1
|
Parrotta L, Tanwar UK, Aloisi I, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Del Duca S. Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology. Cells 2022; 11:cells11091529. [PMID: 35563835 PMCID: PMC9105555 DOI: 10.3390/cells11091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
2
|
Polyamine Metabolism under Different Light Regimes in Wheat. Int J Mol Sci 2021; 22:ijms222111717. [PMID: 34769148 PMCID: PMC8583935 DOI: 10.3390/ijms222111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023] Open
Abstract
Although the relationship between polyamines and photosynthesis has been investigated at several levels, the main aim of this experiment was to test light-intensity-dependent influence of polyamine metabolism with or without exogenous polyamines. First, the effect of the duration of the daily illumination, then the effects of different light intensities (50, 250, and 500 μmol m–2 s–1) on the polyamine metabolism at metabolite and gene expression levels were investigated. In the second experiment, polyamine treatments, namely putrescine, spermidine and spermine, were also applied. The different light quantities induced different changes in the polyamine metabolism. In the leaves, light distinctly induced the putrescine level and reduced the 1,3-diaminopropane content. Leaves and roots responded differently to the polyamine treatments. Polyamines improved photosynthesis under lower light conditions. Exogenous polyamine treatments influenced the polyamine metabolism differently under individual light regimes. The fine-tuning of the synthesis, back-conversion and terminal catabolism could be responsible for the observed different polyamine metabolism-modulating strategies, leading to successful adaptation to different light conditions.
Collapse
|
3
|
Ioannidis NE, Malliarakis D, Torné JM, Santos M, Kotzabasis K. The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection. FRONTIERS IN PLANT SCIENCE 2016; 7:635. [PMID: 27242838 PMCID: PMC4861818 DOI: 10.3389/fpls.2016.00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 05/09/2023]
Abstract
Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca(2+) and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIβ centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective "energization" quenching or qE (-77% at 490 μmol photons m(-2) s(-1)) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed.
Collapse
Affiliation(s)
| | | | - Josep M. Torné
- Department of Molecular Genetics, Center for Research in Agricultural GenomicsBarcelona, Spain
| | - Mireya Santos
- Department of Molecular Genetics, Center for Research in Agricultural GenomicsBarcelona, Spain
| | | |
Collapse
|
4
|
Pietrini F, Iori V, Bianconi D, Mughini G, Massacci A, Zacchini M. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 162:221-31. [PMID: 26253590 DOI: 10.1016/j.jenvman.2015.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 05/15/2023]
Abstract
Eucalyptus is a promising species for ecological restoration but plant performances under environmental constraints need to be better investigated. In particular, the toxic effects of metals on this plant species are poorly described in the literature. In this work, morpho-physiological and biochemical responses to cadmium were analysed in two eucalypt genotypes (hybrid clones of Eucalyptus camaldulensis × Eucalyptus globulus ssp. bicostata J.B. Kirkp named Velino ex 7 and Viglio ex 358) exposed for 3 weeks to 50 μM CdSO4 under hydroponics. The two eucalypt clones showed a different sensitivity to the metal. The growth reduction caused by cadmium was less than 30% in clone Velino and about 50% in clone Viglio. Cadmium mostly accumulated in plant roots and, to a lesser extent, in stem, as highlighted by the low translocation factor (Tf) measured in both clones. Net photosynthesis measurement, chlorophyll fluorescence images, transpiration values and chlorophyll content revealed a cadmium-induced impairment of physiological processes at the leaf level, which was more evident in clone Viglio. Metal binding and antioxidative compound content was differentially affected by cadmium exposure in the two eucalypt clones. Particularly, the content of thiols like cysteine and glutathione, organic acids like oxalate and citrate, and polyamines were markedly modulated in plant organs by metal treatment and highlighted different defence responses between the clones. Cadmium tolerance and accumulation ability of the eucalypt clones were evaluated and the potential of E. camaldulensis for the reclamation of metal polluted-waters is discussed.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Institute of Agro-environment and Forest Biology, National Research Council (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - Valentina Iori
- Institute of Agro-environment and Forest Biology, National Research Council (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - Daniele Bianconi
- Institute of Agro-environment and Forest Biology, National Research Council (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - Giovanni Mughini
- Research Unit for Intensive Wood Production, The Agricultural Research Council (CRA), Via Valle della Quistione, 27, 00166 Roma, Italy
| | - Angelo Massacci
- Institute of Agro-environment and Forest Biology, National Research Council (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo, Roma, Italy
| | - Massimo Zacchini
- Institute of Agro-environment and Forest Biology, National Research Council (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
5
|
Campos N, Torné JM, Bleda MJ, Manich A, Urreta I, Montalbán IA, Castañón S, Moncalean P, Santos M. Proteomic and transcriptomic analysis of rice tranglutaminase and chloroplast-related proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:142-153. [PMID: 25443841 DOI: 10.1016/j.plantsci.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/09/2023]
Abstract
The recently cloned rice transglutaminase gene (tgo) is the second plant transglutaminase identified to date (Campos et al. Plant Sci. 205-206 (2013) 97-110). Similarly to its counterpart in maize (tgz), this rice TGase was localized in the chloroplast, although in this case not exclusively. To further characterise plastidial tgo functionality, proteomic and transcriptomic studies were carried out to identify possible TGO-related proteins. Some LHCII antenna proteins were identified as TGO related using an in vitro proteomic approach, as well as ATPase and some PSII core proteins by mass spectrometry. To study the relationship between TGO and other plastidial proteins, a transcriptomic in vivo Dynamic Array (Fluidigm™) was used to analyse the mRNA expression of 30 plastidial genes with respect to that of tgo, in rice plants subjected to different periods of continuous illumination. The results indicated a gene-dependent tendency in the expression pattern that was related to tgo expression and to the illumination cycle. For certain genes, including tgo, significant differences between treatments, principally at the initiation and/or at the end of the illumination period, connected with the day/night cycling of gene expression, were observed. The tgo expression was especially related to plastidial proteins involved in photoprotection and the thylakoid electrochemical gradient.
Collapse
Affiliation(s)
- N Campos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - J M Torné
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - M J Bleda
- Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - A Manich
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - I Urreta
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Vitoria, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - I A Montalbán
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute Apto 46, E-01080, Vitoria-Gasteiz, Araba, Spain.
| | - S Castañón
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - P Moncalean
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Apto 46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - M Santos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
6
|
Sobieszczuk-Nowicka E, Legocka J. Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:297-305. [PMID: 23889994 DOI: 10.1111/plb.12058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/06/2013] [Indexed: 05/03/2023]
Abstract
Polyamines are low-molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light-harvesting chlorophyll a/b-protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo-adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.
Collapse
Affiliation(s)
- E Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
7
|
Pintó-Marijuan M, Da Silva AB, Flexas J, Dias T, Zarrouk O, Martins-Loução MA, Chaves MM, Cruz C. Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems. TREE PHYSIOLOGY 2013; 33:1328-1337. [PMID: 24150034 DOI: 10.1093/treephys/tpt077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Montados are evergreen oak woodlands dominated by Quercus species, which are considered to be key to biodiversity conservation and ecosystem services. This ecosystem is often used for cattle breeding in most regions of the Iberian Peninsula, which causes plants to receive extra nitrogen as ammonia (NH(3)) through the atmosphere. The effect of this atmospheric NH(3) (NH(3atm)) on ecosystems is still under discussion. This study aimed to evaluate the effects of an NH(3atm) concentration gradient downwind of a cattle barn in a Montado area. Leaves from the selected Quercus suber L. trees along the gradient showed a clear influence of the NH(3) on δ(13)C, as a consequence of a strong limitation on the photosynthetic machinery by a reduction of both stomatal and mesophyll conductance. A detailed study of the impact of NH(3atm) on the photosynthetic performance of Q. suber trees is presented, and new mechanisms by which NH(3) affects photosynthesis at the leaf level are suggested.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Campos N, Castañón S, Urreta I, Santos M, Torné JM. Rice transglutaminase gene: Identification, protein expression, functionality, light dependence and specific cell location. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:97-110. [PMID: 23498867 DOI: 10.1016/j.plantsci.2013.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 05/04/2023]
Abstract
Transglutaminases (TGases), that catalyze post-translational modification of proteins, are scarcely known in plants. As part of a project to characterize transglutaminase genes in new plant species, the identification and characterization of a TGase in rice is presented. Using differential primers, a cDNA (tgo) of 1767bp from genomic rice DNA amplification was obtained. The primers were designed from the rice DNA sequence relatively homologous to the gene encoding active maize chloroplast TGase. Amino acid sequence of the deduced rice TGase protein (TGO) indicated that it contains the enzyme catalytic triad (Cys-His-Asp), three repeats, myristoylation domains and a leucine zipper motif. The TGO recombinant protein was characterized, showing specific activity regulation, and indicating that tgo encoded for an authentic TGase. Substrate preference and Ca(2+) dependent activity were also detected. In the rice plant TGO protein was immunolocalized in the grana chloroplasts, in protein vesicles near them, and in the bulliform cells. Immunoblot analyses, tgo mRNA expression, and TGase activity indicated that TGO expression in rice was light dependent and regulated by the illumination period. This work increases significantly our plant TGase understanding. Its functional role in rice, which is a good model system for C3 plants, is discussed.
Collapse
Affiliation(s)
- N Campos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
9
|
Ioannidis NE, Lopera O, Santos M, Torné JM, Kotzabasis K. Role of plastid transglutaminase in LHCII polyamination and thylakoid electron and proton flow. PLoS One 2012; 7:e41979. [PMID: 22870182 PMCID: PMC3411467 DOI: 10.1371/journal.pone.0041979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/28/2012] [Indexed: 01/09/2023] Open
Abstract
Transglutaminases function as biological glues in animal cells, plant cells and microbes. In energy producing organelles such as chloroplasts the presence of transglutaminases was recently confirmed. Furthermore, a plastidial transglutaminase has been cloned from maize and the first plants overexpressing tgz are available (Nicotiana tabacum TGZ OE). Our hypothesis is that the overexpression of plastidal transglutaminase will alter photosynthesis via increased polyamination of the antenna of photosystem II. We have used standard analytical tools to separate the antenna from photosystem II in wild type and modified plants, 6 specific antibodies against LHCbs to confirm their presence and sensitive HPLC method to quantify the polyamination level of these proteins. We report that bound spermidine and spermine were significantly increased (∼80%) in overexpressors. Moreover, we used recent advances in in vivo probing to study simultaneously the proton and electron circuit of thylakoids. Under physiological conditions overexpressors show a 3-fold higher sensitivity of the antenna down regulation loop (qE) to the elicitor (luminal protons) which is estimated as the ΔpH component of thylakoidal proton motive force. In addition, photosystem (hyper-PSIIα) with an exceptionally high antenna (large absorption cross section), accumulate in transglutaminase over expressers doubling the rate constant of light energy utilization (Kα) and promoting thylakoid membrane stacking. Polyamination of antenna proteins is a previously unrecognized mechanism for the modulation of the size (antenna absorption cross section) and sensitivity of photosystem II to down regulation. Future research will reveal which peptides and which residues of the antenna are responsible for such effects.
Collapse
Affiliation(s)
- Nikolaos E. Ioannidis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
- Departament de Genètica Molecular, Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Oriol Lopera
- Departament de Genètica Molecular, Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Mireya Santos
- Departament de Genètica Molecular, Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Josep M. Torné
- Departament de Genètica Molecular, Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| |
Collapse
|
10
|
Campos A, Carvajal-Vallejos PK, Villalobos E, Franco CF, Almeida AM, Coelho AV, Torné JM, Santos M. Characterisation of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:708-16. [PMID: 20701693 DOI: 10.1111/j.1438-8677.2009.00280.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Chloroplast transglutaminase (chlTGase) activity is considered to play a significant role in response to a light stimulus and photo-adaptation of plants, but its precise function in the chloroplast is unclear. The characterisation, at the proteomic level, of the chlTGase interaction with thylakoid proteins and demonstration of its association with photosystem II (PSII) protein complexes was accomplished with experiments using maize thylakoid protein extracts. By means of a specific antibody designed against the C-terminal sequence of the maize TGase gene product, different chlTGase forms were immunodetected in thylakoid membrane extracts from three different stages of maize chloroplast differentiation. These bands co-localised with those of lhcb 1, 2 and 3 antenna proteins. The most significant, a 58 kDa form present in mature chloroplasts, was characterised using biochemical and proteomic approaches. Sequential fractionation of thylakoid proteins from light-induced mature chloroplasts showed that the 58 kDa form was associated with the thylakoid membrane, behaving as a soluble or peripheral membrane protein. Two-dimensional gel electrophoresis discriminated, for the first time, the 58-kDa band in two different forms, probably corresponding to the two different TGase cDNAs previously cloned. Electrophoretic separation of thylakoid proteins in native gels, followed by LC-MS mass spectrometry identification of protein complexes indicated that maize chlTGase forms part of a specific PSII protein complex, which includes LHCII, ATPase and pSbS proteins. The results are discussed in relation to the interaction between these proteins and the suggested role of the enzyme in thylakoid membrane organisation and photoprotection.
Collapse
Affiliation(s)
- A Campos
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ortigosa SM, Díaz-Vivancos P, Clemente-Moreno MJ, Pintó-Marijuan M, Fleck I, Veramendi J, Santos M, Hernandez JA, Torné JM. Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. PLANTA 2010; 232:593-605. [PMID: 20480177 DOI: 10.1007/s00425-010-1185-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/22/2010] [Indexed: 05/24/2023]
Abstract
As part of a project aiming to characterize the role of maize plastidial transglutaminase (chlTGZ) in the plant chloroplast, this paper presents results on stress induced by continuous chlTGZ over-expression in transplastomic tobacco leaves. Thylakoid remodelling induced by chlTGZ over-expression in young leaves of tobacco chloroplasts has already been reported (Ioannidis et al. in Biochem Biophys Acta 1787:1215-1222, 2009). In the present work, we determined the induced alterations in the photosynthetic apparatus, in the chloroplast ultrastructure, and, particularly, the activation of oxidative and antioxidative metabolism pathways, regarding ageing and functionality of the tobacco transformed plants. The results revealed that photochemistry impairment and oxidative stress increased with transplastomic leaf age. The decrease in pigment levels in the transformed leaves was accompanied by an increase in H(2)O(2) and lipid peroxidation. The rise in H(2)O(2) correlated with a decrease in catalase activity, whereas there was an increase in peroxidase activity. In addition, chlTGZ over-expression lead to a drop in reduced glutathione, while Fe-superoxide dismutase activity was higher in transformed than in wild-type leaves. Together with the induced oxidative stress, the over-expressed chlTGZ protein accumulated progressively in chloroplast inclusion bodies. These traits were accompanied by thylakoid scattering, membrane degradation and reduction of thylakoid interconnections. Consequently, the electron transport between photosystems decrease in the old leaves. In spite of these alterations, transplastomic plants can be maintained and reproduced in vitro. These results are discussed in line with chlTGZ involvement in chloroplast functionality.
Collapse
Affiliation(s)
- Susana M Ortigosa
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ioannidis NE, Ortigosa SM, Veramendi J, Pintó-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torné JM. Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1215-22. [PMID: 19497298 DOI: 10.1016/j.bbabio.2009.05.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/20/2022]
Abstract
Transglutaminases (TGases, EC 2.3.2.13) are intra- and extra-cellular enzymes that catalyze post-translational modification of proteins by establishing epsilon-(gamma-glutamyl) links and covalent conjugation of polyamines. In chloroplast it is well established that TGases specifically polyaminylate the light-harvesting antenna of Photosystem (PS) II (LHCII, CP29, CP26, CP24) and therefore a role in photosynthesis has been hypothesised (Della Mea et al. [23] and refs therein). However, the role of TGases in chloroplast is not yet fully understood. Here we report the effect of the over-expression of maize (Zea mays) chloroplast TGase in tobacco (Nicotiana tabacum var. Petit Havana) chloroplasts. The transglutaminase activity in over-expressers was increased 4 times in comparison to the wild-type tobacco plants, which in turn increased the thylakoid associated polyamines about 90%. Functional comparison between Wt tobacco and tgz over-expressers is shown in terms of fast fluorescence induction kinetics, non-photochemical quenching of the singlet excited state of chlorophyll a and antenna heterogeneity of PSII. Both in vivo probing and electron microscopy studies verified thylakoid remodeling. PSII antenna heterogeneity in vivo changes in the over-expressers to a great extent, with an increase of the centers located in grana-appressed regions (PSIIalpha) at the expense of centers located mainly in stroma thylakoids (PSIIbeta). A major increase in the granum size (i.e. increase of the number of stacked layers) with a concomitant decrease of stroma thylakoids is reported for the TGase over-expressers.
Collapse
|
13
|
Serafini-Fracassini D, Del Duca S. Transglutaminases: widespread cross-linking enzymes in plants. ANNALS OF BOTANY 2008; 102:145-52. [PMID: 18492735 PMCID: PMC2712369 DOI: 10.1093/aob/mcn075] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/19/2008] [Accepted: 04/14/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. CHARACTERISTICS OF PLANT TRANSGLUTAMINASES The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. TRANSGLUTAMINASE ACTIVITY IS UBIQUITOUS It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. POSSIBLE ROLES Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. CONCLUSIONS The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to the scarcity of information on genes encoding them.
Collapse
|