1
|
Lee S, Dohlman TH, Dana R. Immunology in corneal transplantation-From homeostasis to graft rejection. Transplant Rev (Orlando) 2025; 39:100909. [PMID: 39798206 DOI: 10.1016/j.trre.2025.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Immunology depends on maintaining a delicate balance within the human body, and disruptions can result in conditions such as autoimmune diseases, immunodeficiencies, and hypersensitivity reactions. This balance is especially crucial in transplantation immunology, where one of the primary challenges is preventing graft rejection. Such rejection can lead to organ failure, increased patient mortality, and higher healthcare costs due to the limited availability of donor tissues relative to patient needs. Xenotransplantation, like using porcine corneas for human transplants, offers a potential solution to the donor tissue shortage but faces substantial immunological rejection issues. To prevent rejection in both allo- and xenotransplantation, a deep understanding of how the body maintains immunological balance is essential, particularly since achieving tolerance to non-self tissues is considered the "holy grail" of the field. The cornea, the most frequently transplanted solid organ, has a high acceptance rate due to its immune-privileged status and serves as an ideal model for studying graft rejection mechanisms that disrupt tolerance. However, multiple immune pathways complicate our understanding of these mechanisms. This review examines the rejection mechanisms in corneal transplantation, identifying key cells involved and potential therapeutic strategies to induce and maintain immunological tolerance in both allo- and xenografts across various transplants.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Berger T, Schlötzer-Schrehardt U, Flockerzi F, Daas L, Flockerzi E, Seitz B. Severe ulcerative keratopathy following implantation of an acellular porcine corneal stromal lenticule in a patient with keratoconus. Cont Lens Anterior Eye 2024; 47:102145. [PMID: 38472013 DOI: 10.1016/j.clae.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE To report a case of ulcerative keratopathy following implantation of acellular porcine corneal stroma (APCS) in a patient with keratoconus (KC). METHODS A 58 year-old patient initially presented with an ulcerative keratopathy in the left eye. Previously, several corneal procedures (including radial keratotomy, laser-in-situ keratomileusis, crosslinking) were performed for KC. Eight months ago, an APCS lenticule (Xenia corneal implant, Gebauer Medizintechnik GmbH, Neuhausen, Germany) was implanted into a stromal pocket because of progressive keratectasia. Visual acuity was hand movement. Anterior segment optical coherence tomography showed a space between the APCS lenticule and the host stroma. Excimer laser-assisted penetrating keratoplasty (PKP, 8.0/8.1 mm) was performed in the left eye. The corneal explant was investigated by light and transmission electron microscopy. RESULTS Best-corrected visual acuity was 20/40 six weeks after PKP. Light microscopy demonstrated a stromal ulceration down to the APCS lenticule. No stromal cells could be found within the APCS lenticule eight months after implantation. The APCS lenticule did not show a green stain of the collagens with Masson-Goldner staining and exhibited a strong Periodic acid-Schiff positive reaction. Electron microscopy of the APCS lenticule revealed cross-linked collagen lamellae without cellular components. Close to the interface, corneal collagen lamellae of the host cornea were disorganized. Few vital keratocytes were present on the surface of the lenticule and appeared to cause mechanical disruption of the host stroma along the lenticule-stroma interface. CONCLUSION APCS implantation may lead to severe complications such as ulcerative keratopathy in otherwise uncomplicated KC corneas. In such cases, excimer laser-assisted PKP or Deep Anterior Lamellar Keratoplasty are the methods of choice to restore visual acuity.
Collapse
Affiliation(s)
- Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | | | - Fidelis Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Elias Flockerzi
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
3
|
Hao Y, Zhou J, Tan J, Xiang F, Qin Z, Yao J, Li G, Yang M, Zeng L, Zeng W, Zhu C. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioact Mater 2023; 29:265-278. [PMID: 37600931 PMCID: PMC10432718 DOI: 10.1016/j.bioactmat.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
Cross-linking agents are frequently used to restore corneal properties after decellularization, and it is especially important to select an appropriate method to avoid excessive cross-linking. In addition, how to promote wound healing and how to improve scar formation require further investigation. To ensure the safety and efficacy of animal-derived products, we designed bioartificial corneas (BACs) according to the criteria for Class III medical devices. Our BACs do not require cross-linking agents and increase mechanical strength via self-cross-linking of aldehyde-modified hyaluronic acid (AHA) and carboxymethyl chitosan (CMC) on the surface of decellularized porcine corneas (DPCs). The results showed that the BACs had good biocompatibility and transparency, and the modification enhanced their antibacterial and anti-inflammatory properties in vitro. Preclinical animal studies showed that the BACs can rapidly regenerate the epithelium and restore vision within a month. After 3 months, the BACs were gradually filled with epithelial, stromal, and neuronal cells, and after 6 months, their transparency and histology were almost normal. In addition, side effects such as corneal neovascularization, conjunctival hyperemia, and ciliary body hyperemia rarely occur in vivo. Therefore, these BACs show promise for clinical application for the treatment of infectious corneal ulcers and as a temporary covering for corneal perforations to achieve the more time.
Collapse
Affiliation(s)
- Yansha Hao
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Jingting Zhou
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Feng Xiang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Zhongliang Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
- Zhong Zhi Yi Gu Research Institute, Chongqing Jiukang Medical Research Institute Co., Ltd.,. China
| | - Jun Yao
- Hong Chang Biotechnology Co., Ltd, Guangzhou, 510700, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Mingcan Yang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Lingqin Zeng
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| |
Collapse
|
4
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Dan Cosnita AR, Raica M, Sava MP, Cimpean AM. Gene Expression Profile of Vascular Endothelial Growth Factors (VEGFs) and Platelet-derived Growth Factors (PDGFs) in the Normal Cornea. In Vivo 2021; 35:805-813. [PMID: 33622873 DOI: 10.21873/invivo.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Angiogenic growth factors expression is not known in the normal cornea. The aim was to study corneal gene expression profile of VEGF and PDGF pathways influencing the avascular state of cornea. MATERIALS AND METHODS cDNA synthesis was performed from mRNA extracted from five fresh pig corneas followed by cDNA synthesis and analysis of VEGF and PDGF pathways by TaqMan Array gene expression profile. RESULTS Normal pig cornea lacks VEGFR2 and VEGFR3 gene expression. MK2 and AKT1 genes were significantly overexpressed (p=0.000684, p=0.050995, respectively). Six PDGF pathway genes were overexpressed: TIAM1 (p=0.047), PIK3CA (p=0.00005), IKBKG (p=0.000006), PAK4 (p=0.034), RAC1 (p=0.000006 and PTGS2, p=0.00375). PDGF A was up-regulated, but not with a statistical significance (p=0.79911), while PDGFRα was down-regulated and PDGFRβ was not expressed. CONCLUSION Normal cornea avascularity is given by growth factor receptors down-regulation. Rapid corneal neovascularisation is induced by activation of the main angiogenic growth factors that induce angiogenic cascade and vessel recruitment.
Collapse
Affiliation(s)
- Andrei Radu Dan Cosnita
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihai Poenaru Sava
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania; .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
6
|
Javier MFDM, Javier Delmo EM, Hetzer R. Heart transplantation: the Berlin experience and perspectives. Cardiovasc Diagn Ther 2021; 11:243-253. [PMID: 33708496 DOI: 10.21037/cdt-20-290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In patients with end-stage heart failure, heart transplants are now an ingrained practice, as they provide satisfying long-term results with good predictability and quality of life. The successful outcome has evolved from the development of effective immunosuppression, recognition of allograft rejection through diagnostic modalities and improvement in donor organ perfusion. Unfortunately, transplant availability is constrained by the shortage of donor organs and is therefore considered a casuistic therapy. The outcome is defined by unwanted effects of immunosuppressants, increased tumor occurrence and chronic transplant angiopathies. In the long term, patients fear primarily the occurrence of renal insufficiency and secondly osteoporosis with its skeletal complications and corresponding pain. Nevertheless, the overall quality of life is not very limited; on the contrary, patients demonstrate a surprisingly meaningful lives 10-20 years after the transplant. Their physical presentation is similar to those with varying co-morbidities. Most of the 20-year surviving patients are physically active and happy with their daily lives. Medical ambition has seen heart transplantation become reality and develop into an influential force regarding heart surgery, immunology, pharmacology, organ logistics and medical ethics. Its development has also molded our definitions of death and has driven public and health care approval of medical advances. It has provided a strong solidarity among politicians, sociologists, physicians and citizens. Problems regarding ethics continue to endure, and will forecast heart transplants as a defining, but temporary era in human medicine. The donor organ shortage has stimulated the use of resuscitated donor hearts and encouraged exploration and advancement of mechanical circulatory support systems and xenotransplantation as alternatives in the management of end-stage heart failure.
Collapse
|
7
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Lu Q, Peng RM, Feng N, Wen MD, He LH, Hong J. Evaluation of reconstructed human corneal endothelium sheets made with porcine Descemet's membrane in vitro and in vivo. Exp Eye Res 2020; 197:108125. [DOI: 10.1016/j.exer.2020.108125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
9
|
Li S, Li M, Gu L, Peng L, Deng Y, Zhong J, Wang B, Wang Q, Xiao Y, Yuan J. Risk factors influencing survival of acellular porcine corneal stroma in infectious keratitis: a prospective clinical study. J Transl Med 2019; 17:434. [PMID: 31900186 PMCID: PMC6941327 DOI: 10.1186/s12967-019-02192-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background A worldwide lack of donor corneas demands the bioengineered corneas be developed as an alternative. The primary objective of the current study was to evaluate the efficacy of acellular porcine corneal stroma (APCS) transplantation in various types of infectious keratitis and identify risk factors that may increase APCS graft failure. Methods In this prospective interventional study, 39 patients with progressive infectious keratitis underwent therapeutic lamellar keratoplasty using APCS and were followed up for 12 months. Data collected for analysis included preoperative characteristics, visual acuity, graft survival and complications. Graft survival was evaluated by the Kaplan–Meier method and compared with the log-rank test. Results The percentage of eyes that had a visual acuity of 20/40 or better increased from 10.3% preoperatively to 51.2% at 12 months postoperatively. Twelve patients (30.8%) experienced graft failure within the follow-up period. The primary reasons given for graft failure was noninfectious graft melting (n = 5), and the other causes included recurrence of primary infection (n = 4) and extensive graft neovascularization (n = 3). No graft rejection was observed during the follow-up period. A higher relative risk (RR) of graft failure was associated with herpetic keratitis (RR = 8.0, P = 0.046) and graft size larger than 8 mm (RR = 6.5, P < 0.001). Conclusions APCS transplantation is an alternative treatment option for eyes with medically unresponsive infectious keratitis. Despite the efficacy of therapeutic lamellar keratoplasty with APCS, to achieve a good prognosis, restriction of surgical indications, careful selection of patients and postoperative management must be emphasized. Trial registration Prospective Study of Deep Anterior Lamellar Keratoplasty Using Acellular Porcine Cornea, NCT03105466. Registered 31 August 2016, ClinicalTrails.gov
Collapse
Affiliation(s)
- Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Meng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Li Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Yoon CH, Choi SH, Choi HJ, Lee HJ, Kang HJ, Kim JM, Park CG, Choi K, Kim H, Ahn C, Kim MK. Long-term survival of full-thickness corneal xenografts from α1,3-galactosyltransferase gene-knockout miniature pigs in non-human primates. Xenotransplantation 2019; 27:e12559. [PMID: 31566261 DOI: 10.1111/xen.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to investigate (a) the long-term survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature (GTKOm) pigs in non-human primates as a primary outcome and (b) the effect of anti-CD20 antibody on the survival of corneal grafts from GTKOm pigs as a secondary outcome. METHODS Nine rhesus macaques undergoing full-thickness corneal xenotransplantation using GTKOm pigs were systemically administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus with (CD20 group) or without (control group) anti-CD20 antibody. RESULTS Graft survival was significantly longer (P = .008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 91, 72, 55, 37 days). When we compared the graft survival time between older (>7- month-old) and younger (≤7-month-old) aged donor recipients, there was no significant difference. Activated B cells were lower in the CD20 group than control group (P = .026). Aqueous humor complement C3a was increased in the control group at last examination (P = .043) and was higher than that in the CD20 group (P = .014). Anti-αGal IgG/M levels were unchanged in both groups. At last examination, anti-non-Gal IgG was increased in the control group alone (P = .013). CONCLUSIONS The GTKOm pig corneal graft achieved long-term survival when combined with anti-CD20 antibody treatment. Inhibition of activated B cells and complement is imperative even when using GTKO pig corneas.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Curie Ahn
- Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Yoon CH, Choi SH, Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection in pig-to-non-human primate corneal xenotransplantation. Xenotransplantation 2019; 26:e12515. [PMID: 30983050 DOI: 10.1111/xen.12515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
We investigated the predictive biomarkers for graft rejection in pig-to-non-human primate (NHP) full-thickness corneal xenotransplantation (n = 34). The graft score (0-12) was calculated based on opacity, edema, and vascularization. Scores ≥ 6 were defined as rejection. NHPs were divided into two groups: (a) graft rejection within 6 months; and (b) graft survival until 6 months. In the evaluation of 2-week biomarkers, none of the NHPs showed rejection within 2 weeks and the 34 NHPs were divided into two groups: (a) entire rejection group (n = 16); and (b) survival group (n = 18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 weeks were excluded and the remaining 30 NHPs were divided into two groups: (a) late rejection group (n = 12); and (b) survival group (n = 18). Analysis of biomarker candidates included T/B-cell subsets, levels of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous humor (AH). CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 were significantly elevated in the rejection group. Receiver operating characteristic areas under the curve was highest for AH C3a (0.847) followed by CD8+ IFNγ+ cells (both the concentration and percentage: 0.715), indicating excellent or acceptable discrimination ability, which suggests that CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in pig-to-NHP corneal xenotransplantation.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
12
|
|
13
|
Finding an Optimal Corneal Xenograft Using Comparative Analysis of Corneal Matrix Proteins Across Species. Sci Rep 2019; 9:1876. [PMID: 30755666 PMCID: PMC6372616 DOI: 10.1038/s41598-018-38342-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Numerous animal species have been proposed as sources of corneal tissue for obtaining decellularized xenografts. The selection of an appropriate animal model must take into consideration the differences in the composition and structure of corneal proteins between humans and other animal species in order to minimize immune response and improve outcome of the xenotransplant. Here, we compared the amino-acid sequences of 16 proteins present in the corneal stromal matrix of 14 different animal species using Basic Local Alignment Search Tool, and calculated a similarity score compared to the respective human sequence. Primary amino acid structures, isoelectric point and grand average of hydropathy (GRAVY) values of the 7 most abundant proteins (i.e. collagen α-1 (I), α-1 (VI), α-2 (I) and α-3 (VI), as well as decorin, lumican, and keratocan) were also extracted and compared to those of human. The pig had the highest similarity score (91.8%). All species showed a lower proline content compared to human. Isoelectric point of pig (7.1) was the closest to the human. Most species have higher GRAVY values compared to human except horse. Our results suggest that porcine cornea has a higher relative suitability for corneal transplantation into humans compared to other studied species.
Collapse
|
14
|
Liu Y, Zhang Y, Liang Q, Yan C, Wang L, Zhang J, Pan Z. Porcine endothelial grafts could survive for a long term without using systemic immunosuppressors: An investigation of feasibility and efficacy of xeno-Descemet's stripping automated endothelial keratoplasty from WZS-pig to rhesus monkey. Xenotransplantation 2018; 26:e12433. [PMID: 29932259 DOI: 10.1111/xen.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yang Liu
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - YingNan Zhang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Chao Yan
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Li Wang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Jing Zhang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - ZhiQiang Pan
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To review the progress in the field of xenotransplantation with special attention to most recent encouraging findings which will eventually bring xenotransplantation to the clinic in the near future. RECENT FINDINGS Starting from early 2000, with the introduction of galactose-α1,3-galactose (Gal)-knockout pigs, prolonged survival especially in heart and kidney xenotransplantation was recorded. However, remaining antibody barriers to non-Gal antigens continue to be the hurdle to overcome. The production of genetically engineered pigs was difficult requiring prolonged time. However, advances in gene editing, such as zinc finger nucleases, transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR) technology made the production of genetically engineered pigs easier and available to more researchers. Today, the survival of pig-to-nonhuman primate heterotopic heart, kidney, and islet xenotransplantation reached more than 900, more than 400, and more than 600 days, respectively. The availability of multiple-gene pigs (five or six genetic modifications) and/or newer costimulation blockade agents significantly contributed to this success. Now, the field is getting ready for clinical trials with an international consensus. SUMMARY Clinical trials in cellular or solid organ xenotransplantation are getting closer with convincing preclinical data from many centers. The next decade will show us new achievements and additional barriers in clinical xenotransplantation.
Collapse
|
16
|
Shende P, Rodrigues B, Gaud RS. Transplantation and Alternatives to Treat Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29516308 DOI: 10.1007/5584_2018_177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transplantation is considered as one of the methods for the treatment of autoimmune diseases. There are different sorts of transplantation which improved the situation for the cure of different kinds of autoimmune diseases. Cord blood transplantation is favored over other transplant techniques. The propelled treatments incorporate interferon administrative elements and mesenchymal stromal cells for the management of immune system issue particularly in the treatment of rheumatoid joint inflammation. According to the studies conducted, it was proven that cord blood/UC mesenchymal cells along with DMARDs, without consistent organization expanded the level of administrative regulatory T-cells of the peripheral blood which might be a protected and huge technique for the treatment of patients experiencing rheumatoid joint inflammation. This review article focusses on different organ transplantation and alternative methods to treat autoimmune condition like rheumatoid arthritis. Using 3D printing and artificial intelligence are some of the recent trends that may be used for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| | - Bernice Rodrigues
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - R S Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
17
|
Dong X, Hara H, Wang Y, Wang L, Zhang Y, Cooper DK, Dai Y, Pan Z. Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaojuan Dong
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Hidetaka Hara
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Li Wang
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Yingnan Zhang
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - David K.C. Cooper
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Zhiqiang Pan
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
18
|
Lee W, Mammen A, Dhaliwal DK, Long C, Miyagawa Y, Ayares D, Cooper DKC, Hara H. Development of retrocorneal membrane following pig-to-monkey penetrating keratoplasty. Xenotransplantation 2016; 24. [PMID: 28247507 DOI: 10.1111/xen.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Recent reports of long-term survival after wild-type (WT) pig-to-monkey corneal xenotransplantation are encouraging. We experienced the rapid development of retrocorneal membranes, a rare complication after corneal allotransplantation (although seen in infants and young children). The original specific aim of the study was to determine the factors associated with successful (young) pig corneal transplantation in monkeys. However, when it was obvious that retrocorneal membranes rapidly developed, our aims became to determine the factors involved in its development after both WT and Genetically engineered (GE ) pig corneal xenotransplantation and to investigate the characteristics of the retrocorneal membrane. Rhesus monkeys were recipients of penetrating keratoplasty using WT and GE pigs (n=2, respectively, 1-3 months old). Local/systemic steroids were administered for 3 months. Grafts were evaluated by slit lamp for corneal transparency, edema, and neovascularization. Hematoxylin and eosin, Masson trichrome staining, and immunohistochemical analysis were performed. Gal staining was also carried out to distinguish the origin of the membrane. All penetrating keratoplasty recipients developed fibrous retrocorneal membranes in the early post-transplantation period, regardless of whether the graft was from a WT or GE pig. There were no features of rejection, with no cell infiltrate in the graft or anterior chamber during the three-month follow-up. There was no difference in the clinical course between the two groups (WT or GE corneas). Immunohistochemistry indicated that the retrocorneal membranes were CK negative, α-SMA positive, and vimentin positive, suggesting that they were of fibrous (keratocytic) origin. Also, the membrane was Gal positive, suggesting that it is derived from pig cornea. Following pig-to-monkey corneal xenotransplantation, we report that retrocorneal membranes are derived from donor pig keratocytes. Prevention of retrocorneal membranes will be necessary to achieve successful corneal xenotransplantation.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex Mammen
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepinder K Dhaliwal
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuko Miyagawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Affiliation(s)
- Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Lacerda RP, Peña Gimenez MT, Laguna F, Costa D, Ríos J, Leiva M. Corneal grafting for the treatment of full-thickness corneal defects in dogs: a review of 50 cases. Vet Ophthalmol 2016; 20:222-231. [PMID: 27241238 DOI: 10.1111/vop.12392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe corneal grafting for the treatment of full-thickness corneal defects in dogs and to determine its effectiveness in preserving vision. METHODS A review of the medical records of dogs that underwent corneal grafting following corneal perforations (≥3 mm) at the VTH-UAB from 2002 to 2012 was carried out. RESULTS Fifty dogs of different breed, age and gender were included. Brachycephalic breeds were overrepresented (37/50;74%). All cases were unilateral, with euryblepharon being the most common concurrent ocular abnormality (20/50;40%). Full-thickness penetrating keratoplasties (FTPK) were performed in 21/50 eyes (42%) and lamellar keratoplasties (LK) in 29/50 eyes (58%). Frozen grafts (FroG) were used in 43/50 eyes (86%) and fresh homologous grafts (FreHoG) in 7/50 (14%). Of the former group, 26 were homologous (FroHoG:60%) and 17 heterologous (FroHeG:40%). A combination of topical medication (antibiotics, corticosteroids, cycloplegics, and 0.2% cyclosporine A) and systemic mycophenolate mofetil was administered. Median follow-up time was 200 days. Postsurgical complications included wound dehiscence (6/50;12%) and glaucoma (4/50;8%). Clinical signs of graft rejection were diagnosed as follows: FroHoG (13/26;50%), FroHeG (11/17;65%), FreHoG (4/7;57%), FTPK (12/21;57%), and LK (16/29;55%). Medical treatment successfully controlled graft rejection in 11/28 eyes (39%). Good anatomical outcome was achieved in 86% (43/50), of which 95% (41/43) were visual at last examination, with moderate opacification to complete transparency of the graft present in 48.2%. CONCLUSIONS Corneal grafting is an effective surgical treatment for full-thickness corneal defects in dogs. If graft rejection is present, additional medical or surgical therapy may be necessary, achieving a highly satisfactory visual outcome.
Collapse
Affiliation(s)
- Rodrigo P Lacerda
- Servei d'Oftalmologia, Fundació Hospital Clínic Veterinari, Carrer del Hospital s/n, Bellaterra, Barcelona, 08193, Spain
| | - Maria T Peña Gimenez
- Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edific V, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Fernando Laguna
- Servei d'Oftalmologia, Fundació Hospital Clínic Veterinari, Carrer del Hospital s/n, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Costa
- Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edific V, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jose Ríos
- Medical Statistics Core Facility, DIBAPS (Hospital Clínic), Barcelona, 08036, Spain
| | - Marta Leiva
- Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edific V, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
21
|
Expression of NeuGc on Pig Corneas and Its Potential Significance in Pig Corneal Xenotransplantation. Cornea 2016; 35:105-13. [PMID: 26418433 DOI: 10.1097/ico.0000000000000635] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (1) to document the lack of NeuGc expression on corneas and aortas and cultured endothelial cells [aortic endothelial cells (AECs); corneal (CECs)] of GTKO/NeuGcKO pigs, and (2) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. METHODS Wild-type (WT), GTKO, and GTKO/NeuGcKO pigs were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and human IgM and IgG binding to tissues was determined. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. RESULTS Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither humans nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared with binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than that to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. CONCLUSIONS The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide a better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas.
Collapse
|
22
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Kim MK, Hara H. Current status of corneal xenotransplantation. Int J Surg 2015; 23:255-260. [DOI: 10.1016/j.ijsu.2015.07.685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 02/09/2023]
|
24
|
Lee W, Miyagawa Y, Long C, Zhang M, Cooper DKC, Hara H. Effect of Rho-kinase Inhibitor, Y27632, on Porcine Corneal Endothelial Cell Culture, Inflammation and Immune Regulation. Ocul Immunol Inflamm 2015; 24:579-93. [PMID: 26471144 DOI: 10.3109/09273948.2015.1056534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the effect of the Rho-kinase inhibitor, Y27632, on pig corneal endothelial cell (pCEC) culture, and on inflammation and immune regulation of the responses of human cells to pCECs. METHODS pCECs were cultured with/without Y27632 to assess cell proliferation and in vitro wound healing assay. The level of MCP-1 and VEGF in pCECs stimulated with human TNF-α were measured. Proliferation of human PBMCs stimulated with pCECs, and cytokine production in human T cells, and monocyte migration after stimulation were investigated. RESULTS Y27632 promoted pCEC proliferation, prevented pCEC death, and enhanced in vitro wound healing. After stimulation, there were significantly lower levels of MCP-1 and VEGF measured in pCECs cultured with Y27632, and significantly reduced human PBMC proliferation, cytokine production, and monocyte migration. CONCLUSIONS The application of the Rho-kinase inhibitor will be beneficial when culturing pCECs, and may provide a novel therapy to reduce inflammation after corneal xenotransplantation.
Collapse
Affiliation(s)
- Whayoung Lee
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Yuko Miyagawa
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Cassandra Long
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Matthew Zhang
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - David K C Cooper
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Hidetaka Hara
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
25
|
Cooper DKC, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Expert Rev Clin Immunol 2015; 11:1379-90. [PMID: 26548357 PMCID: PMC4879962 DOI: 10.1586/1744666x.2015.1083861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The results of organ and cell allotransplantation continue to improve, but the field remains limited by a lack of deceased donor organs. Xenotransplantation, for example, between pig and human, offers unlimited organs and cells for clinical transplantation. The immune barriers include a strong innate immune response in addition to the adaptive T-cell response. The innate response has largely been overcome by the transplantation of organs from pigs with genetic modifications that protect their tissues from this response. T-cell-mediated rejection can be controlled by immunosuppressive agents that inhibit costimulation. Coagulation dysfunction between the pig and primate remains problematic but is being overcome by the transplantation of organs from pigs that express human coagulation-regulatory proteins. The remaining barriers will be resolved by the introduction of novel genetically-engineered pigs. Limited clinical trials of pig islet and corneal transplantation are already underway.
Collapse
Affiliation(s)
- David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| |
Collapse
|
26
|
Cooper DKC, Ekser B, Tector AJ. A brief history of clinical xenotransplantation. Int J Surg 2015; 23:205-210. [PMID: 26118617 DOI: 10.1016/j.ijsu.2015.06.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century, with grafts from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into elderly men, believing that the hormones produced by the testis would rejuvenate his patients. In 1963-4, when human organs were not available and dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 h. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992 he obtained patient survival for 70 days following a baboon liver transplant. The first clinical pig islet transplant was carried out by Groth in 1993. Today, genetically-modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
DIAO YUMEI, HONG JING. Feasibility and safety of porcine Descemet’s membrane as a carrier for generating tissue-engineered corneal endothelium. Mol Med Rep 2015; 12:1929-34. [DOI: 10.3892/mmr.2015.3665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
28
|
Choi HJ, Lee JJ, Kim DH, Kim MK, Lee HJ, Ko AY, Kang HJ, Park C, Wee WR. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 2015; 15:628-41. [PMID: 25676390 DOI: 10.1111/ajt.13057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/25/2023]
Abstract
The porcine cornea may be a good solution for the shortage of human donor corneas because its size and refractive properties are comparable to those of the human cornea. However, antigenic differences need to be overcome to apply xenocorneal transplantation in actual clinical practice. We aimed to investigate the feasibility of full-thickness porcine corneas as human corneal substitutes using a CD40-CD154 costimulatory pathway blocking strategy in a clinically applicable pig-to-nonhuman primate corneal transplantation model. As a result, the mean survival time of the xenocorneal grafts in recipients who received anti-CD154 antibody-based immunosuppressants (POD318 (n = 4); >933, >243, 318 and >192) was significantly longer than that in controls (POD28 (n = 3); 21, 28 and 29; p = 0.010, log-rank test). Administration of anti-CD154 antibodies markedly reduced inflammatory cellular infiltrations (predominantly CD8 T cells and macrophages) into the xenocorneal grafts and almost completely blocked xenoantigen-triggered increases in Th1-associated cytokines, chemokines and C3a in the aqueous humor. Moreover, systemic expansion of memory T cells was effectively controlled and responses of anti-Gal/donor pig-specific antibodies were considerably diminished by programmed injection of anti-CD154 antibodies. Consequently, porcine corneas might be promising human corneal substitutes when the transplantation is accompanied by potent immunosuppression such as a CD40-CD154 costimulatory pathway blockade.
Collapse
Affiliation(s)
- H J Choi
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cooper DKC, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, Schuurman HJ. Progress in pig-to-non-human primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation 2014; 21:397-419. [PMID: 25176336 DOI: 10.1111/xen.12127] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/03/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pig-to-non-human primate model is the standard choice for in vivo studies of organ and cell xenotransplantation. In 1998, Lambrigts and his colleagues surveyed the entire world literature and reported all experimental studies in this model. With the increasing number of genetically engineered pigs that have become available during the past few years, this model is being utilized ever more frequently. METHODS We have now reviewed the literature again and have compiled the data we have been able to find for the period January 1, 1998 to December 31, 2013, a period of 16 yr. RESULTS The data are presented for transplants of the heart (heterotopic and orthotopic), kidney, liver, lung, islets, neuronal cells, hepatocytes, corneas, artery patches, and skin. Heart, kidney, and, particularly, islet xenograft survival have increased significantly since 1998. DISCUSSION The reasons for this are briefly discussed. A comment on the limitations of the model has been made, particularly with regard to those that will affect progression of xenotransplantation toward the clinic.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim MK, Choi HJ, Kwon I, Pierson RN, Cooper DKC, Soulillou JP, O'Connell PJ, Vabres B, Maeda N, Hara H, Scobie L, Gianello P, Takeuchi Y, Yamada K, Hwang ES, Kim SJ, Park CG. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation 2014; 21:420-30. [PMID: 25176471 DOI: 10.1111/xen.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/20/2014] [Indexed: 11/27/2022]
Abstract
To develop an international consensus regarding the appropriate conditions for undertaking clinical trials in xenocorneal transplantation, here we review specific ethical, logistical, scientific, and regulatory issues regarding xenocorneal transplantation, and propose guidelines for conduct of clinical xenocorneal transplantation trials. These proposed guidelines are modeled on the published consensus statement of the International Xenotransplantation Association regarding recommended guidelines for conduct of clinical islet xenotransplantation. It is expected that this initial consensus statement will be revised over time in response to scientific advances in the field, and changes in the regulatory framework based on accumulating clinical experience.
Collapse
Affiliation(s)
- Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea; Xenotransplantation Research Center, Seoul National University College Of Medicine and Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee W, Miyagawa Y, Long C, Cooper DKC, Hara H. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. Int J Ophthalmol 2014; 7:587-93. [PMID: 25161926 DOI: 10.3980/j.issn.2222-3959.2014.04.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/30/2014] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate whether decellularization using different techniques can reduce immunogenicity of the cornea, and to explore the decellularized cornea as a scaffold for cultured corneal endothelial cells (CECs). Transplantation of decellularized porcine corneas increases graft transparency and survival for longer periods compared with fresh grafts. METHODS Six-month-old wild-type pig corneas were cut into 100-200 µm thickness, and then decellularized by three different methods: 1) 0.1% sodium dodecyl sulfate (SDS); 2) hypoxic nitrogen (N2); and 3) hypertonic NaCl. Thickness and transparency were assessed visually. Fresh and decellularized corneas were stained with hematoxylin/eosin (H&E), and for the presence of galactose-α1,3-galactose (Gal) and N-glycolylneuraminic acid (NeuGc, a nonGal antigen). Also, a human IgM/IgG binding assay was performed. Cultured porcine CECs were seeded on the surface of the decellularized cornea and examined after H&E staining. RESULTS All three methods of decellularization reduced the number of keratocytes in the stromal tissue by >80% while the collagen structure remained preserved. No remaining nuclei stained positive for Gal or NeuGc, and expression of these oligosaccharides on collagen was also greatly decreased compared to expression on fresh corneas. Human IgM/IgG binding to decellularized corneal tissue was considerably reduced compared to fresh corneal tissue. The cultured CECs formed a confluent monolayer on the surface of decellularized tissue. CONCLUSION Though incomplete, the significant reduction in the cellular component of the decellularized cornea should be associated with a significantly reduced in vivo immune response compared to fresh corneas.
Collapse
Affiliation(s)
- Whayoung Lee
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuko Miyagawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cassandra Long
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David K C Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
32
|
Abstract
PURPOSE The aim of this study was to investigate the distribution of antigens other than galactose-α-1,3-galactose (Gal) (non-Gal) recognized by human and rhesus monkey serum antibodies in the α-1,3-galactosyltransferase gene-knockout (GTKO) pig cornea. METHODS The distribution of non-Gal, specifically N-glycolylneuraminic acid (NeuGc), in the corneas from wild-type (WT) and GTKO pigs was identified. Corneal sections from WT and GTKO pigs were incubated with human or rhesus monkey serum to determine immunoglobulin (Ig)M and IgG binding to corneal tissue by means of fluorescent microscopy. RESULTS Strong expression of NeuGc was found in all layers of both WT and GTKO pig corneas. In both humans and monkeys, antibody binding (IgG > IgM) to GTKO was found to be weaker than that to entire WT pig corneas, but in both, most antibody binding, especially IgG, was to the epithelium. There was weak diffuse antibody binding, especially of IgG, to the corneal stroma, suggesting binding to antigens expressed on collagen. There was no or minimal binding of IgM/IgG to the corneal endothelium. CONCLUSIONS Although the cornea is avascular, antibodies in primate serum can bind to pig antigens, especially on epithelial cells and stromal collagen. Although the binding to entire GTKO corneas was weaker than that to WT corneas, deletion of the expression of NeuGc and expression of human complement-regulatory proteins in the pig cornea will be important if prolonged clinical corneal xenograft survival is to be achieved.
Collapse
|
33
|
Lamm V, Hara H, Mammen A, Dhaliwal D, Cooper DK. Corneal blindness and xenotransplantation. Xenotransplantation 2014; 21:99-114. [PMID: 25268248 PMCID: PMC4181387 DOI: 10.1111/xen.12082] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022]
Abstract
Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.
Collapse
Affiliation(s)
- Vladimir Lamm
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alex Mammen
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepinder Dhaliwal
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Fasler-Kan E, Barteneva NS, Ketterer S, Wunderlich K, Reschner A, Nurzhanova A, Flammer J, Huwyler J, Meyer P. Human cytokines activate JAK-STAT signaling pathway in porcine ocular tissue. Xenotransplantation 2013; 20:469-80. [PMID: 24289470 PMCID: PMC4235432 DOI: 10.1111/xen.12070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
Abstract
Background The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. Methods Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3–8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. Results JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. Conclusion Our study demonstrated that some types of human cytokines and interferon activate intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways.
Collapse
Affiliation(s)
- Elizaveta Fasler-Kan
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee SE, Mehra R, Fujita M, Roh DS, Long C, Lee W, Funderburgh JL, Ayares DL, Cooper DKC, Hara H. Characterization of porcine corneal endothelium for xenotransplantation. Semin Ophthalmol 2013; 29:127-35. [PMID: 23758340 DOI: 10.3109/08820538.2013.787104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Endothelial keratoplasty (EKP) has become increasingly popular in the treatment of corneal disease. However, the global shortage of human donor corneas limits clinical corneal transplantation. Genetically engineered (GE) pigs may provide an alternative source of corneas for EKP. The aim of this study was to evaluate corneal endothelial cells (CECs) from wild-type (WT) and GE pigs. METHODS Density, size of CECs, and the percentage of hexagonal cells (as a measure of heterogeneity) were measured by ex vivo confocal microscopy in corneas from WT and GE pigs of different ages - neonatal (4-5 days), young (5-15 weeks), adult (5-15 months), and old (20-42 months). α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for the human complement-regulatory protein(s), CD46 (GTKO/CD46) +/- CD55 (GTKO/CD46/CD55) were used as sources of GE corneas. RESULTS Mean CEC densities (cells/mm²) were neonatal (5968), young (3789), adult (2589), and old (2070). As with human corneas, there was an age-dependent decrease in pig CEC density and increase in pig CEC size. However, unlike human corneas, there was no correlation between the percentage of hexagonal cells (approximately 50% in all pig corneas) and age, suggesting that heterogeneity is intrinsic for pig corneas. Genetic modification did not affect CEC density, size, or morphology compared to WT pigs. CONCLUSION Because of the availability of young pigs and their greater CEC density (and the protection afforded against the human immune response), GE pigs could provide an unlimited source of corneas for clinical EKP.
Collapse
Affiliation(s)
- Seung Eun Lee
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim MK, Lee JJ, Choi HJ, Kwon I, Lee H, Song JS, Kim MJ, Chung ES, Wee WR, Park CG, Kim SJ. Ethical and regulatory guidelines in clinical trials of xenocorneal transplantation in Korea; the Korean xenocorneal transplantation consensus statement. Xenotransplantation 2013; 20:209-18. [DOI: 10.1111/xen.12036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sang Joon Kim
- Xenotransplantation Research Center and Clinical Research Institute; Seoul National University Hospital; Seoul; Korea
| |
Collapse
|
37
|
Fujita M, Mehra R, Lee SE, Roh DS, Long C, Funderburgh JL, Ayares DL, Cooper DKC, Hara H. Comparison of proliferative capacity of genetically-engineered pig and human corneal endothelial cells. Ophthalmic Res 2012; 49:127-38. [PMID: 23258190 DOI: 10.1159/000342978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/29/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE The possibility of providing cultured corneal endothelial cells (CECs) for clinical transplantation has gained much attention. However, the worldwide need for human (h) donor corneas far exceeds supply. The pig (p) might provide an alternative source. The aim of this study was to compare the proliferative capacity of CECs from wild-type (WT) pigs, genetically-engineered (GE) pigs, and humans. METHODS The following CECs were cultured: hCECs from donors (i) ≤36 years (young), (ii) ≥49 years (old), and WT pCECs from (iii) neonatal (<5 days), (iv) young (<2 months), and (v) old (>20 months) pigs, and CECs from young (vi) GE pigs (GTKO/CD46 and GTKO/CD46/CD55). Proliferative capacity of CECs was assessed by direct cell counting over 15 days of culture and by BrdU assay. Cell viability during culture was assessed by annexin V staining. The MTT assay assessed cell metabolic activity. RESULTS There was significantly lower proliferative capacity of old CECs than of young CECs (p < 0.01) in both pigs and humans. There was no significant difference in proliferative capacity/metabolic activity between young pCECs and young hCECs. However, there was a significantly higher percentage of cell death in hCECs compared to pCECs during culture (p < 0.01). Young GE pCECs showed similar proliferative capacity/cell viability/metabolic activity to young WT pCECs. CONCLUSIONS Because of the greater availability of young pigs and the excellent proliferative capacity of cultured GE pCECs, GE pigs could provide a source of CECs for clinical transplantation.
Collapse
Affiliation(s)
- Minoru Fujita
- Department of Surgery, Thomas E. Starzl Transplantation Institute University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Koshika T, Phelps C, Fang J, Lee SE, Fujita M, Ayares D, Cooper DKC, Hara H. Relative efficiency of porcine and human cytotoxic T-lymphocyte antigen 4 immunoglobulin in inhibiting human CD4+ T-cell responses co-stimulated by porcine and human B7 molecules. Immunology 2012; 134:386-97. [PMID: 22043861 DOI: 10.1111/j.1365-2567.2011.03496.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
α1,3-Galactosyltransferase gene-knockout pigs transgenic for porcine cytotoxic T-lymphocyte antigen 4 immunoglobulin (pCTLA4-Ig) have been produced to reduce T-cell-mediated rejection following xenotransplantation. The level of soluble pCTLA4-Ig in their blood was greatly in excess of the therapeutic level in patients, rendering the pigs immune-incompetent. Soluble pCTLA4-Ig produced by these transgenic pigs was evaluated for binding to porcine and human (h) B7 molecules, and for its inhibitory effect on allogeneic and xenogeneic human T-cell responses. Porcine CTLA4-Ig-expressing peripheral blood mononuclear cells (PBMCs) and aortic endothelial cells (AECs) were evaluated for their direct inhibitory effect on hCD4+ T-cell responses. Soluble pCTLA4-Ig and purified hCTLA4-Ig showed similar binding to pB7 molecules, but pCTLA4-Ig showed significantly less binding to hB7 molecules. The pCTLA4-Ig and hCTLA4-Ig inhibited the response of hCD4+ T cells to pAECs equally, but pCTLA4-Ig was less successful in inhibiting the human allogeneic response. The hCD4+ T-cell response to PBMCs from pCTLA4-Ig pigs was significantly lower than that of non-pCTLA4-Ig pigs. Although pCTLA4-Ig was detected in the cytoplasm of pCTLA4-Ig-expressing pAECs, only a minimal level of soluble pCTLA4-Ig was detected in the supernatant during culture, and pCTLA4-Ig-expressing pAECs did not inhibit the xenogeneic direct human T-cell response. High-level tissue-specific production of pCTLA4-Ig may be required for sufficient immunosuppression for organ or cell (e.g., islets) transplantation.
Collapse
Affiliation(s)
- Tadatsura Koshika
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cross-species transplantation (xenotransplantation) offers the prospect of an unlimited supply of organs and cells for clinical transplantation, thus resolving the critical shortage of human tissues that currently prohibits a majority of patients on the waiting list from receiving transplants. Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into aged men whose "zest for life" was deteriorating, believing that the hormones produced by the testis would rejuvenate his patients. Following the pioneering surgical work of Carrel, who developed the technique of blood vessel anastomosis, numerous attempts at nonhuman primate organ transplantation in patients were carried out in the 20th century. In 1963-1964, when human organs were not available and chronic dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 hours. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992, he obtained patient survival for 70 days following a baboon liver transplant. With the advent of genetic engineering and cloning technologies, pigs are currently available with a number of different manipulations that protect their tissues from the human immune response, resulting in increasing pig graft survival in nonhuman primate models. Genetically modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center. Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Hara H, Koike N, Long C, Piluek J, Roh DS, SundarRaj N, Funderburgh JL, Mizuguchi Y, Isse K, Phelps CJ, Ball SF, Ayares DL, Cooper DKC. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs. Invest Ophthalmol Vis Sci 2011; 52:5278-86. [PMID: 21596821 DOI: 10.1167/iovs.10-6947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To compare the in vitro human humoral and cellular immune responses to wild-type (WT) pig corneal endothelial cells (pCECs) with those to pig aortic endothelial cells (pAECs). These responses were further compared with CECs from genetically engineered pigs (α1,3-galactosyltransferase gene-knockout [GTKO] pigs and pigs expressing a human complement-regulatory protein [CD46]) and human donors. METHODS The expression of Galα1,3Gal (Gal), swine leukocyte antigen (SLA) class I and class II on pCECs and pAECs, with or without activation by porcine IFN-γ, was tested by flow cytometry. Pooled human serum was used to measure IgM/IgG binding to and complement-dependent cytotoxicity (CDC) to cells from WT, GTKO, and GTKO/CD46 pigs. The human CD4(+) T-cell response to cells from WT, GTKO, GTKO/CD46 pigs and human was tested by mixed lymphocyte reaction (MLR). RESULTS There was a lower level of expression of the Gal antigen and of SLA class I and II on the WT pCECs than on the WT pAECs, resulting in less antibody binding and reduced human CD4(+) T-cell proliferation. However, lysis of the WT pCECs was equivalent to that of the pAECs, suggesting more susceptibility to injury. There were significantly weaker humoral and cellular responses to the pCECs from GTKO/CD46 pigs compared with the WT pCECs, although the cellular response to the GTKO/CD46 pCECs was greater than to the human CECs. CONCLUSIONS These data provide the first report of in vitro investigations of CECs from genetically engineered pigs and suggest that pig corneas may provide an acceptable alternative to human corneas for clinical transplantation.
Collapse
Affiliation(s)
- Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Choi HJ, Kim MK, Lee HJ, Jeong SH, Kang HJ, Park CS, Park CG, Joon Kim S, Wee WR. Effect of αGal on corneal xenotransplantation in a mouse model. Xenotransplantation 2011; 18:176-82. [DOI: 10.1111/j.1399-3089.2011.00641.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
|
44
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update June-October 2010. Xenotransplantation 2011; 17:481-8. [PMID: 21158949 DOI: 10.1111/j.1399-3089.2010.00615.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|