1
|
Wang H, Wen L, Jiang F, Ren P, Yang Y, Song S, Yang Z, Wang Y. A comprehensive review of advances in hepatocyte microencapsulation: selecting materials and preserving cell viability. Front Immunol 2024; 15:1385022. [PMID: 38694507 PMCID: PMC11061843 DOI: 10.3389/fimmu.2024.1385022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.
Collapse
Affiliation(s)
- Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fengdi Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengyu Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhengteng Yang
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Kuang G, Zhang Q, Jia J, Yu Y. Freezing biological organisms for biomedical applications. SMART MEDICINE 2022; 1:e20220034. [PMID: 39188743 PMCID: PMC11235656 DOI: 10.1002/smmd.20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy. In this review, we present the latest studies of freezing biological organisms for biomedical applications. To begin with, the freezing strategies of cryoablation and cryopreservation, as well as their corresponding technical essentials, are illustrated. Besides, biomedical applications of freezing biological organisms are presented, including transplantation, tissue regeneration, anti-infection therapy, and anti-tumor therapy. The challenges and prospects of freezing living organisms for biomedical applications are well discussed. We believe that the freezing method will provide a potential direction for the standardization and commercialization of inactivated or living organism-based therapeutic systems, and promote the clinical application of organism-based therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
3
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
5
|
Dhawan A, Chaijitraruch N, Fitzpatrick E, Bansal S, Filippi C, Lehec SC, Heaton ND, Kane P, Verma A, Hughes RD, Mitry RR. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children. J Hepatol 2020; 72:877-884. [PMID: 31843649 DOI: 10.1016/j.jhep.2019.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Liver transplantation (LT) is the most effective treatment for patients with acute liver failure (ALF), but is limited by surgical risks and the need for life-long immunosuppression. Transplantation of microencapsulated human hepatocytes in alginate is an attractive option over whole liver replacement. The safety and efficacy of hepatocyte microbead transplantation have been shown in animal models. We report our experience of this therapy in children with ALF treated on a named-patient basis. METHODS Clinical grade human hepatocyte microbeads (HMBs) and empty microbeads were tested in immunocompetent healthy rats. Subsequently, 8 children with ALF, who were awaiting a suitable allograft for LT, received intraperitoneal transplantation of HMBs. We monitored complications of the procedure, assessing the host immune response and residual function of the retrieved HMBs, either after spontaneous native liver regeneration or at the time of LT. RESULTS Intraperitoneal transplantation of HMBs in healthy rats was safe and preserved synthetic and detoxification functions, without the need for immunosuppression. Subsequently, 8 children with ALF received HMBs (4 neonatal haemochromatosis, 2 viral infections and 2 children with unknown cause at time of infusion) at a median age of 14.5 days, range 1 day to 6 years. The procedure was well tolerated without complications. Of the 8 children, 4 avoided LT while 3 were successfully bridged to LT following the intervention. HMBs retrieved after infusions (at the time of LT) were structurally intact, free of host cell adherence and contained viable hepatocytes with preserved functions. CONCLUSION The results demonstrate the feasibility and safety of an HMB infusion in children with ALF. LAY SUMMARY Acute liver failure in children is a rare but devastating condition. Liver transplantation is the most effective treatment, but it has several important limitations. Liver cell (hepatocyte) transplantation is an attractive option, as many patients only require short-term liver support while their own liver recovers. Human hepatocytes encapsulated in alginate beads can perform the functions of the liver while alginate coating protects the cells from immune attack. Herein, we demonstrated that transplantation of these beads was safe and feasible in children with acute liver failure.
Collapse
Affiliation(s)
- Anil Dhawan
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London, United Kingdom; Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, United Kingdom.
| | - Nataruks Chaijitraruch
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London, United Kingdom; Paediatric Gastroenterology and Hepatology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Emer Fitzpatrick
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London, United Kingdom
| | - Sanjay Bansal
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, United Kingdom
| | - Sharon C Lehec
- Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, United Kingdom
| | - Nigel D Heaton
- Liver Transplant Surgery, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Pauline Kane
- Department of Radiology, King's College Hospital, London, United Kingdom
| | - Anita Verma
- Department of Infection Sciences and Microbiology, King's College Hospital, London, United Kingdom
| | - Robin D Hughes
- Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, United Kingdom
| |
Collapse
|
6
|
Gurruchaga H, Saenz Del Burgo L, Orive G, Hernandez RM, Ciriza J, Pedraz JL. Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. Int J Pharm 2018; 548:206-216. [PMID: 29969709 DOI: 10.1016/j.ijpharm.2018.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The low-temperature storage of therapeutic cell-based products plays a crucial role in their clinical translation for the treatment of diverse diseases. Although dimethylsulfoxide (DMSO) is the most successful cryoprotectant in slow freezing of microencapsulated cells, it has shown adverse effects after cryopreserved cell-based products implantation. Therefore, the search of alternative non-toxic cryoprotectants for encapsulated cells is continuously investigated to move from bench to the clinic. In this work, we investigated the low molecular-weight hyaluronan (low MW-HA), a natural non-toxic and non-sulfated glycosaminoglycan, as an alternative non-permeant cryoprotectant for the slow freezing cryopreservation of encapsulated cells. Cryopreservation with low MW-HA provided similar metabolic activity, cell dead and early apoptotic cell percentage and membrane integrity after thawing, than encapsulated cells stored with either DMSO 10% or Cryostor 10. However, the beneficial outcomes with low MW-HA were not comparable to DMSO with some encapsulated cell types, such as the human insulin secreting cell line, 1.1B4, maybe explained by the different expression of the CD44 surface receptor. Altogether, we can conclude that low MW-HA represents a non-toxic natural alternative cryoprotectant to DMSO for the cryopreservation of encapsulated cells.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release 2018; 281:119-138. [PMID: 29782945 DOI: 10.1016/j.jconrel.2018.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Over the past few decades, the use of cell microencapsulation technology has been promoted for a wide range of applications as sustained drug delivery systems or as cells containing biosystems for regenerative medicine. However, difficulty in their preservation and storage has limited their availability to healthcare centers. Because the preservation in cryogenic temperatures poses many biological and biophysical challenges and that the technology has not been well understood, the slow cooling cryopreservation, which is the most used technique worldwide, has not given full measure of its full potential application yet. This review will discuss the different steps that should be understood and taken into account to preserve microencapsulated cells by slow freezing in a successful and simple manner. Moreover, it will review the slow freezing preservation of alginate-based microencapsulated cells and discuss some recommendations that the research community may pursue to optimize the preservation of microencapsulated cells, enabling the therapy translate from bench to the clinic.
Collapse
|
8
|
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Lehec SC, Glover L, Mitry RR. Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation. Cell Transplant 2018; 26:1341-1354. [PMID: 28901189 PMCID: PMC5680969 DOI: 10.1177/0963689717720050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intraperitoneal transplantation of hepatocyte microbeads is an attractive option for the management of acute liver failure. Encapsulation of hepatocytes in alginate microbeads supports their function and prevents immune attack of the cells. Establishment of banked cryopreserved hepatocyte microbeads is important for emergency use. The aim of this study was to develop an optimized protocol for cryopreservation of hepatocyte microbeads for clinical transplantation using modified freezing solutions. Four freezing solutions with potential for clinical application were investigated. Human and rat hepatocytes cryopreserved with University of Wisconsin (UW)/10% dimethyl sulfoxide (DMSO)/5% (300 mM) glucose and CryoStor CS10 showed better postthawing cell viability, attachment, and hepatocyte functions than with histidine-tryptophan-ketoglutarate/10% DMSO/5% glucose and Bambanker. The 2 freezing solutions that gave better results were studied with human and rat hepatocytes microbeads. Similar effects on cryopreserved microbead morphology (external and ultrastructural), viability, and hepatocyte-functions post thawing were observed over 7 d in culture. UW/DMSO/glucose, as a basal freezing medium, was used to investigate the additional effects of cytoprotectants: a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone [ZVAD]), an antioxidant (desferoxamine [DFO]), and a buffering and mechanical protectant (human serum albumin [HSA]) on RMBs. ZVAD (60 µM) had a beneficial effect on cell viability that was greater than with DFO (1 mM), HSA (2%), and basal freezing medium alone. Improvements in the ultrastructure of encapsulated hepatocytes and a lower degree of cell apoptosis were observed with all 3 cytoprotectants, with ZVAD tending to provide the greatest effect. Cytochrome P450 activity was significantly higher in the 3 cytoprotectant groups than with fresh microbeads. In conclusion, developing an optimized cryopreservation protocol by adding cytoprotectants such as ZVAD could improve the outcome of cryopreserved hepatocyte microbeads for future clinical use.
Collapse
Affiliation(s)
- Suttiruk Jitraruch
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom.,2 Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anil Dhawan
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Robin D Hughes
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Celine Filippi
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Sharon C Lehec
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Leanne Glover
- 3 Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - Ragai R Mitry
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| |
Collapse
|
9
|
Brun J, Berthou F, Trajkovski M, Maechler P, Foti M, Bonnet N. Bone Regulates Browning and Energy Metabolism Through Mature Osteoblast/Osteocyte PPARγ Expression. Diabetes 2017; 66:2541-2554. [PMID: 28687706 DOI: 10.2337/db17-0116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of energy metabolism. In bone, it is known to regulate osteoblast differentiation and osteoclast activity. Whether PPARγ expression in bone cells, particularly osteocytes, regulates energy metabolism remains unknown. Here, we show that mature osteoblast/osteocyte-specific ablation of PPARγ in mice (Ocy-PPARγ-/-) alters body composition with age, namely, to produce less fat and more lean mass, and enhances insulin sensitivity and energy expenditure compared with wild-type mice. In addition, Ocy-PPARγ-/- mice exhibit more bone density, structure, and strength by uncoupling bone formation from resorption. When challenged with a high-fat diet, Ocy-PPARγ-/- mice retain glycemic control, with increased browning of the adipose tissue, decreased gluconeogenesis, and less hepatic steatosis. Moreover, these metabolic effects, particularly an increase in fatty acid oxidation, cannot be explained by decarboxylated osteocalcin changes, suggesting existence of other osteokines that are under the control of PPARγ. We further identify bone morphogenetic protein 7 as one of them. Hence, osteocytes coregulate bone and glucose homeostasis through a PPARγ regulatory pathway, and its inhibition could be clinically relevant for the prevention of glucose metabolic disorders.
Collapse
Affiliation(s)
- Julia Brun
- Division of Bone Diseases, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, University of Geneva, and Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, University of Geneva, and Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva, and Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Michanlegelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, and Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
10
|
Machaidze Z, Yeh H, Wei L, Schuetz C, Carvello M, Sgroi A, Smith RN, Schuurman HJ, Sachs DH, Morel P, Markmann JF, Bühler LH. Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation 2017; 24. [PMID: 28261903 DOI: 10.1111/xen.12297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 02/05/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is no standard therapy for acute liver failure. Hepatocyte transplantation has been proposed for temporary liver function support, while the injured liver regenerates or while waiting for transplantation. We have previously shown such efficacy for microencapsulated porcine hepatocytes in mice with fulminant liver failure. We aimed to establish a large animal model for fulminant liver failure to assess the efficacy of microencapsulated porcine hepatocytes in temporary liver function support. METHODS The model was developed in baboons; for testing microencapsulated hepatocytes, the best condition was 75% hepatectomy and 60 min warm ischemia time. Fulminant liver failure was characterized by steep increases in liver biochemical parameters, severe steatosis, and massive hepatocyte necrosis during the first 10 days. Hepatocytes from miniature swine were microencapsulated in alginate-poly-l-lysine microspheres, and transplanted intraperitoneally immediately after hepatectomy and warm ischemia (80-120 mL packed hepatocytes in 200-350 mL microspheres, about 30%-50% of the baboon's native liver volume). RESULTS In the control group, three of five animals were sacrificed after 6-10 days because of fulminant liver failure, and two of five animals recovered normal liver function and survived until elective euthanasia (28 days). In the treatment group of four animals, one animal developed liver failure but survived to 21 days, and three animals recovered completely with normal liver function. CONCLUSIONS The results indicate that microencapsulated porcine hepatocytes provide temporary liver function support in baboons with fulminant liver failure. These data support development of this cell therapy product toward clinical trials in patients with acute liver failure.
Collapse
Affiliation(s)
- Zurab Machaidze
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lingling Wei
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Schuetz
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Carvello
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonino Sgroi
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Rex N Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henk-Jan Schuurman
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - David H Sachs
- Transplant Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Léo H Bühler
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ozawa F, Okitsu T, Takeuchi S. Improvement in the Mechanical Properties of Cell-Laden Hydrogel Microfibers Using Interpenetrating Polymer Networks. ACS Biomater Sci Eng 2017; 3:392-398. [DOI: 10.1021/acsbiomaterials.6b00619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fumisato Ozawa
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Teru Okitsu
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoji Takeuchi
- Institute
of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Takeuchi
Biohybrid Innovation Project, Exploratory Research for Advanced Technology
(ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL), Room
M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
12
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
14
|
Ham DS, Song MS, Park HS, Rhee M, Yang HK, Lee SH, Kim JW, Jung ES, Yoon KH. Successful xenotransplantation with re-aggregated and encapsulated neonatal pig liver cells for treatment of mice with acute liver failure. Xenotransplantation 2015; 22:249-59. [DOI: 10.1111/xen.12177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Dong-Sik Ham
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Min-Sang Song
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Heon-Seok Park
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Marie Rhee
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Hae Kyung Yang
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Seung-Hwan Lee
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Ji-Won Kim
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
- Convergent Research Consortium for Immunologic Disease; Seoul St. Mary's Hospital; Seoul Korea
| | - Eun-Sun Jung
- Department of Hospital Pathology; The Catholic University of Korea; Seoul Korea
| | - Kun-Ho Yoon
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
- Convergent Research Consortium for Immunologic Disease; Seoul St. Mary's Hospital; Seoul Korea
| |
Collapse
|
15
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Qie F, Astolfo A, Wickramaratna M, Behe M, Evans MDM, Hughes TC, Hao X, Tan T. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules. NANOSCALE 2015; 7:2480-2488. [PMID: 25567482 DOI: 10.1039/c4nr06692h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.
Collapse
Affiliation(s)
- Fengxiang Qie
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|
18
|
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 2014; 9:e113609. [PMID: 25438038 PMCID: PMC4249959 DOI: 10.1371/journal.pone.0113609] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
Abstract
Background and Aim Intraperitoneal transplantation of alginate-microencapsulated human hepatocytes is an attractive option for the management of acute liver failure (ALF) providing short-term support to allow native liver regeneration. The main aim of this study was to establish an optimised protocol for production of alginate-encapsulated human hepatocytes and evaluate their suitability for clinical use. Methods Human hepatocyte microbeads (HMBs) were prepared using sterile GMP grade materials. We determined physical stability, cell viability, and hepatocyte metabolic function of HMBs using different polymerisation times and cell densities. The immune activation of peripheral blood mononuclear cells (PBMCs) after co-culture with HMBs was studied. Rats with ALF induced by galactosamine were transplanted intraperitoneally with rat hepatocyte microbeads (RMBs) produced using a similar optimised protocol. Survival rate and biochemical profiles were determined. Retrieved microbeads were evaluated for morphology and functionality. Results The optimised HMBs were of uniform size (583.5±3.3 µm) and mechanically stable using 15 min polymerisation time compared to 10 min and 20 min (p<0.001). 3D confocal microscopy images demonstrated that hepatocytes with similar cell viability were evenly distributed within HMBs. Cell density of 3.5×106 cells/ml provided the highest viability. HMBs incubated in human ascitic fluid showed better cell viability and function than controls. There was no significant activation of PBMCs co-cultured with empty or hepatocyte microbeads, compared to PBMCs alone. Intraperitoneal transplantation of RMBs was safe and significantly improved the severity of liver damage compared to control groups (empty microbeads and medium alone; p<0.01). Retrieved RMBs were intact and free of immune cell adherence and contained viable hepatocytes with preserved function. Conclusion An optimised protocol to produce GMP grade alginate-encapsulated human hepatocytes has been established. Transplantation of microbeads provided effective metabolic function in ALF. These high quality HMBs should be suitable for use in clinical transplantation.
Collapse
Affiliation(s)
- Suttiruk Jitraruch
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| | - Robin D. Hughes
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Celine Filippi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Daniel Soong
- British Heart Foundation Centre of Excellence Cardiovascular Division, King's College London School of Medicine, London, United Kingdom
| | - Christina Philippeos
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Sharon C. Lehec
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Nigel D. Heaton
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Maria S. Longhi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Ragai R. Mitry
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| |
Collapse
|
19
|
Ramackers W, Klose J, Vondran FWR, Schrem H, Kaltenborn A, Klempnauer J, Kleine M. Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation 2014; 21:444-53. [PMID: 25175927 DOI: 10.1111/xen.12110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with liver failure could potentially be bridged with porcine xenogeneic liver cell transplantation. We examined species-specific differences between primary human and porcine hepatocytes in the regulation of coagulation protein expression and function. METHODS Isolated primary human and porcine hepatocytes were stimulated with either porcine or human interleukin (IL)-6 (10 ng/ml), IL-1β (10 ng/ml), and tumor necrosis factor-alpha (TNF-α, 30 ng/ml). mRNA expression of coagulation factors were measured by RT-PCR and real-time PCR. Cell culture supernatants were used for the measurement of fibrinogen by ELISA and determination of fibrin clot generation. RESULTS Fibrinogen expression in human hepatocytes increased after IL-6 treatment (P = 0.010) and decreased after TNF-α treatment (P = 0.005). Porcine hepatocytes displayed a lower increase in fibrinogen expression after IL-6 treatment as compared to hepatocytes of human origin (P = 0.021). Porcine hepatocytes responded contrarily following TNF-α treatment with an increased expression of fibrinogen resulting in a significant species-specific difference between human and porcine hepatocytes (P = 0.029). Fibrin polymer generation by human hepatocytes was stable and widely branched after IL-6 treatment, while stimulation with TNF-α displayed no fibrin generation at all. In contrast, treatment of porcine hepatocytes with TNF-α resulted in generation of a stable and widely branched fibrin polymer, and stimulation with IL-6 only leads to generation of partial fibrin aggregates. CONCLUSION We identified species-specific differences in the regulation of fibrinogen mRNA expression and fibrin generation under inflammatory stimuli. In hepatic xenotransplantation of porcine origin, these interspecies differences might lead to a loss of physiological coagulation function and a loss of transplanted cells.
Collapse
Affiliation(s)
- Wolf Ramackers
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
DNA methylation profiling of the fibrinogen gene landscape in human cells and during mouse and zebrafish development. PLoS One 2013; 8:e73089. [PMID: 23991173 PMCID: PMC3749180 DOI: 10.1371/journal.pone.0073089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2) in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3) in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.
Collapse
|
21
|
Arifin DR, Kedziorek DA, Fu Y, Chan KWY, McMahon MT, Weiss CR, Kraitchman DL, Bulte JWM. Microencapsulated cell tracking. NMR IN BIOMEDICINE 2013; 26:850-859. [PMID: 23225358 PMCID: PMC3655121 DOI: 10.1002/nbm.2894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Microencapsulation of therapeutic cells has been widely pursued to achieve cellular immunoprotection following transplantation. Initial clinical studies have shown the potential of microencapsulation using semi-permeable alginate layers, but much needs to be learned about the optimal delivery route, in vivo pattern of engraftment, and microcapsule stability over time. In parallel with noninvasive imaging techniques for 'naked' (i.e. unencapsulated) cell tracking, microcapsules have now been endowed with contrast agents that can be visualized by (1) H MRI, (19) F MRI, X-ray/computed tomography and ultrasound imaging. By placing the contrast agent formulation in the extracellular space of the hydrogel, large amounts of contrast agents can be incorporated with negligible toxicity. This has led to a new generation of imaging biomaterials that can render cells visible with multiple imaging modalities.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorota A. Kedziorek
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingli Fu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford R. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dara L. Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Link TW, Arifin DR, Long CM, Walczak P, Muja N, Arepally A, Bulte JW. Use of Magnetocapsules for In Vivo Visualization and Enhanced Survival of Xenogeneic HepG2 Cell Transplants. CELL MEDICINE 2012; 4:77-84. [PMID: 23293747 PMCID: PMC3534966 DOI: 10.3727/215517912x653337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatocyte transplantation is currently being considered as a new paradigm for treatment of fulminant liver failure. Xeno- and allotransplantation studies have shown considerable success but the long-term survival and immunorejection of engrafted cells needs to be further evaluated. Using novel alginate-protamine sulfate-alginate microcapsules, we have co-encapsulated luciferase-expressing HepG2 human hepatocytes with superparamagnetic iron oxide nanoparticles to create magnetocapsules that are visible on MRI as discrete hypointensities. Magnetoencapsulated cells survive and secrete albumin for at least 5 weeks in vitro. When transplanted i.p. in immunocompetent mice, encapsulated hepatocytes survive for at least 4 weeks as determined using bioluminescent imaging, which is in stark contrast to naked, unencapsulated hepatocytes, that died within several days after transplantation. However, in vivo human albumin secretion did not follow the time course of magnetoencapsulated cell survival, with plasma levels returning to baseline values already at 1 week post-transplantation. The present results demonstrate that encapsulation can dramatically prolong survival of xenotransplanted hepatocytes, leading to sustained albumin secretion with a duration that may be long enough for use as a temporary therapeutic bridge to liver transplantation.
Collapse
Affiliation(s)
- Thomas W. Link
- *Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- †Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- §Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dian R. Arifin
- *Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- §Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M. Long
- †Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- *Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- §Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naser Muja
- *Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- §Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aravind Arepally
- ¶Division of Interventional Radiology, Piedmont Hospital, Atlanta, GA, USA
- #Department of Radiology, The Johns Hopkins Medical Institutes, Baltimore, MD, USA
- **Department of Surgery, The Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- *Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- †Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- ‡Department of Chemical and Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- §Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Sgroi A, Mai G, Morel P, Baertschiger RM, Gonelle-Gispert C, Serre-Beinier V, Buhler LH. Transplantation of encapsulated hepatocytes during acute liver failure improves survival without stimulating native liver regeneration. Cell Transplant 2011; 20:1791-803. [PMID: 21396154 DOI: 10.3727/096368911x564976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate the effects of intraperitoneal transplantation of encapsulated human hepatocytes on liver metabolism and regeneration of mice with acute liver failure. Primary human hepatocytes were immortalized using lentiviral vectors coding for antiapoptotic genes and microencapsulated using alginate-polylysine polymers. In vitro, immortalized human hepatocytes showed low, but stable, synthetic and catabolitic functions over time, when compared to primary hepatocytes. In vivo, mice with acute liver failure and transplanted with encapsulated immortalized human hepatocytes had a significantly improved survival and biochemical profile, compared to mice transplanted with empty capsules. Serum levels of cytokines implicated in liver regeneration were lower in mice transplanted with hepatocytes compared to mice receiving empty capsules. This decrease was significant for IL-6 and HGF at 3 h. Measurement of liver regeneration showed no significant difference between mice transplanted with hepatocytes compared to control groups. Intraperitoneal transplantation of encapsulated immortalized hepatocytes significantly improved survival of mice with acute liver failure by providing metabolic support and without modifying liver regeneration. The lower levels of cytokines implicated in liver regeneration suggest that the metabolic support provided by the encapsulated hepatocytes reduced the inflammatory stress on the liver and herein decreased the regenerative trigger on residual hepatocytes. These data emphasize that metabolic function and regeneration of hepatocytes are two distinct aspects that need to be studied and approached separately during acute liver failure.
Collapse
Affiliation(s)
- Antonino Sgroi
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Bonavita AG, Quaresma K, Cotta-de-Almeida V, Pinto MA, Saraiva RM, Alves LA. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation 2010; 17:181-7. [PMID: 20636538 DOI: 10.1111/j.1399-3089.2010.00588.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The treatment of acute and chronic liver failure is still a challenge despite modern therapeutic innovations. While liver transplantation can restore liver function and improve patient survival, donor shortages limit this treatment to a small number of patients. Cellular xenotransplantation has emerged as an alternative for treating liver failure. Xenohepatocytes could be readily available in sufficient quantities to treat patients in critical condition and thereby reduce the donor shortage. The use of isolated encapsulated or non-encapsulated cells can reduce the immunorejection response. Several studies using animal models of acute or chronic liver failure have demonstrated improved survival and recovery of liver function after xenotransplantation of adult hepatocytes. Porcine liver cells are a potential source of xenohepatocytes due to similarities with human physiology and the great number of hepatocytes that can be obtained. The recent development of less immunogenic transgenic pigs, new immunosuppressive drugs, and cellular encapsulation systems represents important advances in the field of cellular xenotransplantation. In this study, we review the work carried out in animal models that deals with the advantages and limitations of hepatocyte xenotransplantation, and we propose new studies needed in this field.
Collapse
Affiliation(s)
- André Gustavo Bonavita
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
De Gottardi A, Spahr L, Ravier-Dall'Antonia F, Hadengue A. Cannabinoid receptor 1 and 2 agonists increase lipid accumulation in hepatocytes. Liver Int 2010; 30:1482-9. [PMID: 20602678 DOI: 10.1111/j.1478-3231.2010.02298.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid receptors CB1 and CB2 are expressed in the liver, but their regulation in fatty hepatocytes is poorly documented. The aim of this study was to investigate the effects of selective CB1 or CB2 agonists on the expression of key regulators of lipid metabolism. METHODS We used an in vitro model of fatty liver by treating immortalized human hepatocytes and HepG2 cells with oleic acid and the selective agonists arachidonyl-2-chloroethylamide (ACEA) (CB1, 12 nM) and (2-iodo-5-nitrophenyl)-[1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl]-methanone (AM1241) (CB2, 16 nM). The quantity of intracellular lipids was assessed using Oil-Red-O and a biochemical triglyceride assay. The expression of several proteins regulating endocannabinoid signalling and lipid metabolism was quantified by real-time polymerase chain reaction and by Western blot. RESULTS Both CB1 and CB2 agonists dose-dependently increased the degree of steatosis of oleic acid-treated fatty hepatocytes. Cannabinoid receptors were downregulated in the presence of steatosis, and treatment with a CB2 agonist increased the expression of CB1. Carnitine palmitoyltransferase 1 was significantly overexpressed and sterol response element-binding protein (SREBP)-1c, fatty acid synthase and lecithin-cholesterol acetyltransferase (LCAT) were downregulated in fatty immortalized human hepatocytes. Treatment with the CB agonists ACEA and AM1241 partially reversed these changes, except for SREBP-1c. CB2, but not CB1, agonism decreased the expression of apolipoprotein B. In HepG2 cells, only LCAT resulted increased after treatment with CB agonists. CONCLUSIONS Not only CB1 but also CB2 participated in the regulation of lipid metabolism in human-derived immortalized hepatocytes by regulating the expression of key enzymes of lipid synthesis and transport.
Collapse
Affiliation(s)
- Andrea De Gottardi
- Division of Gastroenterology and Hepatology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Alves LA, Bonavita A, Quaresma K, Torres E, Pacheco PAF, Cotta-de-Almeida V, Saraiva RM. New Strategies for Acute Liver Failure: Focus on Xenotransplantation Therapy. CELL MEDICINE 2010; 1:47-54. [PMID: 26998396 PMCID: PMC4789322 DOI: 10.3727/215517910x516646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute liver failure (ALF) has a poor prognosis and, despite intensive care support, reported average survival is only 10-40%. The most common causes responsible for ALF are viral hepatitis (mainly hepatitis A and B) and acetaminophen poisoning. Hepatic transplantation is the only appropriate treatment for patients with unlikely survival with supportive care alone. Survival rates after transplantation can be as high as 80-90% at the end of the first year. However, there is a shortage of donors and is not uncommon that no appropriate donor matches with the patient in time to avoid death. Therefore, new technologies are in constant development, including blood purification therapies as plasmapheresis, hemodiafiltration, and bioartificial liver support. However, they are still of limited efficacy or at an experimental level, and new strategies are welcome. Accordingly, cell transplantation has been developed to serve as a possible bridge to spontaneous recovery or liver transplantation. Xenotransplant of adult hepatocytes offers an interesting alternative. Moreover, the development of transgenic pigs with less immunogenic cells associated with new immunosuppressor strategies has allowed the development of this area. This article reviews some of the newly developed techniques, with focus on xenotransplant of adult hepatocytes, which might have clinical benefits as future treatment for ALF.
Collapse
Affiliation(s)
- Luiz Anastácio Alves
- *Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Bonavita
- *Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kátia Quaresma
- *Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elenilde Torres
- *Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Vinícius Cotta-de-Almeida
- †Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Roberto Magalhães Saraiva
- ‡Instituto de Pesquisa Evandro Chagas (IPEC), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Expression of the hepatic Niemann-Pick C1 like 1 protein gene is sensitive to rosuvastatin treatment of primary human hepatocytes. Pharmacogenet Genomics 2010; 20:455-8. [PMID: 20461026 DOI: 10.1097/fpc.0b013e32833a9328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Statins act by reducing hepatic cholesterol synthesis, thus stimulating uptake of serum cholesterol. Statin therapy modulates a number of genes involved in hepatic cholesterol homeostasis. These have rarely been analyzed simultaneously in the same experimental setting, with virtually no studies of primary human hepatocytes. This study analyzed the efficacy of rosuvastatin in the coordinated regulation of a number of genes implicated in cholesterol metabolism in primary human hepatocytes. Expression of five cholesterol-related genes were significantly upregulated, notably the Niemann-Pick C1 like 1 protein, for whom functional studies have been essentially limited to the intestine. Two genes were significantly downregulated, including sterol recognition element binding protein-1 gene that is implicated in control of hepatic lipogenesis. The results show the coordinated regulation of several genes implicated in hepatic cholesterol homeostasis and suggest therapeutic targets that could complement that clinical action of statins.
Collapse
|
31
|
Abstract
Hepatocyte transplantation has shown potential as an additional treatment modality for certain diseases of the liver. To date, patients with liver-based metabolic disorders or acute liver failure have undergone hepatocyte transplantation in several centers around the world. Results from individual patients are promising, especially for the treatment of liver-based metabolic disorders, but the lack of controlled trials makes the interpretation of the findings difficult. The current source of isolated hepatocytes is donor organs that are unused or deemed unsuitable for liver transplantation. Hence the major challenge that this field is facing is the limited supply of donor organs that can provide good quality cells. Alternative sources of cells, including stem cells, are under investigation. This Review discusses the current bench-to-bedside issues and future challenges that need to be faced to allow the wider application of hepatocyte transplantation.
Collapse
|
32
|
Mei J, Sgroi A, Mai G, Baertschiger R, Gonelle-Gispert C, Serre-Beinier V, Morel P, Bühler LH. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 2009; 18:101-10. [PMID: 19476213 DOI: 10.3727/096368909788237168] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to establish hepatocyte isolation in pigs, and to evaluate function of isolated hepatocytes after encapsulation, cryopreservation, and transplantation (Tx) in a mouse model of fulminant liver failure (FLF). After isolation, porcine hepatocytes were microencapsulated with alginate-poly-L-Lysine-alginate membranes and cryopreserved. In vitro, albumin production of free and encapsulated hepatocytes were measured by enzyme linked-immunoadsorbent assay. In vivo, encapsulated hepatocytes were transplanted into different groups of mice with FLF and the following experimental groups were performed: group 1, Tx of empty capsules; group 2, Tx of free primary porcine hepatocytes; group 3, Tx of fresh encapsulated porcine hepatocytes; group 4, Tx of cryopreserved encapsulated porcine hepatocytes. In vitro, fresh or cryopreserved encapsulated porcine hepatocytes showed a continuous decreasing metabolic function over 1 week (albumin and urea synthesis, drug catabolism). In vivo, groups 1 and 2 showed similar survival (18% and 25%, respectively, p > 0.05). In groups 3 and 4, Tx of fresh or cryopreserved encapsulated porcine hepatocytes significantly increased survival rate to 75% and 68%, respectively (p < 0.05). Primary porcine hepatocytes maintained metabolic functions after encapsulation and cryopreservation. In mice with FLF, Tx of encapsulated xenogeneic hepatocytes significantly improved survival. These results indicate that porcine hepatocytes can successfully be isolated, encapsulated, stored using cryopreservation, and transplanted into xenogeneic recipients with liver failure and sustain liver metabolic functions.
Collapse
Affiliation(s)
- Jie Mei
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Expectations are high on cellular therapy. Being fundamental to elucidate organogenesis, it is unlikely that embryonic stem cells will be used for clinical purposes. Postembryonic stage, developing cells are, therefore, the front-runner for regenerative medicine. In addition to autologous cells, both allogeneic and xenogeneic cells are hypothetical candidates to treat specific diseases. This review summarizes the current knowledge on immunological and functional aspects of xeno(allo)-cellular transplantation for cardiomyopathy, diabetes, liver failure, neural diseases, and bone regeneration. RECENT FINDINGS Xenocellular transplantation is promising for tissue repair in immunologically privileged sites such as the central nervous system or nonvascularized tissues in which no or moderate immunosuppression is required. In vascularized organs, major immune responses are present when cells are transplanted without additional conditioning. Positive results from encapsulation methods that protect cells from the immune system should further stimulate preclinical research. Also, conditioning immunosuppression could be used to circumvent the initial immune response. Transgenic pigs cells are probably the best xenogeneic substitute for human application, although basic research on innate and noninnate immunity toward pig cells is still required. SUMMARY In several fields of medicine, cellular xenotransplantation is slowly emerging as a potential therapeutic tool.
Collapse
|
34
|
A localizable, biological-based system for the delivery of bioactive IGF-1 utilizing microencapsulated genetically modified human fibroblasts. ASAIO J 2009; 55:259-65. [PMID: 19390433 DOI: 10.1097/mat.0b013e31819b0365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a potent mitogen and differentiation factor with particular relevance to orthopedic tissue engineering. A biologically based Ca2+-alginate microcapsule vehicle, utilizing genetically modified primary normal human fibroblasts (NHFs), was developed and characterized for localized synthesis and delivery of human IGF-1 (hIGF-1). Normal human fibroblasts were transfected to overexpress the hIGF-1 gene, leading to cells that expressed 4 ng of hIGF-1 per 10(6) cells per 24 hours. Encapsulation within alginate led to a six-fold enhancement in the generation and release of hIGF-1 to 22 ng of hIGF-1 per 10(6) cells per 24 hours. Release was constitutive, predictable, and exhibited highly repeatable first-order kinetics with no initial burst. Released growth factor was biologically active and exhibited a proliferative effect comparable to commercially available recombinant hIGF-1. The magnitude of hIGF-1 release met the requirements of orthopedic tissue generation, and this approach is considered an attractive alternative to other proposed methods of growth factor delivery.
Collapse
|
35
|
Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009; 49:1176-84. [PMID: 19072831 DOI: 10.1002/hep.22737] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Phosphatase and tensin homolog (PTEN) is a regulator of phosphoinositide 3-kinase signaling and an important tumor suppressor mutated/deleted in human cancers. PTEN deletion in the liver leads to insulin resistance, steatosis, inflammation, and cancer. We recently demonstrated that unsaturated fatty acids trigger steatosis by down-regulating PTEN expression in hepatocytes via activation of a mammalian target of rapamycin (mTOR)/nuclear factor kappa B (NF-kappaB) complex, but the molecular mechanisms implicated in this process are still unknown. Here, we investigated potential genetic and epigenetic mechanisms activated by fatty acids leading to PTEN down-regulation. Our results indicate that unsaturated fatty acids down-regulate PTEN messenger RNA expression in hepatocytes through mechanisms unrelated to methylation of the PTEN promoter, histone deacetylase activities, or repression of the PTEN promoter activity. In contrast, unsaturated fatty acids up-regulate the expression of microRNA-21, which binds to PTEN messenger RNA 3'-untranslated region and induces its degradation. The promoter activity of microRNA-21 was increased by mTOR/NF-kappaB activation. Consistent with these data, microRNA-21 expression was increased in the livers of rats fed high-fat diets and in human liver biopsies of obese patients having diminished PTEN expression and steatosis. CONCLUSION Unsaturated fatty acids inhibit PTEN expression in hepatocytes by up-regulating microRNA-21 synthesis via an mTOR/NF-kappaB-dependent mechanism. Aberrant up-regulation of microRNA-21 expression by excessive circulating levels of fatty acids exemplify a novel regulatory mechanism by which fatty acids affect PTEN expression and trigger liver disorders.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Cellular Physiology and Metabolism, Geneva Medical Faculty, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
More than 30 years after the first hepatocyte transplant to treat the Gunn rat, the animal model for Crigler-Najjar syndrome, there are still a number of impediments to hepatocyte transplantation. Numerous animal models are still used in work aimed at improving hepatocyte engraftment and/or long-term function. Although other cell sources, particularly hepatic and extrahepatic stem cells, are being explored, adult hepatocytes remain the cells of choice for the treatment of liver diseases by cell therapy. In recent years, diverse approaches have been developed in various animal models to enhance hepatocyte transduction and amplification in vitro and cell engraftment and functionality in vivo. They have led to significant progress in hepatocyte transplantation for the treatment of patients with metabolic diseases and for bridging patients with acute injury until their own livers regenerate. This review presents and considers the results of this work with a special emphasis on procedures that might be clinically applicable.
Collapse
Affiliation(s)
- Anne Weber
- Institut National de la Santé et de la Recherche Médicale Unité 804, Université Paris-Sud, Bicêtre Hospital, Kremlin-Bicêtre, France.
| | | | | | | |
Collapse
|
37
|
Clément S, Juge-Aubry C, Sgroi A, Conzelmann S, Pazienza V, Pittet-Cuenod B, Meier CA, Negro F. Monocyte chemoattractant protein-1 secreted by adipose tissue induces direct lipid accumulation in hepatocytes. Hepatology 2008; 48:799-807. [PMID: 18570214 DOI: 10.1002/hep.22404] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED For many years, adipose tissue has been mainly considered as an inert reservoir for storing triglycerides. Since the discovery that adipocytes may secrete a variety of bioactive molecules (hormones, chemokines, and cytokines), an endocrine and paracrine role for white adipose tissue (WAT) in the regulation of energy balance and other physiological processes has been established, particularly with regard to brain and muscle. In contrast, little is known about the interactions of WAT with liver. Hence, we examined the effect of the secretory products of WAT on hepatocytes. Conditioned medium of human WAT explants induced significant steatosis in hepatocyte cell lines. Factor(s) responsible for the conditioned medium-induced steatosis were screened by a battery of blocking antibodies against different cytokines/chemokines shown to be secreted by WAT. In contrast to interleukin-8 and interleukin-6, the monocyte chemoattractant protein-1 was capable of inducing steatosis in hepatocytes in a time-dependent manner at concentrations similar to those found in conditioned medium. Incubation of conditioned medium with antimonocyte chemoattractant protein-1 antibodies prevented triglyceride accumulation. Investigation of the mechanism leading to the triglyceride accumulation showed that both a diminution of apolipoprotein B secretion and an increase in phosphoenolpyruvate carboxykinase messenger RNA may be involved. CONCLUSION The monocyte chemoattractant protein-1 secreted by adipose tissue may induce steatosis not only recruiting macrophages but also acting directly on hepatocytes.
Collapse
Affiliation(s)
- Sophie Clément
- Division of Clinical Pathology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Nguyen TH, Ferry N. Gene therapy for liver enzyme deficiencies: what have we learned from models for Crigler-Najjar and tyrosinemia? Expert Rev Gastroenterol Hepatol 2007; 1:155-71. [PMID: 19072443 DOI: 10.1586/17474124.1.1.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The liver is the site of numerous metabolic inherited diseases. It has unique features that make it compliant to various gene therapy approaches. Many vector types and gene delivery strategies have been evaluated during the past 20 years in a number of animal models of metabolic liver diseases. However, the complete cure of inherited liver deficiencies by gene therapy in relevant animal models were only reported recently. These successes were achieved thanks to major advances in vector technology. In this review, we will focus on Crigler-Najjar disease and hereditary tyrosinemia, two paradigmatic examples of the two categories of enzymatic liver deficiencies: type I, in which the genetic defect does not affect liver histology; and type II, in which liver lesions are present.
Collapse
Affiliation(s)
- Tuan Huy Nguyen
- INSERM CIC-00-04 Biothérapies Hépatiques, CHU Hôtel-Dieu, 44035 Nantes Cedex, France.
| | | |
Collapse
|
40
|
|
41
|
Baertschiger RM, Buhler LH. Xenotransplantation literature update November-December 2005. Xenotransplantation 2006; 13:96-9. [PMID: 16623798 DOI: 10.1111/j.1399-3089.2006.00285.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reto M Baertschiger
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | |
Collapse
|