1
|
Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021; 13:239-257. [PMID: 33751396 PMCID: PMC7943334 DOI: 10.1007/s13238-021-00831-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
2
|
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends Endocrinol Metab 2020; 31:448-458. [PMID: 32396845 PMCID: PMC7987328 DOI: 10.1016/j.tem.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Traditional methods for diabetes management require constant and tedious glucose monitoring (GM) and insulin injections, impacting quality of life. The global diabetic population is expected to increase to 439 million, with approximately US$490 billion in healthcare expenditures by 2030, imposing a significant burden on healthcare systems worldwide. Recent advances in nanotechnology have emerged as promising alternative strategies for the management of diabetes. For example, implantable nanosensors are being developed for continuous GM, new nanoparticle (NP)-based imaging approaches that quantify subtle changes in β cell mass can facilitate early diagnosis, and nanotechnology-based insulin delivery methods are being explored as novel therapies. Here, we provide a holistic summary of this rapidly advancing field compiling all aspects pertaining to the management of diabetes.
Collapse
Affiliation(s)
- Luke R Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Devleena Das
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Raghavendra G Mirmira
- The University of Chicago, Kovler Diabetes Center and the Department of Medicine, Chicago, IL 60637, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Zhang F, Ma D, Liu T, Liu YH, Guo J, Song J, Wu Q, Pan Y, Zhang Y, Guo C, Teng C, Jin L. Expansion and Maintenance of CD133-Expressing Pancreatic Ductal Epithelial Cells by Inhibition of TGF-β Signaling. Stem Cells Dev 2019; 28:1236-1252. [PMID: 31311463 DOI: 10.1089/scd.2019.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restoring β-cell mass by the transplantation of pancreatic islets is an effective diabetes treatment, but it is limited by the shortage of donor organs. CD133-expressing pancreatic ductal epithelial cells (PDECs) have the ability to generate insulin-producing cells. The expansion of these cells is dependent on extrinsic niche factors, but few of those signals have been identified. In this study, CD133-expressing PDECs were purified by sorting from adult wild-type C57BL/6 mice and TGFβRIInull/null mice. Furthermore, using immunofluorescence and transplantation assays, we found that the inhibition of the transforming growth factor-β (TGF-β) pathway promoted the expansion of CD133-expressing PDECs for many generations and maintained the ability of CD133-expressing PDECs to generate insulin-producing cells. Moreover, western blot, qRT-PCR, and dual luciferase assays using TGF-β inhibitors were performed to identify the mechanisms by which TGF-β signaling regulates proliferation and differentiation. The results showed that the inhibition of TGF-β signaling enhanced Id2 binding to the promoter region of the cell proliferation repressor p16 and promoted the expansion of CD133-expressing PDECs, and the increased Id2 binding to NeuroD1 decreased the transcription of Pax6 to maintain CD133-expressing PDECs in the Pdx1-expression stage. Taken together, the effect of TGF-β antagonists on CD133-expressing PDECs reveals a novel paradigm of signaling that explains the balance between the expansion and differentiation of pancreatic duct epithelial progenitors.
Collapse
Affiliation(s)
- Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Dongshen Ma
- Department of Pathology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingsheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu Hong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiamin Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiong Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
5
|
Gallego-Perez D, Higuita-Castro N, Reen RK, Palacio-Ochoa M, Sharma S, Lee LJ, Lannutti JJ, Hansford DJ, Gooch KJ. Micro/nanoscale technologies for the development of hormone-expressing islet-like cell clusters. Biomed Microdevices 2012; 14:779-89. [PMID: 22573223 DOI: 10.1007/s10544-012-9657-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-expressing islet-like cell clusters derived from precursor cells have significant potential in the treatment of type-I diabetes. Given that cluster size and uniformity are known to influence islet cell behavior, the ability to effectively control these parameters could find applications in the development of anti-diabetic therapies. In this work, we combined micro and nanofabrication techniques to build a biodegradable platform capable of supporting the formation of islet-like structures from pancreatic precursors. Soft lithography and electrospinning were used to create arrays of microwells (150-500 μm diameter) structurally interfaced with a porous sheet of micro/nanoscale polyblend fibers (~0.5-10 μm in cross-sectional size), upon which human pancreatic ductal epithelial cells anchored and assembled into insulin-expressing 3D clusters. The microwells effectively regulated the spatial distribution of the cells on the platform, as well as cluster size, shape and homogeneity. Average cluster cross-sectional area (~14000-17500 μm(2)) varied in proportion to the microwell dimensions, and mean circularity values remained above 0.7 for all microwell sizes. In comparison, clustering on control surfaces (fibers without microwells or tissue culture plastic) resulted in irregularly shaped/sized cell aggregates. Immunoreactivity for insulin, C-peptide and glucagon was detected on both the platform and control surfaces; however, intracellular levels of C-peptide/cell were ~60 % higher on the platform.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang PX, Yu ZW, Wong S, Jin TR. Nkx6.2 synergizes with Cdx-2 in stimulating proglucagon gene expression. World J Diabetes 2011; 2:66-74. [PMID: 21691557 PMCID: PMC3116010 DOI: 10.4239/wjd.v2.i5.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate whether the transactivator of the proglucagon gene (Gcg), Cdx-2, synergizes with other transcription factors in stimulating Gcg expression and the trans-differentiation of Gcg-expressing cells.
METHODS: We conducted affinity chromatography to identify proteins that interact with Cdx-2, using GST-tagged Cdx-2 against cell lysates from pancreatic InR1-G9 and intestinal GLUTag cell lines. This was followed by a mass-spectrometry analysis. From a potential Cdx-2 interaction protein identified, we examined its expression in pancreatic and gut endocrine cells, confirmed its interaction with Cdx-2 by GST-pull down and determined its effect in provoking Gcg expression in cell lines that do not express endogenous Gcg.
RESULTS: We identified 18 potential Cdx-2 interacting proteins. One of them is Nkx6.2. This homeodomain (HD) protein is expressed in pancreatic α and intestinal endocrine L cells but not in insulin producing cell lines, including In111. Nkx6.2, but not Nkx6.1, was shown to interact with Cdx-2, detected by GST-pull down. Furthermore, Nkx6.2 was found to synergize with Cdx-2 in provoking Gcg expression when they were ectopically expressed in the In111 cell line. Finally, when Cdx-2 and Nkx6.2 were co-transfected into the undifferentiated rat intestinal IEC-6 cell line, it produced detectable amount of Gcg mRNA.
CONCLUSION: Cdx-2 recruits Nkx6.2 in exerting its effect in stimulating Gcg expression. Our observations further support the notion that multiple HD proteins, including Cdx-2 and Nkx6.2, are involved in the regulation of Gcg expression and the genesis of Gcg-producing cells.
Collapse
Affiliation(s)
- Pei-Xiang Wang
- Pei-Xiang Wang, Zhi-Wen Yu, Tian-Ru Jin, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | |
Collapse
|
7
|
Davani B, Ariely S, Ikonomou L, Oron Y, Gershengorn MC. Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med 2008; 13:2570-2581. [PMID: 19175683 DOI: 10.1111/j.1582-4934.2008.00570.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We showed previously that undifferentiated, proliferating human islet-derived precursor cells (hIPCs) are a type of mesenchymal stem/stromal cell (MSC) that can be induced by serum deprivation to form clusters and ultimately differentiate in vitro to endocrine cells. We also demonstrated that partially differentiated hIPC clusters, when implanted under the kidney capsules of mice, continued to differentiate in vivo into hormone-producing cells. However, we noted that not all hIPC preparations yielded insulin-secreting cells in vivo and that in some animals no hormone-expressing cells were found. This suggested that the implanted cells were not always irreversibly committed to further differentiation and may even de-differentiate to a mesenchymal phenotype. In this study, we show that human cells with a mesenchymal phenotype are indeed found in the grafts of mice implanted with hIPCs in epithelial cell clusters (ECCs), which are obtained after 4-day in vitro culture of hIPCs in serum-free medium (SFM); mesenchymal cells were predominant in some grafts. We could mimic the transition of ECCs to de-differentiated mesenchymal cells in vitro by exposure to foetal bovine serum (FBS) or mouse serums, and to a significantly lesser extent to human serum. In a complementary series of experiments, we show that mouse serum and FBS are more effective stimulants of mesenchymal hIPC migration than is human serum. We found that proliferation was not needed for the transition from ECCs to de-differentiated cells because mitomycin-treated hIPCs that could not proliferate underwent a similar transition. Lastly, we show that cells exhibiting a mesenchymal phenotype can be found in grafts of adult human islets in mice. We conclude that epithelial-to-mesenchymal transition (EMT) of cells in hIPC ECCs can occur following implantation in mice. This potential for EMT of human islets or differentiated precursor cells must be considered in strategies for cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Behrous Davani
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sahar Ariely
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Laertis Ikonomou
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoram Oron
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Marvin C Gershengorn
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Denner L, Urban RJ. Critical issues for engineering cord blood stem cells to produce insulin. Expert Opin Biol Ther 2008; 8:1251-4. [PMID: 18694347 DOI: 10.1517/14712598.8.9.1251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND/OBJECTIVES The objectives of using cord blood stem cells for treating type 1 diabetes are simple in principle yet complex in biological and molecular mechanisms. These are defined by the complexity of the insulin-producing unit of the pancreas, the islet. Islets are composed of various cell types that arise from diverse lineages and communicate by hormones, growth factors and small-molecule mediators. These processes are regulated by integration of signal transduction pathways. While advances have been made to engineer umbilical cord blood stem cells to produce insulin, these studies only illuminate the potential of such cells to fulfil a necessary, but not sufficient, requirement for transplantation. RESULTS/CONCLUSIONS The challenges ahead demand detailed understanding of molecular mechanisms to move from an opportunistic, phenotypic approach to transplantation and amelioration of blood glucose, to an orderly and logical approach to a biologically and medically meaningful solution. The issues include expansion to generate large numbers of cells, self-renewal to regulate the destiny of cord blood stem cells to repopulate the hematopoietic system, and multipotency of stem cells to generate the distinct cell types of an islet.
Collapse
|
9
|
Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 2007; 40:367-80. [PMID: 17531081 PMCID: PMC6496474 DOI: 10.1111/j.1365-2184.2007.00439.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES In this study, we investigated the potential of umbilical cord blood stem cell lineages to produce C-peptide and insulin. MATERIALS AND METHODS Lineage negative, CD133+ and CD34+ cells were analyzed by flow cytometry to assess expression of cell division antigens. These lineages were expanded in culture and subjected to an established protocol to differentiate mouse embryonic stem cells (ESCs) toward the pancreatic phenotype. Phase contrast and fluorescence immunocytochemistry were used to characterize differentiation markers with particular emphasis on insulin and C-peptide. RESULTS All 3 lineages expressed SSEA-4, a marker previously reported to be restricted to the ESC compartment. Phase contrast microscopy showed all three lineages recapitulated the treatment-dependent morphological changes of ESCs as well as the temporally restricted expression of nestin and vimentin during differentiation. After engineering, each isolate contained both C-peptide and insulin, a result also obtained following a much shorter protocol for ESCs. CONCLUSIONS Since C-peptide can only be derived from de novo synthesis and processing of pre-proinsulin mRNA and protein, we conclude that these results are the first demonstration that human umbilical cord blood-derived stem cells can be engineered to engage in de novo synthesis of insulin.
Collapse
Affiliation(s)
- L Denner
- Stark Diabetes Center and McCoy Diabetes Mass Spectrometry Research Laboratory, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rolletschek A, Kania G, Wobus AM. Generation of pancreatic insulin-producing cells from embryonic stem cells - 'proof of principle', but questions still unanswered. Diabetologia 2006; 49:2541-5. [PMID: 17047917 DOI: 10.1007/s00125-006-0441-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 08/28/2006] [Indexed: 01/30/2023]
Affiliation(s)
- A Rolletschek
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
11
|
|
12
|
Ta M, Choi Y, Atouf F, Park CH, Lumelsky N. The defined combination of growth factors controls generation of long-term-replicating islet progenitor-like cells from cultures of adult mouse pancreas. Stem Cells 2006; 24:1738-49. [PMID: 16556710 DOI: 10.1634/stemcells.2005-0367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Application of pancreatic islet transplantation to treatment of diabetes is severely hampered by the inadequate islet supply. This problem could in principle be overcome by generating islet cells from adult pancreas in vitro. Although it is possible to obtain replicating cells from cultures of adult pancreas, these cells, when significantly expanded in vitro, progressively lose pancreatic-specific gene expression, including that of a "master" homeobox transcription factor Pdx1. Here we show for the first time that long-term proliferating islet progenitor-like cells (IPLCs) stably expressing high levels of Pdx1 and other genes that control early pancreatic development can be derived from cultures of adult mouse pancreas under serum-free defined culture conditions. Moreover, we show that cells derived thus can be maintained in continuous culture for at least 6 months without any substantial loss of early pancreatic phenotype. Upon growth factor withdrawal, the IPLCs organize into cell clusters and undergo endocrine differentiation of various degrees in a line-dependent manner. We propose that our experimental strategy will provide a framework for developing efficient approaches for ex vivo expansion of islet cell mass.
Collapse
Affiliation(s)
- Malancha Ta
- Islet and Autoimmunity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Teague WJ, Rowan-Hull AM, Jayanthi NVG, Johnson PRV. The competency of foregut mesenchyme in islet mesenchyme-to-epithelial transition during embryonic development. J Pediatr Surg 2006; 41:347-51. [PMID: 16481249 DOI: 10.1016/j.jpedsurg.2005.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND/PURPOSE Potential for curative stem-cell treatments of juvenile-onset diabetes has focussed research into pancreatic islet development. Islets were previously thought to originate solely from embryonic pancreatic epithelium, but we have demonstrated that islets can originate from mesenchyme, that is, islet mesenchyme-to-epithelial transition. The aim of this study was to establish the competence of foregut mesenchyme during mesenchymal islet development. METHODS Embryonic chick pancreatic epithelium of gestational stage Hamburger-Hamilton (HH) 22 (J Morphol. 1951;88:49-92) was combined with quail stomach mesenchyme of increasing gestation (stage HH22 [n = 6], HH26 [n = 6], HH28 [n = 4], or HH31 [n = 6]). Recombinants were cultured and analysed by immunocytochemistry for coexpression of insulin and quail-specific antigen to determine the embryonic origin of islets. RESULTS Recombinants constructed using stage HH22 mesenchyme yielded 34 islets, of which 35% were mesenchymal. However, when recombinants were constructed using stage HH26 mesenchyme, 24% of 25 islets were mesenchymal. When using mesenchyme, 13% of 15 islets were mesenchymal. All islets (n = 35) in recombinants constructed using stage HH31 mesenchyme were epithelial derived. Islet mesenchyme-to-epithelial transition diminished significantly with increasing mesenchymal gestational stage (P = .002). CONCLUSIONS These data show foregut mesenchyme is competent to form islets between stages HH22 and HH28. Developmental competence of foregut mesenchyme in islet mesenchyme-to-epithelial transition diminishes as gestation increases. This may have important implications for identifying stem cells to treat juvenile-onset diabetes.
Collapse
Affiliation(s)
- Warwick J Teague
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Bodnar CA, Sen A, Kallos MS, Behie LA, Petropavlovskaia M, Rosenberg L. Characterization of human islet-like structures generated from pancreatic precursor cells in culture. Biotechnol Bioeng 2006; 93:980-8. [PMID: 16345100 DOI: 10.1002/bit.20801] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study addresses the characterization of human islet-like structures generated from a newly discovered sparse population of precursor cells (Petropavlovskaia and Rosenberg, 2002) in the human pancreas. These cells may be progenitor cells capable of producing pancreatic cells suitable for the treatment of type 1 diabetes. The cells were cultured successfully in non-adherent stationary cultures and yielded, as an important first step, a 1.9-fold expansion in a serum-free medium developed specifically for this cell type. This expanded population grew as pancreatic cell aggregates, which were analyzed for islet-like characteristics. Specifically, through RT-PCR analyses and functionality assays, we show that cells within the population expressed all four of the endocrine hormone genes and proteins (insulin, glucagon, somatostatin, pancreatic polypeptide). As well, the expanded pancreatic precursor cell population exhibited glucose responsiveness although the produced cells appeared to be still primitive in nature.
Collapse
Affiliation(s)
- Cheryl A Bodnar
- Pharmaceutical Production Research Facility (PPRF), SCHULICH School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|