1
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Ibrahim S, Mira MM, Hill RD, Stasolla C. The Brassica napus phytoglobin 1 (BnPgb1) mitigates the decrease in plant fertility resulting from high temperature stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154302. [PMID: 38945072 DOI: 10.1016/j.jplph.2024.154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on Brassica napus L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin BnPgb1, with the protein accumulating preferentially within the anther walls. Over-expression of BnPgb1 was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when BnPgb1 was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing BnPgb1 retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.
Collapse
Affiliation(s)
- Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
3
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
4
|
González-Gordo S, López-Jaramillo J, Palma JM, Corpas FJ. Soybean ( Glycine max L.) Lipoxygenase 1 (LOX 1) Is Modulated by Nitric Oxide and Hydrogen Sulfide: An In Vitro Approach. Int J Mol Sci 2023; 24:ijms24098001. [PMID: 37175708 PMCID: PMC10178856 DOI: 10.3390/ijms24098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are two relevant signal molecules that can affect protein function throughout post-translational modifications (PTMs) such as persulfidation, S-nitrosation, metal-nitrosylation, and nitration. Lipoxygenases (LOXs) are a group of non-heme iron enzymes involved in a wide range of plant physiological functions including seed germination, plant growth and development, and fruit ripening and senescence. Likewise, LOXs are also involved in the mechanisms of response to diverse environmental stresses. Using purified soybean (Glycine max L.) lipoxygenase type 1 (LOX 1) and nitrosocysteine (CysNO) and sodium hydrosulfide (NaHS) as NO and H2S donors, respectively, the present study reveals that both compounds negatively affect LOX activity, suggesting that S-nitrosation and persulfidation are involved. Mass spectrometric analysis of nitrated soybean LOX 1 using a peroxynitrite (ONOO-) donor enabled us to identify that, among the thirty-five tyrosine residues present in this enzyme, only Y214 was exclusively nitrated by ONOO-. The nitration of Y214 seems to affect its interaction with W500, a residue involved in the substrate binding site. The analysis of the structure 3PZW demonstrates the existence of several tunnels that directly communicate the surface of the protein with different internal cysteines, thus making feasible their potential persulfidation, especially C429 and C127. On the other hand, the CysNO molecule, which is hydrophilic and bulkier than H2S, can somehow be accommodated throughout the tunnel until it reaches C127, thus facilitating its nitrosation. Overall, a large number of potential persulfidation targets and the ease by which H2S can reach them through the diffuse tunneling network could be behind their efficient inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | | | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
5
|
González-Gordo S, Cañas A, Muñoz-Vargas MA, Palma JM, Corpas FJ. Lipoxygenase (LOX) in Sweet and Hot Pepper ( Capsicum annuum L.) Fruits during Ripening and under an Enriched Nitric Oxide (NO) Gas Atmosphere. Int J Mol Sci 2022; 23:ijms232315211. [PMID: 36499530 PMCID: PMC9740671 DOI: 10.3390/ijms232315211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO.
Collapse
|
6
|
González-Gordo S, Rodríguez-Ruiz M, López-Jaramillo J, Muñoz-Vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants (Basel) 2022; 11:antiox11040765. [PMID: 35453450 PMCID: PMC9029456 DOI: 10.3390/antiox11040765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a free radical which modulates protein function and gene expression throughout all stages of plant development. Fruit ripening involves a complex scenario where drastic phenotypical and metabolic changes take place. Pepper fruits are one of the most consumed horticultural products worldwide which, at ripening, undergo crucial phenotypical and biochemical events, with NO and antioxidants being implicated. Based on previous transcriptomic (RNA-Seq), proteomics (iTRAQ), and enzymatic data, this study aimed to identify the ascorbate peroxidase (APX) gene and protein profiles in sweet peppers and to evaluate their potential modulation by NO during fruit ripening. The data show the existence of six CaAPX genes (CaAPX1–CaAPX6) that encode corresponding APX isozymes distributed in cytosol, plastids, mitochondria, and peroxisomes. The time course expression analysis of these genes showed heterogeneous expression patterns throughout the different ripening stages, and also as a consequence of treatment with NO gas. Additionally, six APX isozymes activities (APX I–APX VI) were identified by non-denaturing PAGE, and they were also differentially modulated during maturation and NO treatment. In vitro analyses of fruit samples in the presence of NO donors, peroxynitrite, and glutathione, showed that CaAPX activity was inhibited, thus suggesting that different posttranslational modifications (PTMs), including S-nitrosation, Tyr-nitration, and glutathionylation, respectively, may occur in APX isozymes. In silico analysis of the protein tertiary structure showed that residues Cys32 and Tyr235 were conserved in the six CaAPXs, and are thus likely potential targets for S-nitrosation and nitration, respectively. These data highlight the complex mechanisms of the regulation of APX isozymes during the ripening process of sweet pepper fruits and how NO can exert fine control. This information could be useful for postharvest technology; NO regulates H2O2 levels through the different APX isozymes and, consequently, could modulate the shelf life and nutritional quality of pepper fruits.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | | | - María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
- Correspondence:
| |
Collapse
|
7
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
8
|
Jedelská T, Sedlářová M, Lochman J, Činčalová L, Luhová L, Petřivalský M. Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. HORTICULTURE RESEARCH 2021; 8:34. [PMID: 33518717 PMCID: PMC7848004 DOI: 10.1038/s41438-021-00469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Regulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica. S-nitrosoglutathione reductase activity and protein level were decreased by P. infestans and P. parasitica infection in both genotypes, whereas protein S-nitrosothiols were increased by P. infestans infection, particularly at 72 hpi related to pathogen biotrophy-necrotrophy transition. Increased levels of S-nitrosothiols localised in both proximal and distal parts to the infection site, which suggests together with their localisation to vascular bundles a signalling role in systemic responses. S-nitrosation targets in plants infected with P. infestans identified by a proteomic analysis include namely antioxidant and defence proteins, together with important proteins of metabolic, regulatory and structural functions. Ascorbate peroxidase S-nitrosation was observed in both genotypes in parallel to increased enzyme activity and protein level during P. infestans pathogenesis, namely in the susceptible genotype. These results show important regulatory functions of protein S-nitrosation in concerting molecular mechanisms of plant resistance to hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00, Brno, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxid Redox Signal 2020; 33:35-57. [PMID: 31989831 DOI: 10.1089/ars.2019.7823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Plant chloroplasts generate reactive oxygen species (ROS) during photosynthesis, especially under stresses. The sulfhydryl groups of protein cysteine residues are susceptible to redox modifications, which regulate protein structure and function, and thus different signaling and metabolic processes. The ROS-governed protein thiol redox switches play important roles in chloroplasts. Recent Advances: Various high-throughput thiol redox proteomic approaches have been developed, and they have enabled the improved understanding of redox regulatory mechanisms in chloroplasts. For example, the thioredoxin-modulated antioxidant enzymes help to maintain cellular ROS homeostasis. The light- and dark-dependent redox regulation of photosynthetic electron transport, the Calvin/Benson cycle, and starch biosynthesis ensures metabolic coordination and efficient energy utilization. In addition, redox cascades link the light with the dynamic changes of metabolites in nitrate and sulfur assimilation, shikimate pathway, and biosynthesis of fatty acid hormone as well as purine, pyrimidine, and thiamine. Importantly, redox regulation of tetrapyrrole and chlorophyll biosynthesis is critical to balance the photodynamic tetrapyrrole intermediates and prevent oxidative damage. Moreover, redox regulation of diverse elongation factors, chaperones, and kinases plays an important role in the modulation of gene expression, protein conformation, and posttranslational modification that contribute to photosystem II (PSII) repair, state transition, and signaling in chloroplasts. Critical Issues: This review focuses on recent advances in plant thiol redox proteomics and redox protein networks toward understanding plant chloroplast signaling, metabolism, and stress responses. Future Directions: Using redox proteomics integrated with biochemical and molecular genetic approaches, detailed studies of cysteine residues, their redox states, cross talk with other modifications, and the functional implications will yield a holistic understanding of chloroplast stress responses.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Yongfang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Chen T, Tian M, Han Y. Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2862-2869. [PMID: 32076713 DOI: 10.1093/jxb/eraa093] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/15/2020] [Indexed: 05/24/2023]
Abstract
Accumulating evidence suggests that hydrogen sulfide (H2S) is an important signaling molecule in plant environmental interactions. The consensus view amongst plant scientists is that environmental stress leads to enhanced production and accumulation of reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels, including the regulation of ROS-processing systems by transcriptional or post-translational modifications. H2S-ROS crosstalk also involves other interacting factors, including nitric oxide, and can affect key cellular processes like autophagy. While H2S often functions to prevent ROS accumulation, it can also act synergistically with ROS signals in processes such as stomatal closure. In this review, we summarize the mechanisms of H2S action and the multifaceted roles of this molecule in plant stress responses. Emphasis is placed on the interactions between H2S, ROS, and the redox signaling network that is crucial for plant defense against environmental threats.
Collapse
Affiliation(s)
- Tao Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Mimi Tian
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Yi Han
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
11
|
Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H 2 S and NO in sweet pepper (Capsicum annuum L.) fruits. PHYSIOLOGIA PLANTARUM 2020; 168:278-288. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| |
Collapse
|
12
|
Qiu C, Sun J, Wang Y, Sun L, Xie H, Ding Y, Qian W, Ding Z. First nitrosoproteomic profiling deciphers the cysteine S-nitrosylation involved in multiple metabolic pathways of tea leaves. Sci Rep 2019; 9:17525. [PMID: 31772286 PMCID: PMC6879589 DOI: 10.1038/s41598-019-54077-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/08/2019] [Indexed: 02/04/2023] Open
Abstract
Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.) O. Kuntze) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in various subcellular compartments, especially in the chloroplast and cytoplasm. Furthermore, the analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in multiple metabolic pathways, including glycolysis, pyruvate metabolism, Calvin cycle and TCA cycle. Overall, this study not only systematically identified the proteins of S-nitrosylation in cysteines of tea leaves, but also laid the solid foundation for further verifying the roles of S-nitrosylation in cysteines of tea plants.
Collapse
Affiliation(s)
- Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jianhao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hui Xie
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Chakraborty N, Mukherjee K, Sarkar A, Acharya K. Interaction between Bean and Colletotrichum gloeosporioides: Understanding Through a Biochemical Approach. PLANTS (BASEL, SWITZERLAND) 2019; 8:E345. [PMID: 31547386 PMCID: PMC6783891 DOI: 10.3390/plants8090345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
In addition to its role in animals, nowadays nitric oxide (NO) is considered as an emerging signaling molecule in plant systems. It is now believed that NO exerts its pivotal role in various plant physiological processes, such as in seed germination, plant developmental stages, and plant defense mechanisms. In this study, we have taken an initiative to show the biochemical basis of defense response activation in bean leaves during the progression of Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. in detached bean leaves. Stages of pathogen penetration and colonization were successfully established in the detached bean leaves. Results showed up-regulation of different defense-related enzymes and other defense molecules, such as phenols, flavonoids, callose, and lignin molecules, along with NO at early stages of pathogen invasion. Although in the later stages of the disease, development of NO and other defense components (excluding lignin) were down-regulated, the production of reactive oxygen species in the form of H2O2 became elevated. Consequently, other stress markers, such as lipid peroxidation, proline content, and chlorophyll content, were changed accordingly. Correlation between the disease index and other defense molecules, along with NO, indicate that production of NO and reactive oxygen species (ROS) might influence the development of anthracnose in common bean.
Collapse
Affiliation(s)
| | - Kabita Mukherjee
- Department of Botany, Scottish Church College, Kolkata 700006, India.
| | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
14
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB. The function of S-nitrosothiols during abiotic stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4429-4439. [PMID: 31111892 DOI: 10.1093/jxb/erz197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.
Collapse
Affiliation(s)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | | |
Collapse
|
15
|
Jedelská T, Kraiczová VŠ, Berčíková L, Činčalová L, Luhová L, Petřivalský M. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase. Biomolecules 2019; 9:E393. [PMID: 31438648 PMCID: PMC6788187 DOI: 10.3390/biom9090393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Veronika Šmotková Kraiczová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, CZ-77900 Olomouc, Czech Republic
| | - Lucie Berčíková
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
16
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
17
|
NADPH Oxidase (Rboh) Activity is Up Regulated during Sweet Pepper ( Capsicum annuum L.) Fruit Ripening. Antioxidants (Basel) 2019; 8:antiox8010009. [PMID: 30609654 PMCID: PMC6356770 DOI: 10.3390/antiox8010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 11/21/2022] Open
Abstract
In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog (Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals (O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS), which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh activity and the number of isozymes during this physiological process. Malondialdehyde (MDA) content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits, MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity. Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH), suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively. In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated with sweet pepper fruit ripening.
Collapse
|
18
|
Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, Corpas FJ. Endogenous hydrogen sulfide (H 2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H 2S and NO. Nitric Oxide 2018; 81:36-45. [PMID: 30326260 DOI: 10.1016/j.niox.2018.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Like nitric oxide (NO), hydrogen sulfide (H2S) has been recognized as a new gasotransmitter which plays an important role as a signaling molecule in many physiological processes in higher plants. Although fruit ripening is a complex process associated with the metabolism of reactive oxygen species (ROS) and nitrogen oxygen species (RNS), little is known about the potential involvement of endogenous H2S. Using sweet pepper (Capsicum annuum L.) as a model non-climacteric fruit during the green and red ripening stages, we studied endogenous H2S content and cytosolic l-cysteine desulfhydrase (L-DES) activity which increased by 14% and 28%, respectively, in red pepper fruits. NADPH is a redox compound and key cofactor required for cell growth, proliferation and detoxification. We studied the NADPH-regenerating enzyme, NADP-isocitrate dehydrogenase (NADP-ICDH), whose activity decreased by 34% during ripening. To gain a better understanding of its potential regulation by H2S, we obtained a 50-75% ammonium sulfate-enriched protein fraction containing the NADP-ICDH protein; with the aid of in vitro assays in the presence of H2S, we observed that 2 and 10 mM NaHS used as H2S donors resulted in a decrease of up to 36% and 45%, respectively, in NADP-ICDH activity, which was unaffected by reduced glutathione (GSH). On the other hand, peroxynitrite (ONOO-), S-nitrosocyteine (CysNO) and DETA-NONOate, with the last two acting as NO donors, also inhibited NADP-ICDH activity. In silico analysis of the tertiary structure of sweet pepper NADP-ICDH activity (UniProtKB ID A0A2G2Y555) suggests that residues Cys133 and Tyr450 are the most likely potential targets for S-nitrosation and nitration, respectively. Taken together, the data reveal that the increase in the H2S production capacity of red fruits is due to higher L-DES activity during non-climacteric pepper fruit ripening. In vitro assays appear to show that H2S inhibits NADP-ICDH activity, thus suggesting that this enzyme may be regulated by persulfidation, as well as by S-nitrosation and nitration. NO and H2S may therefore regulate NADPH production and consequently cellular redox status during pepper fruit ripening.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Salvador González-Gordo
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Amanda Cañas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | | | - José M Palma
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Francisco J Corpas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain.
| |
Collapse
|
19
|
Dumont S, Bykova NV, Khaou A, Besserour Y, Dorval M, Rivoal J. Arabidopsis thaliana alcohol dehydrogenase is differently affected by several redox modifications. PLoS One 2018; 13:e0204530. [PMID: 30252897 PMCID: PMC6155552 DOI: 10.1371/journal.pone.0204530] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
In plant cells, many stresses, including low oxygen availability, result in a higher production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can lead to redox-dependent post-translational modification of proteins Cys residues. Here, we studied the effect of different redox modifications on alcohol dehydrogenase (ADH) from Arabidopsis thaliana. ADH catalyzes the last step of the ethanol fermentation pathway used by plants to cope with energy deficiency during hypoxic stress. Arabidopsis suspension cell cultures showed decreased ADH activity upon exposure to H2O2, but not to the thiol oxidizing agent diamide. We purified recombinant ADH and observed a significant decrease in the enzyme activity by treatments with H2O2 and diethylamine NONOate (DEA/NO). Treatments leading to the formation of a disulfide bond between ADH and glutathione (protein S-glutathionylation) had no negative effect on the enzyme activity. LC-MS/MS analysis showed that Cys47 and Cys243 could make a stable disulfide bond with glutathione, suggesting redox sensitivity of these residues. Mutation of ADH Cys47 to Ser caused an almost complete loss of the enzyme activity while the Cys243 to Ser mutant had increased specific activity. Incubation of ADH with NAD+ or NADH prevented inhibition of the enzyme by H2O2 or DEA/NO. These results suggest that binding of ADH with its cofactors may limit availability of Cys residues to redox modifications. Our study demonstrates that ADH from A. thaliana is subject to different redox modifications. Implications of ADH sensitivity to ROS and RNS during hypoxic stress conditions are discussed.
Collapse
Affiliation(s)
- Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Alexia Khaou
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Yasmine Besserour
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Maude Dorval
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
20
|
Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:70-82. [PMID: 32291022 DOI: 10.1071/fp16279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/01/2017] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:672. [PMID: 29896206 PMCID: PMC5987678 DOI: 10.3389/fpls.2018.00672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 05/05/2023]
Abstract
Peroxynitrite (ONOO-) exhibits a well-documented nitration activity in relation to proteins and lipids; however, the interaction of ONOO- with nucleic acids remains unknown in plants. The study uncovers RNA and mRNA nitration as an integral event in plant metabolism intensified during immune response. Using potato-avr/vr Phytophthora infestans systems and immunoassays we documented that potato immunity is accompanied by two waves of boosted ONOO- formation affecting guanine nucleotides embedded in RNA/mRNA and protein tyrosine residues. The early ONOO- generation was orchestrated with an elevated level of protein nitration and a huge accumulation of 8-nitroguanine (8-NO2-G) in RNA and mRNA pools confirmed as a biomarker of nucleic acid nitration. Importantly, potato cells lacking ONOO- due to scavenger treatment and attacked by the avr pathogen exhibited a low level of 8-NO2-G in the mRNA pool correlated with reduced symptoms of programmed cell death (PCD). The second burst of ONOO- coincided both with an enhanced level of tyrosine-nitrated proteins identified as subtilisine-like proteases and diminished protease activity in cells surrounding the PCD zone. Nitration of both RNA/mRNA and proteins via NO/ONOO- may constitute a new metabolic switch in redox regulation of PCD, potentially limiting its range in potato immunity to avr P. infestans.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Magdalena Arasimowicz-Jelonek, ;
| |
Collapse
|
22
|
Aimé S, Hichami S, Wendehenne D, Lamotte O. Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique. Methods Mol Biol 2018; 1747:131-141. [PMID: 29600456 DOI: 10.1007/978-1-4939-7695-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitric oxide is regarded as a key signaling messenger in several organisms. Its physiological relevance is partly due to its capacity to induce posttranslational modifications of proteins through its direct or indirect reaction with specific amino acid residues. Among them, S-nitrosylation has been shown to be involved in a broad range of cellular signaling pathways both in animals and plants. The identification of S-nitrosylated proteins has been made possible by the development of the Biotin-Switch Technique (BST) in the early 2000s. Here, we describe the BST protocol we routinely use to check in vitro S-nitrosylation of recombinant proteins induced by NO donors.
Collapse
Affiliation(s)
- Sébastien Aimé
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - Siham Hichami
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - David Wendehenne
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - Olivier Lamotte
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France.
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France.
| |
Collapse
|
23
|
Keech O, Gardeström P, Kleczkowski LA, Rouhier N. The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. PLANT, CELL & ENVIRONMENT 2017; 40:553-569. [PMID: 26791824 DOI: 10.1111/pce.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Photorespiration is a complex and tightly regulated process occurring in photosynthetic organisms. This process can alter the cellular redox balance, notably via the production and consumption of both reducing and oxidizing equivalents. Under certain circumstances, these equivalents, as well as reactive oxygen or nitrogen species, can become prominent in subcellular compartments involved in the photorespiratory process, eventually promoting oxidative post-translational modifications of proteins. Keeping these changes under tight control should therefore be of primary importance. In order to review the current state of knowledge about the redox control of photorespiration, we primarily performed a careful description of the known and potential redox-regulated or oxidation sensitive photorespiratory proteins, and examined in more details two interesting cases: the glycerate kinase and the glycine cleavage system. When possible, the potential impact and subsequent physiological regulations associated with these changes have been discussed. In the second part, we reviewed the extent to which photorespiration contributes to cellular redox homeostasis considering, in particular, the set of peripheral enzymes associated with the canonical photorespiratory pathway. Finally, some recent biotechnological strategies to circumvent photorespiration for future growth improvements are discussed in the light of these redox regulations.
Collapse
Affiliation(s)
- Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Per Gardeström
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | | | - Nicolas Rouhier
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
24
|
Tichá T, Luhová L, Petřivalský M. Functions and Metabolism of S-Nitrosothiols and S-Nitrosylation of Proteins in Plants: The Role of GSNOR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-40713-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Sharma S, Sehrawat A, Deswal R. Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:20-29. [PMID: 27457980 DOI: 10.1016/j.plantsci.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Reactive Oxygen Species (ROS) are important regulatory molecules governing physiological processes. In the present study a biochemical and proteome level comparison of two contrasting growth stages of Dioscorea alata tuber namely germinating and mature tuber was performed in order to understand the tuber physiology and biochemistry. Existence of all the component enzymes [APx (ascorbate peroxidase), GR (glutathione reductase), DHAR (dehydroascorbate reductase), MDHAR (mono-dehydroascorbate reductase)] and major products [ascorbate (ASC) and glutathione (GSH)] of the cycle showed an operational Asada-Halliwell cycle in the tuber. A 2.65 fold increase in ASC content & a 3.8 fold increase in GR activity fortified the redox milieu during germination. In contrast a 5 fold higher H2O2 content (due to 3.08 fold lower APx activity) and accumulation of reactive nitrogen species (RNS) such as nitric oxide (NO, 2.4-fold) and S-nitrosothiol (SNO, 2.08 fold) contributed to overall oxidative conditions in the mature tuber. The carbonic anhydrase (CA, 7.5 fold), DHAR (5.31 fold) and MDHAR (7 fold) activities were higher in the germinating tuber in comparison with the mature tuber. GSNO negatively regulated the CA (3.6 & 3.95 fold), MDHAR (7.5 & 1.5 fold) and APx (2.3 & 1.81 fold) while another NO donor, CysNO negatively regulated the DHAR (2.24 & 1.32 fold) activity in the mature and germinating stages respectively indicating again that the lesser inhibition by NO (via nitrosylation) may be because of overall reducing environment in the germinating tuber. Increased SNO leading to S-nitrosylation of dioscorin was confirmed by Biotin switch assay. This is the first report showing dioscorin nitrosylation. The present analysis showed differential redox regulation and also suggests the physiological relevance of CA, DHAR, MDHAR, APx & GR in tuber germination for the first time. These enzymes may be used as potential markers of tuber germination in future.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
26
|
Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT, Seabra AB, Salgado I, Machado EC, Ribeiro RV. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. PLANTA 2016; 244:181-90. [PMID: 27002974 DOI: 10.1007/s00425-016-2501-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/03/2016] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.
Collapse
Affiliation(s)
- Neidiquele M Silveira
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Lucas Frungillo
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Fernanda C C Marcos
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Milena T Pelegrino
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Marcela T Miranda
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Amedea B Seabra
- Department of Exact and Earth Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Ione Salgado
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
27
|
Mitochondrial Proteome Studies in Seeds during Germination. Proteomes 2016; 4:proteomes4020019. [PMID: 28248229 PMCID: PMC5217346 DOI: 10.3390/proteomes4020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/25/2023] Open
Abstract
Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination.
Collapse
|
28
|
Lallement PA, Roret T, Tsan P, Gualberto JM, Girardet JM, Didierjean C, Rouhier N, Hecker A. Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from Populus trichocarpa. Biochem J 2016; 473:717-31. [PMID: 26699905 DOI: 10.1042/bj20151147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Dehydroascorbate reductases (DHARs), enzymes belonging to the GST superfamily, catalyse the GSH-dependent reduction of dehydroascorbate into ascorbate in plants. By maintaining a reduced ascorbate pool, they notably participate to H2O2 detoxification catalysed by ascorbate peroxidases (APXs). Despite this central role, the catalytic mechanism used by DHARs is still not well understood and there is no supportive 3D structure. In this context, we have performed a thorough biochemical and structural analysis of the three poplar DHARs and coupled this to the analysis of their transcript expression patterns and subcellular localizations. The transcripts for these genes are mainly detected in reproductive and green organs and the corresponding proteins are expressed in plastids, in the cytosol and in the nucleus, but not in mitochondria and peroxisomes where ascorbate regeneration is obviously necessary. Comparing the kinetic properties and the sensitivity to GSSG-mediated oxidation of DHAR2 and DHAR3A, exhibiting 1 or 3 cysteinyl residues respectively, we observed that the presence of additional cysteines in DHAR3A modifies the regeneration mechanism of the catalytic cysteine by forming different redox states. Finally, from the 3D structure of DHAR3A solved by NMR, we were able to map the residues important for the binding of both substrates (GSH and DHA), showing that DHAR active site is very selective for DHA recognition and providing further insights into the catalytic mechanism and the roles of the additional cysteines found in some DHARs.
Collapse
Affiliation(s)
- Pierre-Alexandre Lallement
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Thomas Roret
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Pascale Tsan
- Université de Lorraine, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France CNRS, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, 67084 Strasbourg, France
| | - Jean-Michel Girardet
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Claude Didierjean
- Université de Lorraine, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France CNRS, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| |
Collapse
|
29
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
30
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs). FRONTIERS IN PLANT SCIENCE 2016; 7:152. [PMID: 26909095 PMCID: PMC4754464 DOI: 10.3389/fpls.2016.00152] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.
Collapse
Affiliation(s)
- Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - María N. Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of JaénJaén, Spain
- *Correspondence: Juan B. Barroso,
| |
Collapse
|
31
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
32
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
33
|
Yang J, Carroll KS, Liebler DC. The Expanding Landscape of the Thiol Redox Proteome. Mol Cell Proteomics 2015; 15:1-11. [PMID: 26518762 DOI: 10.1074/mcp.o115.056051] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/18/2022] Open
Abstract
Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sulfonylation (-SO(3)H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications.
Collapse
Affiliation(s)
- Jing Yang
- From the ‡National Center for Protein Sciences · Beijing, Beijing, 102206, China; §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China;
| | - Kate S Carroll
- ¶Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| | - Daniel C Liebler
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
34
|
Chaki M, Shekariesfahlan A, Ageeva A, Mengel A, von Toerne C, Durner J, Lindermayr C. Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:115-26. [PMID: 26259180 DOI: 10.1016/j.plantsci.2015.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Azam Shekariesfahlan
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexandra Ageeva
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
35
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
36
|
Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB. Nitration and S-Nitrosylation: Two Post-translational Modifications (PTMs) Mediated by Reactive Nitrogen Species (RNS) and Their Role in Signalling Processes of Plant Cells. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
37
|
Chaki M, Kovacs I, Spannagl M, Lindermayr C. Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 2014; 9:e110232. [PMID: 25333472 PMCID: PMC4204854 DOI: 10.1371/journal.pone.0110232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most important regulatory mechanisms of NO is S-nitrosylation-the covalent attachment of NO to cysteine residues. Although the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods have their limits. Thus, computational methods are attracting considerable attention for the identification of modification sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610 candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis proteome using the medium threshold. In the compartments "chloroplast," "CUL4-RING ubiquitin ligase complex," and "membrane" more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further development, such as including the three dimensional structure of proteins in such analyses, would improve the identification of S-nitrosylation sites.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
38
|
Morisse S, Michelet L, Bedhomme M, Marchand CH, Calvaresi M, Trost P, Fermani S, Zaffagnini M, Lemaire SD. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii. J Biol Chem 2014; 289:30012-24. [PMID: 25202015 DOI: 10.1074/jbc.m114.597997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (-335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys(227) and Cys(361). Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view.
Collapse
Affiliation(s)
- Samuel Morisse
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Laure Michelet
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Mariette Bedhomme
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Christophe H Marchand
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Matteo Calvaresi
- the Department of Chemistry "G. Ciamician," University of Bologna, 40126 Bologna, Italy
| | - Paolo Trost
- the Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy, and
| | - Simona Fermani
- the Department of Chemistry "G. Ciamician," University of Bologna, 40126 Bologna, Italy
| | - Mirko Zaffagnini
- the Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy, and
| | - Stéphane D Lemaire
- From CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France, the Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Universit́ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France,
| |
Collapse
|
39
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
40
|
Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. PLANT & CELL PHYSIOLOGY 2014; 55:1080-95. [PMID: 24599390 DOI: 10.1093/pcp/pcu044] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Francisco Luque
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - María O Leyva-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Marina Leterrier
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Universitario 'Las Lagunillas' s/n, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
41
|
Sehrawat A, Deswal R. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res 2014; 13:2599-619. [PMID: 24684139 DOI: 10.1021/pr500082u] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive nitrogen species (RNS) including nitric oxide (NO) are important components of stress signaling. However, RNS-mediated signaling in the apoplast remains largely unknown. NO production measured in the shoot apoplast of Brassica juncea seedlings showed nonenzymatic nitrite reduction to NO. Thiol pool quantification showed cold-induced increase in the protein (including S-nitrosothiols) as well as non protein thiols. Proteins from the apoplast were resolved as 109 spots on the 2-D gel, while S-nitrosoglutathione-treated (a NO donor), neutravidin-agarose affinity chromatography-purified S-nitrosylated proteins were resolved as 52 spots. Functional categorization after MALDI-TOF/TOF identification showed 41 and 38% targets to be metabolic/cell-wall-modifying and stress-related, respectively, suggesting the potential role(s) of S-nitrosylation in regulating these responses. Additionally, identification of cold-stress-modulated putative S-nitrosylated proteins by nLC-MS/MS showed that only 38.4% targets with increased S-nitrosylation were secreted by classical pathway, while the majority (61.6%) of these were secreted by unknown/nonclassical pathways. Cold-stress-increased dehydroascorbate reductase and glutathione S-transferase activity via S-nitrosylation and promoted ROS detoxification by ascorbate regeneration and hydrogen peroxide detoxification. Taken together, cold-mediated NO production, thiol pool enrichment, and identification of the 48 putative S-nitrosylated proteins, including 25 novel targets, provided the preview of RNS-mediated cold-stress signaling in the apoplast.
Collapse
Affiliation(s)
- Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi , Delhi 110007, India
| | | |
Collapse
|
42
|
Gonorazky G, Distéfano AM, García-Mata C, Lamattina L, Laxalt AM. Phospholipases in Nitric Oxide-Mediated Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
44
|
Groß F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. FRONTIERS IN PLANT SCIENCE 2013; 4:419. [PMID: 24198820 PMCID: PMC3812536 DOI: 10.3389/fpls.2013.00419] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/01/2013] [Indexed: 05/18/2023]
Abstract
In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione-the latter alone or in conjunction with S-nitrosoglutathione reductase-in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD).
Collapse
Affiliation(s)
| | | | - Frank Gaupels
- German Research Center for Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz-Zentrum MünchenMunich, Germany
| |
Collapse
|
45
|
Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM. Protein S-nitrosylation in plants under abiotic stress: an overview. FRONTIERS IN PLANT SCIENCE 2013; 4:373. [PMID: 24065977 PMCID: PMC3778396 DOI: 10.3389/fpls.2013.00373] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/31/2013] [Indexed: 05/20/2023]
Abstract
Abiotic stress is one of the main problems affecting agricultural losses, and understanding the mechanisms behind plant tolerance and stress response will help us to develop new means of strengthening fruitful agronomy. The mechanisms of plant stress response are complex. Data obtained by experimental procedures are sometimes contradictory, depending on the species, strength, and timing applied. In recent years nitric oxide has been identified as a key signaling molecule involved in most plant responses to abiotic stress, either indirectly through gene activation or interaction with reactive oxygen species and hormones; or else directly, as a result of modifying enzyme activities mainly by nitration and S-nitrosylation. While the functional relevance of the S-nitrosylation of certain proteins has been assessed in response to biotic stress, it has yet to be characterized under abiotic stress. Here, we review initial works about S-nitrosylation in response to abiotic stress to conclude with a brief overview, and discuss further perspectives to obtain a clear outlook of the relevance of S-nitrosylation in plant response to abiotic stress.
Collapse
Affiliation(s)
- María C. Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | | | | |
Collapse
|
46
|
Sehrawat A, Abat JK, Deswal R. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2013; 4:342. [PMID: 24032038 PMCID: PMC3759006 DOI: 10.3389/fpls.2013.00342] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/13/2013] [Indexed: 05/21/2023]
Abstract
Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold.
Collapse
Affiliation(s)
| | | | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of DelhiDelhi, India
| |
Collapse
|
47
|
Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L. Nitric oxide as a key component in hormone-regulated processes. PLANT CELL REPORTS 2013; 32:853-66. [PMID: 23584547 DOI: 10.1007/s00299-013-1434-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE) CC327, Universidad Nacional de La Plata-CONICET, Diagonal 113 y calle 61 N°495, CP 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
48
|
Sehrawat A, Gupta R, Deswal R. Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics 2013; 13:1816-35. [PMID: 23580434 DOI: 10.1002/pmic.201200445] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
Plants enhance their cold stress tolerance by cold acclimation, a process which results in vast reprogramming of transcriptome, proteome and metabolome. Evidence suggests nitric oxide (NO) production during cold stress which regulates genes (especially the C-repeat binding factor (CBF) cold stress signalling pathway), diverse proteins including transcription factors (TFs) and phosphosphingolipids. About 59% (redox), 50% (defence/stress) and 30% (signalling) cold responsive proteins are modulated by NO-based post translational modifications (PTMs) namely S-nitrosylation, tyrosine nitration and S-glutathionylation, suggesting a cross-talk between NO and cold. Analysis of cold stress responsive deep proteome in apoplast, mitochondria, chloroplast and nucleus suggested continuation of this cross-talk in sub-cellular systems. Modulation of cold responsive proteins by these PTMs right from cytoskeletal elements in plasma membrane to TFs in nucleus suggests a novel regulation of cold stress signalling. NO-mediated altered protein transport in nucleus seems an important stress regulatory mechanism. This review addresses the NO and cold stress signalling cross-talk to present the overview of this novel regulatory mechanism.
Collapse
Affiliation(s)
- Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | | | | |
Collapse
|
49
|
Arasimowicz-Jelonek M, Kosmala A, Janus Ł, Abramowski D, Floryszak-Wieczorek J. The proteome response of potato leaves to priming agents and S-nitrosoglutathione. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199689 DOI: 10.1016/j.plantsci.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The primed mobilization for more potent defense responses to subsequent stress has been shown for many plant species, but there is a growing need to identify reliable molecular markers for this unique phenomenon. In the present study a proteomic approach was used to screen similarities in protein abundance in leaves of primed potato (Solanum tuberosum L.) treated with four well-known inducers of plant resistance, i.e. β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), Laminarin and 2,6-dichloroisonicotinic acid (INA), respectively. Moreover, to gain insight into the importance of nitric oxide (NO) in primed protein accumulation the potato leaves were supplied by S-nitrosoglutathione (GSNO), as an NO donor. The comparative analysis, using two-dimensional electrophoresis and mass spectrometry, revealed that among 25 proteins accumulated specifically after BABA, GABA, INA and Laminarin treatments, 13 proteins were accumulated also in response to GSNO. Additionally, overlapping proteomic changes between BABA-primed and GSNO-treated leaves showed 5 protein spots absent in the proteome maps obtained in response to the other priming agents. The identified 18 proteins belonged, in most cases, to functional categories of primary metabolism. The selected proteins including three redox-regulated enzymes, i.e. glyceraldehyde 3-phosphate dehydrogenase, carbonic anhydrase, and fructose-bisphosphate aldolase, were discussed in relation to the plant defence responses. Taken together, the overlapping effects in the protein profiles obtained between priming agents, GSNO and cPTIO treatments provide insight indicating that the primed potato exhibits unique changes in the primary metabolism, associated with selective protein modification via NO.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | | | | | | | |
Collapse
|