1
|
Lopez KJ, Spence JP, Li W, Zhang W, Wei B, Cross-Najafi AA, Butler JR, Cooper DKC, Ekser B, Li P. Porcine UL-16 Binding Protein 1 Is Not a Functional Ligand for the Human Natural Killer Cell Activating Receptor NKG2D. Cells 2023; 12:2587. [PMID: 37998322 PMCID: PMC10670462 DOI: 10.3390/cells12222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Natural killer (NK) cells play a vital role in xenotransplantation rejection. One approach to induce NK cell immune tolerance is to prevent the NK cell-mediated direct killing of porcine cells by targeting the interaction of the activating receptor NKG2D and its ligands. However, the identity of porcine ligands for the human NKG2D receptor has remained elusive. Previous studies on porcine UL-16 binding protein 1 (pULBP-1) as a ligand for human NKG2D have yielded contradictory results. The goal of the present study was to clarify the role of pULBP-1 in the immune response and its interaction with human NKG2D receptor. To accomplish this, the CRISPR/Cas9 gene editing tool was employed to disrupt the porcine ULBP-1 gene in a 5-gene knockout porcine endothelial cell line (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin, 5GKO). A colony with two allele mutations in pULBP-1 was established as a 6-gene knockout pig cell line (6GKO). We found that pULBP-1-deficient pig cells exhibited a reduced binding capacity to human NKG2D-Fc, a recombinant chimera protein. However, the removal of ULBP-1 from porcine endothelial cells did not significantly impact human NK cell degranulation or cytotoxicity upon stimulation with the pig cells. These findings conclusively demonstrate that pULBP-1 is not a crucial ligand for initiating xenogeneic human NK cell activation.
Collapse
Affiliation(s)
- Kevin J. Lopez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Barry Wei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Arthur A. Cross-Najafi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - James R. Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.J.L.); (W.Z.); (B.W.); (A.A.C.-N.); (J.R.B.)
| |
Collapse
|
2
|
Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, Brinkmann A, Niemann H, Schwinzer R. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018; 25:e12387. [DOI: 10.1111/xen.12387] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Anna Buermann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Stoyan Petkov
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Rabea Hein
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Wiebke Baars
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Antje Brinkmann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Reinhard Schwinzer
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
3
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
4
|
Li HW, Vishwasrao P, Hölzl MA, Chen S, Choi G, Zhao G, Sykes M. Impact of Mixed Xenogeneic Porcine Hematopoietic Chimerism on Human NK Cell Recognition in a Humanized Mouse Model. Am J Transplant 2017; 17:353-364. [PMID: 27401926 PMCID: PMC5414033 DOI: 10.1111/ajt.13957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/25/2023]
Abstract
Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN-γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paresh Vishwasrao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY,Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Markus A. Hölzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Stephanie Chen
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Goda Choi
- Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands,Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
5
|
Boksa M, Zeyland J, Słomski R, Lipiński D. Immune modulation in xenotransplantation. Arch Immunol Ther Exp (Warsz) 2014; 63:181-92. [PMID: 25354539 PMCID: PMC4429136 DOI: 10.1007/s00005-014-0317-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
The use of animals as donors of tissues and organs for xenotransplantations may help in meeting the increasing demand for organs for human transplantations. Clinical studies indicate that the domestic pig best satisfies the criteria of organ suitability for xenotransplantation. However, the considerable phylogenetic distance between humans and the pig causes tremendous immunological problems after transplantation, thus genetic modifications need to be introduced to the porcine genome, with the aim of reducing xenotransplant immunogenicity. Advances in genetic engineering have facilitated the incorporation of human genes regulating the complement into the porcine genome, knockout of the gene encoding the formation of the Gal antigen (α1,3-galactosyltransferase) or modification of surface proteins in donor cells. The next step is two-fold. Firstly, to inhibit processes of cell-mediated xenograft rejection, involving natural killer cells and macrophages. Secondly, to inhibit rejection caused by the incompatibility of proteins participating in the regulation of the coagulation system, which leads to a disruption of the equilibrium in pro- and anti-coagulant activity. Only a simultaneous incorporation of several gene constructs will make it possible to produce multitransgenic animals whose organs, when transplanted to human recipients, would be resistant to hyperacute and delayed xenograft rejection.
Collapse
Affiliation(s)
- Magdalena Boksa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland,
| | | | | | | |
Collapse
|
6
|
Riederer I, Sievert W, Eissner G, Molls M, Multhoff G. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells. PLoS One 2010; 5:e15339. [PMID: 21179573 PMCID: PMC3002963 DOI: 10.1371/journal.pone.0015339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/09/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31), endoglin (CD105) and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs) differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK) cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells. METHODOLOGY/PRINCIPAL FINDINGS Primary macrovascular human umbilical vein endothelial cells (HUVECs) only express UL16 binding protein 2 (ULBP2) and the major histocompatibility complex (MHC) class I chain-related protein MIC-A (MIC-A) as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70), intercellular adhesion molecule ICAM-1 (CD54) and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD) plus IL-2 (TKD/IL-2)-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54) and HLA-E expression on the former which drops to the initial low levels (below 5%) when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected. CONCLUSION/SIGNIFICANCE These data emphasize that an irradiation-induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.
Collapse
Affiliation(s)
- Isabelle Riederer
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München, Munich, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München, Munich, Germany
| | - Günther Eissner
- Department of Cardiac Surgery, Klinikum der Universität München, Munich, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Cellular human antipig immune responses are increasingly recognized as an important barrier to successful clinical xenotransplantation. This review addresses the role of monocytes/macrophages, natural killer (NK) cells, and T cells in xenograft rejection. We focus on the receptor-ligand interactions that regulate the responses of these cells to porcine tissues and thus could be targets for immunomodulation. RECENT FINDINGS Activation of human monocytes by pig cells is partly due to the incapacity of porcine ligands to bind to inhibitory receptors such as signal regulatory protein alpha. Porcine UL16-binding protein 1 can functionally interact with human NK group 2D protein, thereby contributing to human NK cell activity. Transgenic pigs overexpressing human leukocyte antigen class E were generated. Cells from these pigs induced diminished NK-cell lysis, suggesting that human leukocyte antigen class E expression compensates for the inability of porcine ligands to bind to the inhibitory CD94/NK group 2A receptor on human NK cells. A new concept for the modulation of antipig T-cell reactivity may result from the finding that porcine antigen-presenting cells that overexpress human negative costimulatory PD ligands also induce diminished responses of human T cells. SUMMARY Disruption of stimulatory receptor-ligand interactions (e.g. by blocking antibodies or 'knockout/down' technologies) combined with transgenic overexpression of inhibitory ligands in porcine cells and tissues could be an effective approach to downregulate human antipig cellular immune responses.
Collapse
|
8
|
Pierson RN, Dorling A, Ayares D, Rees MA, Seebach JD, Fishman JA, Hering BJ, Cooper DKC. Current status of xenotransplantation and prospects for clinical application. Xenotransplantation 2009; 16:263-80. [PMID: 19796067 PMCID: PMC2866107 DOI: 10.1111/j.1399-3089.2009.00534.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation is one promising approach to bridge the gap between available human cells, tissues, and organs and the needs of patients with diabetes or end-stage organ failure. Based on recent progress using genetically modified source pigs, improving results with conventional and experimental immunosuppression, and expanded understanding of residual physiologic hurdles, xenotransplantation appears likely to be evaluated in clinical trials in the near future for some select applications. This review offers a comprehensive overview of known mechanisms of xenograft injury, a contemporary assessment of preclinical progress and residual barriers, and our opinions regarding where breakthroughs are likely to occur.
Collapse
Affiliation(s)
- Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Le Bas-Bernardet S, Blancho G. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transpl Immunol 2009; 21:60-4. [DOI: 10.1016/j.trim.2008.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 12/13/2022]
|
10
|
Current world literature. Curr Opin Organ Transplant 2009; 14:211-7. [PMID: 19307967 DOI: 10.1097/mot.0b013e32832ad721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Baertschiger RM, Buhler LH. Xenotransplantation literature update March-April, 2008. Xenotransplantation 2008; 15:277-80. [PMID: 18957050 DOI: 10.1111/j.1399-3089.2008.00485.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|