1
|
Cvetkovska M, Orgnero S, Hüner NPA, Smith DR. The enigmatic loss of light-independent chlorophyll biosynthesis from an Antarctic green alga in a light-limited environment. THE NEW PHYTOLOGIST 2019; 222:651-656. [PMID: 30506801 DOI: 10.1111/nph.15623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Shane Orgnero
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Sakuraba Y, Kim EY, Han SH, Piao W, An G, Todaka D, Yamaguchi-Shinozaki K, Paek NC. Rice Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of chlorophyll biosynthesis through feed-forward regulatory loops. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4103-4114. [PMID: 28922754 PMCID: PMC5853433 DOI: 10.1093/jxb/erx231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/19/2023]
Abstract
In phototrophic plants, the highly conserved and tightly regulated process of chlorophyll (Chl) biosynthesis comprises multi-step reactions involving more than 15 enzymes. Since the efficiency of Chl biosynthesis strongly affects plant productivity, understanding the underlying regulatory mechanisms in crop plants can be useful for strategies to increase grain and biomass yields. Here, we show that rice (Oryza sativa) Phytochrome-Interacting Factor-Like1 (OsPIL1), a basic helix-loop-helix transcription factor, promotes Chl biosynthesis. The T-DNA insertion knockdown ospil1 mutant showed a pale-green phenotype when grown in a natural paddy field. Transcriptome analysis revealed that several genes responsible for Chl biosynthesis and photosynthesis were significantly down-regulated in ospil1 leaves. Using promoter binding and transactivation assays, we found that OsPIL1 binds to the promoters of two Chl biosynthetic genes, OsPORB and OsCAO1, and promotes their transcription. In addition, OsPIL1 directly up-regulates the expression of two transcription factor genes, GOLDEN2-LIKE1 (OsGLK1) and OsGLK2. OsGLK1 and OsGLK2 both bind to the promoters of OsPORB and OsCAO1, as well as some of genes encoding the light-harvesting complex of photosystems, probably promoting their transcription. Thus, OsPIL1 is involved in the promotion of Chl biosynthesis by up-regulating the transcription of OsPORB and OsCAO1 via trifurcate feed-forward regulatory loops involving two OsGLKs.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eun-Young Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Daisuke Todaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Lindquist E, Solymosi K, Aronsson H. Vesicles Are Persistent Features of Different Plastids. Traffic 2016; 17:1125-38. [PMID: 27405297 DOI: 10.1111/tra.12427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
4
|
Solymosi K, Tuba Z, Böddi B. Desiccoplast-etioplast-chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:583-90. [PMID: 23415648 DOI: 10.1016/j.jplph.2012.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 05/17/2023]
Abstract
The transformation of desiccoplasts into etioplasts and the parallel appearance of protochlorophyllide (Pchlide) forms were observed with transmission electron microscopy and 77K fluorescence spectroscopy, when air-dried detached leaves of the poikilochlorophyllous desiccation tolerant plant Xerophyta humilis were floated in water in the dark. After 1 week of rehydration, pregranal plastids with newly synthesized prothylakoid (PT) lamellae and mainly non-photoactive Pchlide forms developed, while etioplasts with prolamellar bodies (PLBs) and photoactive, 655nm emitting Pchlide form accumulated primarily in the basal leaf regions after 2 weeks of regeneration. When these latter leaves were illuminated with continuous light for 3 days, the etioplasts transformed into regular chloroplasts and the fluorescence emission bands characteristic of green leaves appeared. These results show that, upon rehydration, the dehydrated chlorenchyma cells are able to regenerate pregranal plastids and etioplasts from desiccoplasts in the dark, which can transform into regular chloroplasts when they are illuminated. This means that the differentiation of pregranal plastids and etioplasts and their greening process is a basic property of fully differentiated cells of X. humilis. Consequently, these processes are not merely characteristic for seedlings with meristematic and differentiating young tissues.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Pázmány P. s. 1/c., Budapest H-1117, Hungary
| | | | | |
Collapse
|
5
|
Hideg E, Vitányi B, Kósa A, Solymosi K, Bóka K, Won S, Inoue Y, Ridge RW, Böddi B. Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls. PHYSIOLOGIA PLANTARUM 2010; 138:485-92. [PMID: 20002326 DOI: 10.1111/j.1399-3054.2009.01329.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Type-II, singlet oxygen-mediated photosensitized damage has already been shown to occur in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings upon illumination, resulting in fast turgor loss and wilting. In this study we show evidence that the palette of reactive oxygen species (ROS) is more complex. Hydrogen peroxide, superoxide and hydroxyl radicals are also formed, suggesting the occurrence of type-I reactions as well. Moreover, hydrogen peroxide injection into the epicotyls in the dark was able to provoke wilting directly. Formation of hydroxyl radicals could also be triggered by the addition of hydrogen peroxide in the dark, preferentially in the mid-sections where wilting occurs, showing that potential mediators of a Fenton reaction are present in the epicotyls, but unevenly distributed. Localization of light-inducible ROS formation fully (hydrogen peroxide) or partially (superoxide radicals) overlaps with the distribution of monomer protochlorophyllide complexes, showing that these pigment forms are capable of provoking both type-I and type-II reactions.
Collapse
Affiliation(s)
- Eva Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Demko V, Pavlovic A, Valková D, Slováková L, Grimm B, Hudák J. A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. PLANTA 2009; 230:165-176. [PMID: 19404675 DOI: 10.1007/s00425-009-0933-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment-protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.
Collapse
Affiliation(s)
- Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia,
| | | | | | | | | | | |
Collapse
|
7
|
van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A 2009; 1216:2002-32. [DOI: 10.1016/j.chroma.2009.01.013] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/31/2008] [Accepted: 01/09/2009] [Indexed: 01/06/2023]
|