019-14144-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/05/2019] [Indexed: 12/28/2022] Open
Abstract
Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3‘ UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFβR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis. Asthma is a common allergic airway disease with significant inter-individual heterogeneity. Here, Olafsdottir et al. report a genome-wide meta-analysis of two large population-based cohorts to identify sequence variants that associate with asthma risk and perform follow-up functional analyses on a protective loss-of-function variant in TNFRSF8.
Collapse
Affiliation(s)
- Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur Steina Bjornsdottir
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,The Medical Center Mjodd, Reykjavik, Iceland
| | | | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - David Gislason
- The Medical Center Mjodd, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorarinn Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavík, Iceland
| | | | | | | | - Dora Ludviksdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | | | | | - Vinicius Tragante
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour REE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D, Haas BJ, Tickle TL, Trombetta JJ, Baral P, Klose CSN, Mahlakõiv T, Artis D, Rozenblatt-Rosen O, Chiu IM, Levy BD, Kowalczyk MS, Regev A, Kuchroo VK. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 2017; 549:351-356. [PMID: 28902842 PMCID: PMC5746044 DOI: 10.1038/nature24029] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces.
Collapse
Affiliation(s)
- Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raja-Elie E Abdulnour
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jackson Nyman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Daneyal Farouq
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brian J Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John J Trombetta
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Pankaj Baral
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christoph S N Klose
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Monika S Kowalczyk
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Selected immunological parameters in clinical evaluation of patients with atopic dermatitis. Postepy Dermatol Alergol 2016; 33:211-8. [PMID: 27512357 PMCID: PMC4969417 DOI: 10.5114/ada.2016.60614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/18/2015] [Indexed: 02/04/2023] Open
Abstract
Introduction It has been suggested that soluble immune receptors (SIRs) such as sCD25 and sCD30 may serve as potential biomarkers in evaluation of atopic dermatitis (AD). Previous studies clearly indicated that serum levels of interleukin (IL)-13 and total IgE (tIgE) might be potentially useful in the evaluation of patents with AD. Aim To evaluate whether serum levels of sCD25 and sCD30 are suitable biomarkers of AD. Moreover, we have decided to estimate the usefulness of tIgE and IL-13 serum level determination in the evaluated population. Material and methods A group of 102 AD patients was investigated. Serum concentrations of sCD30, sCD25, IL-13 and tIgE were measured. The clinical phenotype of AD was classified as extrinsic (ADe) or intrinsic (ADi) based on the presence of IgE. Statistical analysis was performed to estimate correlations between obtained results and clinical features of the population such as AD phenotype, age, disease extent and severity. Results Extrinsic AD was diagnosed in 71% of patients, while ADi phenotype was observed in 29% of the investigated population. A negative correlation between serum levels of sCD25 and sCD30 and disease severity as well patients’ age was established. Serum levels of IL-13 did not reach the cut-off point set by the manufacturer. A positive correlation between serum levels of total IgE and disease severity and patients’ age was observed. Conclusions This paper shows that serum levels of sCD25 and sCD30 as well as tIgE are age dependent. Determination of serum levels of sCD25, sCD30 and IL-13 is not useful in everyday practice.
Collapse
|
11
|
Kotaniemi-Syrjänen A, Delezuch W, Pelkonen AS, Malmström K, Malmberg LP, Punnonen K, Matinlauri IH, Mäkelä MJ. Improvement in lung function is associated with a decrease in serum soluble CD30 in atopic infants. Ann Allergy Asthma Immunol 2014; 114:156-7. [PMID: 25492095 DOI: 10.1016/j.anai.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Anne Kotaniemi-Syrjänen
- Pediatric Unit, Department of Allergology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | - Anna S Pelkonen
- Pediatric Unit, Department of Allergology, Helsinki University Central Hospital, Helsinki, Finland
| | - Kristiina Malmström
- Pediatric Unit, Department of Allergology, Helsinki University Central Hospital, Helsinki, Finland
| | - L Pekka Malmberg
- Pediatric Unit, Department of Allergology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | - Mika J Mäkelä
- Pediatric Unit, Department of Allergology, Helsinki University Central Hospital, Helsinki, Finland; Department of Allergy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Boomer JS, Parulekar AD, Patterson BM, Yin-Declue H, Deppong CM, Crockford S, Jarjour NN, Castro M, Green JM. A detailed phenotypic analysis of immune cell populations in the bronchoalveolar lavage fluid of atopic asthmatics after segmental allergen challenge. Allergy Asthma Clin Immunol 2013; 9:37. [PMID: 24330650 PMCID: PMC3848528 DOI: 10.1186/1710-1492-9-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022] Open
Abstract
Background Atopic asthma is characterized by intermittent exacerbations triggered by exposure to allergen. Exacerbations are characterized by an acute inflammatory reaction in the airways, with recruitment of both innate and adaptive immune cells. These cell populations as well as soluble factors are critical for initiating and controlling the inflammatory processes in allergic asthma. Detailed data on the numbers and types of cells recruited following allergen challenge is lacking. In this paper we present an extensive phenotypic analysis of the inflammatory cell infiltrate present in the bronchoalveolar lavage (BAL) fluid following bronchoscopically directed allergen challenge in mild atopic asthmatics. Methods A re-analysis of pooled data obtained prior to intervention in our randomized, placebo controlled, double blinded study (costimulation inhibition in asthma trial [CIA]) was performed. Twenty-four subjects underwent bronchoscopically directed segmental allergen challenge followed by BAL collection 48 hours later. The BAL fluid was analyzed by multi-color flow cytometry for immune cell populations and multi-plex ELISA for cytokine detection. Results Allergen instillation induced pro-inflammatory cytokines (IL-6) and immune modulating cytokines (IL-2, IFN-γ, and IL-10) along with an increase in lymphocytes and suppressor cells (Tregs and MDSC). Interestingly, membrane expression of CD30 was identified on lymphocytes, especially Tregs, but not eosinophils. Soluble CD30 was also detected in the BAL fluid after allergen challenge in adult atopic asthmatics. Conclusions After segmental allergen challenge of adult atopic asthmatics, cell types associated with a pro-inflammatory as well as an anti-inflammatory response are detected within the BAL fluid of the lung.
Collapse
|
13
|
Delezuch W, Marttinen P, Kokki H, Heikkinen M, Vanamo K, Pulkki K, Matinlauri I. Serum and CSF soluble CD26 and CD30 concentrations in healthy pediatric surgical outpatients. ACTA ACUST UNITED AC 2012; 80:368-75. [PMID: 22861386 DOI: 10.1111/j.1399-0039.2012.01938.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 06/06/2012] [Accepted: 07/01/2012] [Indexed: 12/11/2022]
Abstract
Activated T-helper type 1 (Th1) lymphocytes induce a cellular type immune response, and Th2 lymphocytes, a humoral or antibody-mediated type immune response. Soluble CD26 (sCD26) and soluble CD30 (sCD30) are regarded as markers of Th1 and Th2 lymphocyte activation, respectively. Serum from 112 generally healthy pediatric surgical patients and cerebrospinal fluid (CSF) from 39, aged 1-17 years were measured for sCD26 and sCD30 using an enzyme-linked immunosorbent assay method. The detection limit for sCD26 was 6.8 ng/ml and for sCD30, 1.9 IU/ml. For serum sCD26 and sCD30, 2.5% and 97.5% percentiles constituted the reference limits, and the 95% credible intervals for the percentiles were calculated using regression models with a Bayesian approach. A significant between-gender difference was observed (P = 0.015) in serum sCD26 concentration, of which the lower limits ranged between 273 and 716 ng/ml for girls and 235 and 797 ng/ml for boys. The upper limits ranged between 1456 and 1898 ng/ml for girls and between 1419 and 1981 ng/ml for boys. Moreover, the concentrations of sCD26 increased in infants and children up to 10 years in girls and 12 years in boys. After this however, the values decreased. The serum sCD30 concentration was highest among the youngest infants aged 1 year (80-193 IU/ml), after which a consistent age-related decrease was found. The lowest values were found at the age of 17 years (10-89 IU/ml). A significant between-gender difference in sCD30 concentration was observed (P = 0.019). sCD26 and sCD30 concentrations were low in the CSF samples analyzed: 13.3 ng/ml (median); range 8.3-51.5 ng/ml and 7.6 IU/ml; 2.1-18.5 IU/ml, respectively. Reference limits for serum sCD26 in children aged 1-17 years were established as being 235-1800 ng/ml in toddlers and 400-1800 ng/ml in female adolescents and 700-2000 ng/ml in male adolescents. For sCD30; reference limits of 80-190 IU/ml were established in the youngest age group and 10-90 IU/ml in adolescents.
Collapse
Affiliation(s)
- W Delezuch
- Department of Clinical Chemistry, University of Kuopio and Eastern Finland Laboratory Centre, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Remes ST, Delezuch W, Pulkki K, Pekkanen J, Korppi M, Matinlauri IH. Association of serum-soluble CD26 and CD30 levels with asthma, lung function and bronchial hyper-responsiveness at school age. Acta Paediatr 2011; 100:e106-11. [PMID: 21401715 DOI: 10.1111/j.1651-2227.2011.02264.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM There is a need for markers of Th1 and Th2 imbalance in diseases such as asthma. CD30 is an activation marker of Th2 cells, and importance of Th1 marker CD26 was recently found in adult asthma. We studied whether serum-soluble CD30 (sCD30) or serum-soluble CD26 (sCD26) could support early diagnosis of asthma in children at school age. METHODS sCD26 and sCD30 were measured in 34 children with clinically confirmed asthma, 31 with possible asthma and in 147 controls. In addition, the associations of flow volume spirometry, methacholine inhalation challenge and free running test results with serum sCD26 or sCD30 were analysed. RESULTS Serum sCD30 was significantly higher in children with confirmed asthma (mean 91.5 IU/mL, SD 23.0) than in the controls (78.8 IU/mL, 25.9; p = 0.042). No significant differences were found in serum sCD26 levels between the groups. There was a negative correlation of mean mid expiratory flow values with serum sCD26 (r = -0.22, p = 0.0018). Neither methacholine inhalation challenge nor free running test results were associated with serum sCD26 or sCD30. CONCLUSION Serum sCD30 was higher in children with asthma. However, marked overlap in serum sCD30 between asthmatic and healthy children limits the usefulness of sCD30 as a diagnostic marker of asthma.
Collapse
Affiliation(s)
- Sami T Remes
- Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Oflazoglu E, Grewal IS, Gerber H. Targeting CD30/CD30L in oncology and autoimmune and inflammatory diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:174-85. [PMID: 19760074 DOI: 10.1007/978-0-387-89520-8_12] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transmembrane receptor CD30 (TNFRSF8) and its ligand CD30L (CD153, TNFSF8) are members of the tumor necrosis factor (TNF) superfamily and display restricted expression in subpopulations of activated T-and B-cells in nonpathologic conditions. CD30 expression is upregulated in various hematological malignancies, including Reed-Sternberg cells in Hodgkin's disease (HD), anaplastic large cell lymphoma (ALCL) and subsets of Non-Hodgkin's lymphomas (NHLs). Increased CD30L expression was found on mast cells within HD tumors and preclinical and clinical studies with compounds targeting the CD30/ CD30L system in HD and ALCL demonstrated therapeutic benefit. Upregulation of CD30 and CD30L is also linked to leukocytes in patients with chronic inflammatory diseases, including lupus erythematosus, asthma, rheumatoid arthritis and atopic dermatitis (AD). Preclinical studies conducted with transgenic mice or biologic compounds suggested important regulatory functions of the CD30-CD30L system in various aspects of the immune system. Such key regulatory roles and their low expression in normal conditions combined with increased expression in malignant tissues provided a strong rationale to investigate CD30 and CD30L as therapeutic targets in hematologic malignancies, autoimmune and inflammatory diseases. In this report, we review the pharmacodynamic effects of specific therapeutic compounds targeting the CD30/CD30L system in preclinical- and clinical studies.
Collapse
Affiliation(s)
- Ezogelin Oflazoglu
- Department of Preclinical Therapeutics, Seattle Genetics, Inc, 21823 30th Drive, Southeast, Bothell, Washington, 9802, USA
| | | | | |
Collapse
|
16
|
CD27 costimulation is not critical for the development of asthma and respiratory tolerance in a murine model. Immunol Lett 2010; 133:19-27. [PMID: 20600327 DOI: 10.1016/j.imlet.2010.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/06/2010] [Accepted: 06/14/2010] [Indexed: 11/21/2022]
Abstract
CD27 is a costimulatory molecule of the TNFR family strongly expressed on activated CD4(+) and CD8(+) T lymphocytes. Binding with its ligand CD70, present on lymphocytes and DCs, leads to enhanced T cell activation and proliferation. Several other costimulatory molecules of the TNFR family like CD30, CD134 (OX40) or CD137 (4-1BB) have been shown to be critically involved in the development of asthma and/or respiratory tolerance. However, the role of CD27/CD70 signalling in these disease models has not been studied intensively. The aim of this study was to directly investigate the role of CD27 for the development of asthma and respiratory tolerance by comparative analysis of wild type (WT) and CD27(-/-) mice in the corresponding murine models. Ovalbumin (OVA)-sensitized and challenged CD27(-/-) mice developed comparably increased airway hyperreactivity (AHR), eosinophilic airway inflammation, mucus hypersecretion and elevated OVA-specific serum IgE levels in response to OVA sensitization as WT mice. In addition, Th2 cytokine production in spleen cell culture supernatants and proliferation of splenocytes after in vitro OVA restimulation was equally enhanced when derived from WT and CD27(-/-) mice. Furthermore, the absence of CD27 had no decisive impact on tolerance induction, so that WT and CD27(-/-) mice were comparably protected from asthma development by mucosal antigen application before sensitization. Our results suggest that CD27 costimulation is dispensable for a Th2 cell mediated allergic asthma response and respiratory tolerance induction in murine models.
Collapse
|
17
|
Lombardi V, Singh AK, Akbari O. The role of costimulatory molecules in allergic disease and asthma. Int Arch Allergy Immunol 2009; 151:179-89. [PMID: 19786798 DOI: 10.1159/000242355] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The prevalence of allergic diseases has increased rapidly in recent years. It is well established that the deleterious allergic response is initiated by T-cell recognition of major histocompatibility class II-peptide complexes at the surface of antigen-presenting cells. While this first signal gives antigen specificity to the adaptive immune response, a second nonspecific costimulatory signal is required by T cells to become fully activated. This signal is provided by interactions between antigen-presenting cells and T cells through molecules borne at the surfaces of the two cell types. Depending on the type of molecules involved, this secondary signal can promote the development of an inflammatory allergic reaction or may favor immune regulation. Several molecules of the B7 family (CD80, CD86, PD-1, ICOS, CTLA-4) and tumor necrosis factor receptor family (OX40, CD30, 4-1BB, Fas, CD27, CD40) play an important role in delivering costimulatory signals in early and late phases of allergic response. Therefore, costimulatory molecules involved in promotion or prevention of allergic immune responses are potential targets for the development of novel therapeutic approaches. This review aims to recapitulate our current understanding of the relationship between allergic diseases and costimulatory molecules.
Collapse
Affiliation(s)
- Vincent Lombardi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9605, USA
| | | | | |
Collapse
|
18
|
Ott H, Wilke J, Baron JM, Höger PH, Fölster-Holst R. Soluble immune receptor serum levels are associated with age, but not with clinical phenotype or disease severity in childhood atopic dermatitis. J Eur Acad Dermatol Venereol 2009; 24:395-402. [PMID: 19744181 DOI: 10.1111/j.1468-3083.2009.03419.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Soluble immune receptors (SIRs) have been proposed as biomarkers in patients with atopic dermatitis (AD). However, their clinical applicability in affected children has rarely been studied. OBJECTIVE To assess the diagnostic usefulness of serum SIRs in childhood AD by correlating the obtained receptor profiles with serological parameters and clinical features such as age, AD phenotype and disease severity. METHODS We investigated 100 children with AD. The sCD14, sCD23, sCD25, sCD30, total IgE (tIgE) and eosinophilic cationic protein (ECP) were determined using sera of all children. The clinical phenotype was classified as extrinsic AD (ADe) or intrinsic AD (ADi) by the presence of allergen-specific IgE antibodies. RESULTS A total of 55 male and 45 female children were recruited. The sCD23, sCD25 and sCD30 serum levels revealed significant age-dependency. At a mean SCORAD of 40 (range 8-98), none of the evaluated SIRs was correlated to disease severity. In all, 73% of patients suffered from ADe while 27% showed the ADi phenotype. None of the analysed SIRs differed significantly between ADe and ADi patients, while tIgE and ECP levels were elevated in the ADe subgroup. CONCLUSION The current study provides evidence that sCD23, sCD25 and sCD30 serum levels are highly age-dependent. Serum concentrations of all investigated SIRs did not significantly correlate with disease severity in children with AD and were not differentially expressed in patients of different AD phenotypes. Therefore, we believe that the studied SIRs cannot be regarded as clinically useful biomarkers for the assessment of childhood AD.
Collapse
Affiliation(s)
- H Ott
- Department of Dermatology and Allergology, University Hospital Aachen, Aachen.
| | | | | | | | | |
Collapse
|
19
|
Vinay DS, Kwon BS. TNF superfamily: costimulation and clinical applications. Cell Biol Int 2009; 33:453-65. [PMID: 19230849 PMCID: PMC2712666 DOI: 10.1016/j.cellbi.2009.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/04/2009] [Indexed: 12/21/2022]
Abstract
The molecules concerned with costimulation belong either to the immunoglobulin (Ig) or tumor necrosis factor (TNF) superfamily. The tumor necrosis superfamily comprises molecules capable of providing both costimulation and cell death. In this review we briefly summarize certain TNF superfamily receptor-ligand pairs that are endowed with costimulatory properties and their importance in health and disease.
Collapse
Affiliation(s)
- Dass S Vinay
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Byoung S Kwon
- Department of Ophthalmology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
- Cell and Immunobiology and R&D Center for Cancer Therapeutics, National Cancer Center, Ilsan, Gyeonggi-Do, Korea
| |
Collapse
|
20
|
Stencel-Gabriel K, Gabriel I, Czuba Z, Mazur B, Paul M, Górski P. CD30 on stimulated CD4+ T lymphocytes in newborns regarding atopic heredity. Pediatr Allergy Immunol 2007; 18:659-64. [PMID: 18078420 DOI: 10.1111/j.1399-3038.2007.00571.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD30 was initially described as Ki-1 Ag on Reed-Sternberg cells of Hodgkin's lymphoma and its and CD30L(+) expression on T cells in placenta were equally frequent in the atopic and non-atopic women. In this article we present a study of CD30 mean fluorescence intensity (MFI) on CB T CD4(+) cells. We tested the hypothesis that in newborns with atopy family history there is a changed CB T cells response after antigen stimulation comparing with those without atopy family history. The study population consisted of 31 newborn babies (29-breastfed, two non-breastfed) and their mothers. Eleven of them had positive and 20 had negative atopy family history. Performed tests included cord blood, which was a subject to flowcytometry analysis and was cultured for 24 h, cytokine production was measured (IFN- gamma, IL-4 and IL-12). Secondly, we measured total maternal and cord blood IgE levels. We studied CD30 MFI as in our studies in larger group of newborns, CD30 expression on CD4(+) T cells appeared to be very low. MFI of CD4(+) CD30(+) after PHA-stimulation (213.55: range: 41.77-434.51) was significantly increased compared to MFI of CD4(+) CD30(+) before PHA-stimulation (43.63: range 28.67-134.67)(p </= 0.001). Newborns with and without atopy family history were analyzed. We found no difference between MFI of CD4(+) CD30(+) on non-stimulated T cells in non-atopic (43.80: range 28.66-134.66) and atopic (43.30: range 29.12-80.92) (p > 0.05). After PHA stimulation MFI of CD4(+) CD30(+) in non-atopic (273.05 (range: 42.9-434.51) was significantly increased compared with the atopic newborns to MFI of 87.1 (range: 41.78-241.42) (p = 0.00). We have not found any correlation between MFI of CD4(+) CD30(+) and total maternal and total CB IgE levels. The role of CD30 in immunological response needs further research studies.
Collapse
|
21
|
Ajdary S, Jafari-Shakib R, Riazi-Rad F, Khamesipour A. Soluble CD26 and CD30 levels in patients with anthroponotic cutaneous leishmaniasis. J Infect 2007; 55:75-8. [PMID: 17241668 DOI: 10.1016/j.jinf.2006.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 11/25/2006] [Accepted: 12/08/2006] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Leishmania tropica is the causative agent of anthroponotic cutaneous leishmaniasis (CL) in Iran. The disease often heals within a year; however, the non-healing forms of disease are also known. The aim of the present study was the determination of the levels of soluble (s) CD26 and CD30 co-stimulatory molecules in sera of L. tropica-infected individuals. The correlations of sCD26 and sCD30 levels with clinical presentation of the disease were assessed. METHODS The levels of sCD26 and sCD30 were determined by a sandwich enzyme-linked immunosorbent assay in sera from patients with acute and non-healing presentation of disease. RESULTS The serum level of sCD26 was significantly higher in non-healing patients than in cases with acute CL (P<0.001). There was no significant difference in sCD26 level between patients with acute CL and healthy controls. However, the levels of sCD30 in sera from all L. tropica-infected individuals were higher than controls (P<0.001). A significant difference was also found in sCD30 level between non-healing cases and patients with acute CL (P<0.001). CONCLUSION These findings suggest sCD30 is more relevant to clinical manifestation of cutaneous leishmaniasis than sCD26. The high sCD26 and sCD30 levels in non-healing patients reflect the presence of mixed Th1- and Th2-type responses in these patients.
Collapse
Affiliation(s)
- Soheila Ajdary
- Immunology Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 13164, Iran.
| | | | | | | |
Collapse
|