1
|
Carbonara M, Ferrari E, Birg T, Punzi V, Bichi F, Lazzari B, Palmaverdi V, Bottino N, Ortolano F, Zoerle T, Conte G, Stocchetti N, Zanier ER. Suspected intracranial hypertension in COVID-19 patients with severe respiratory failure. PLoS One 2024; 19:e0310077. [PMID: 39298371 PMCID: PMC11412631 DOI: 10.1371/journal.pone.0310077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND COVID-19 patients may exhibit neurological symptoms due to direct viral damage, systemic inflammatory syndrome, or treatment side effects. Mechanical ventilation in patients with severe respiratory failure often requires sedation and neuromuscular blockade, hindering thorough clinical examinations. This study aimed to investigate neurological involvement through clinical and noninvasive techniques and to detect signs of intracranial hypertension in these patients. METHOD We conducted a prospective observational study on mechanically ventilated COVID-19 adult patients admitted to our ICU, following standard of care protocols for ventilation and permissive hypercapnia. Data were collected at three time points: admission day (T1), day seven (T7), and day fourteen (T14). At each time point, patients underwent multimodal noninvasive neurological monitoring, including clinical examination, pupillary reactivity, transcranial color doppler of the middle cerebral artery (MCA), and optic nerve sheath diameter (ONSD) assessed via ultrasound (US). Head computer tomography (CT) was performed at T1 and T14. A limited subset of patients had a follow-up examination six months after ICU discharge. RESULTS Seventy-nine patients were recruited; most were under deep sedation and neuromuscular blockade at T1. Pupillary size, symmetry, and reactivity were normal, as was the MCA mean velocity. However, ONSD, assessed by both US and CT, appeared enlarged, suggesting raised intracranial pressure (ICP). In a subgroup of 12 patients, increased minute ventilation was associated with a significant decrease in US-ONSD, corresponding to a drop in paCO2. At follow-up, twelve patients showed no long-term neurological sequelae, and US-ONSD was decreased in all of them. DISCUSSION AND CONCLUSIONS In this cohort, enlarged ONSD was detected during non-invasive neurological monitoring, suggesting a raised ICP, with hypercapnia playing a prominent role. Further studies are needed to explore ONSD behavior in other samples of mechanically ventilated, hypercapnic patients.
Collapse
Affiliation(s)
- Marco Carbonara
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Ferrari
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tatiana Birg
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | - Nicola Bottino
- Department of Anesthesia and Critical Care, General Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabrizio Ortolano
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Giorgio Conte
- University of Milan, Milan, Italy
- Department of Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nino Stocchetti
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|
2
|
Schaller SJ, Scheffenbichler FT, Bein T, Blobner M, Grunow JJ, Hamsen U, Hermes C, Kaltwasser A, Lewald H, Nydahl P, Reißhauer A, Renzewitz L, Siemon K, Staudinger T, Ullrich R, Weber-Carstens S, Wrigge H, Zergiebel D, Coldewey SM. Guideline on positioning and early mobilisation in the critically ill by an expert panel. Intensive Care Med 2024; 50:1211-1227. [PMID: 39073582 DOI: 10.1007/s00134-024-07532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
A scientific panel was created consisting of 23 interdisciplinary and interprofessional experts in intensive care medicine, physiotherapy, nursing care, surgery, rehabilitative medicine, and pneumology delegated from scientific societies together with a patient representative and a delegate from the Association of the Scientific Medical Societies who advised methodological implementation. The guideline was created according to the German Association of the Scientific Medical Societies (AWMF), based on The Appraisal of Guidelines for Research and Evaluation (AGREE) II. The topics of (early) mobilisation, neuromuscular electrical stimulation, assist devices for mobilisation, and positioning, including prone positioning, were identified as areas to be addressed and assigned to specialist expert groups, taking conflicts of interest into account. The panel formulated PICO questions (addressing the population, intervention, comparison or control group as well as the resulting outcomes), conducted a systematic literature review with abstract screening and full-text analysis and created summary tables. This was followed by grading the evidence according to the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence and a risk of bias assessment. The recommendations were finalized according to GRADE and voted using an online Delphi process followed by a final hybrid consensus conference. The German long version of the guideline was approved by the professional associations. For this English version an update of the systematic review was conducted until April 2024 and recommendation adapted based on new evidence in systematic reviews and randomized controlled trials. In total, 46 recommendations were developed and research gaps addressed.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | | | | | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Ulm University, Ulm, Germany
- Department of Anaesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julius J Grunow
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Uwe Hamsen
- Ruhr University Bochum, Bochum, Germany
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Carsten Hermes
- Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg), Hamburg, Germany
- Akkon-Hochschule für Humanwissenschaften, Berlin, Germany
| | - Arnold Kaltwasser
- Academy of the District Hospitals Reutlingen, Kreiskliniken Reutlingen, Reutlingen, Germany
| | - Heidrun Lewald
- Department of Anaesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Nydahl
- University Hospital of Schleswig-Holstein, Kiel, Germany
- Institute of Nursing Science and Development, Paracelsus Medical University, Salzburg, Austria
| | - Anett Reißhauer
- Department of Rehabilitation Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Renzewitz
- Department of Physiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karsten Siemon
- Department of Pneumology, Fachkrankenhaus Kloster Grafschaft, Schmallenberg, Germany
| | - Thomas Staudinger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Center Vienna, Vienna, Austria
| | - Steffen Weber-Carstens
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Hermann Wrigge
- Department of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital, Halle, Germany
- Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.
- Septomics Research Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
3
|
Karabulut M, Uslu HS. Effect of sleeping position on cardiac output, pulmonary pressure, and superior vena cava flow in healthy term infants. Pediatr Neonatol 2024; 65:229-236. [PMID: 37973502 DOI: 10.1016/j.pedneo.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Although the mechanism of action in newborns is unknown, sleep positioning is associated with many pathophysiological events. This study aimed to compare the effects of supine and prone sleeping positions on cardiac output (CO), systolic pulmonary arterial pressure (SPAP), and superior vena cava (SVC) flow in healthy newborns. METHODS In the first 24-72 h of life, 40 healthy term newborns born in the same hospital were included in this prospective, cross-sectional, observational study. CO, SVC flow, and SPAP values of newborns in the supine and prone sleeping positions were calculated using echocardiographic examination. The measurements were statistically compared. RESULTS In the supine sleeping position, CO, SVC flow, and SPAP were 235.00 (193.07-283.30) ml/kg/min, 92.80 (77.82-121.87) ml/kg/min, and 27.85 (24.70-30.48) mmHg. In the prone sleeping position, CO, SVC flow, and SPAP were measured as 195.35 (166.00-229.40) ml/kg/min, 67.25 (51.82-96.66) ml/kg/min, 31.60 (28.45-37.20) mmHg, respectively. Depending on sleeping position, these variables were significantly different between the groups. CONCLUSION SVC flow and CO decreased in the prone sleeping position compared to the supine sleeping position in healthy newborns, whereas SPAP increased. The different hemodynamic effects of sleeping position on the cardiac, pulmonary, and nervous systems should be considered as flow and pressure changes are important in newborns.
Collapse
Affiliation(s)
- Muhammed Karabulut
- Department of Paediatric Cardiology, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey.
| | - Hasan Sinan Uslu
- Department of Neonatal İntensive Care, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
4
|
Elmaleh Y, Yavchitz A, Léguillier T, Squara PA, Palpacuer C, Grégoire C. Feasibility of Prone Positioning for Brain-injured Patients with Severe Acute Respiratory Distress Syndrome: A Systematic Review and Pilot Study (ProBrain). Anesthesiology 2024; 140:495-512. [PMID: 38088786 DOI: 10.1097/aln.0000000000004875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
BACKGROUND Prone position is a key component to treat hypoxemia in patients with severe acute respiratory distress syndrome. However, most studies evaluating it exclude patients with brain injuries without any medical evidence. METHODS This study includes a systematic review to determine whether brain-injured patients were excluded in studies evaluating prone position on acute respiratory distress syndrome; a prospective study including consecutive brain-injured patients needing prone position. The primary endpoint was the evaluation of cerebral blood flow using transcranial Doppler after prone positioning. Secondary outcomes were intracranial pressure, cerebral perfusion pressure, and tissue oxygen pressure. RESULTS From 8,183 citations retrieved, 120 studies were included in the systematic review. Among them, 90 studies excluded brain-injured patients (75%) without any justification, 16 included brain-injured patients (4 randomized, 7 nonrandomized studies, 5 retrospective), and 14 did not retrieve brain-injured data. Eleven patients were included in the authors' pilot study. No reduction of cerebral blood flow surrogates was observed during prone positioning, with diastolic speed values (mean ± SD) ranging from 37.7 ± 16.2 cm/s to 45.2 ± 19.3 cm/s for the right side (P = 0.897) and 39.6 ± 18.2 cm/s to 46.5 ± 21.3 cm/s for the left side (P = 0.569), and pulsatility index ranging from 1.14 ± 0.31 to 1.0 ± 0.32 for the right side (P = 0.145) and 1.14 ± 0.31 to 1.02 ± 0.2 for the left side (P = 0.564) before and during prone position. CONCLUSIONS Brain-injured patients are largely excluded from studies evaluating prone position in acute respiratory distress syndrome. However, cerebral blood flow seems not to be altered considering increasing of mean arterial pressure during the session. Systematic exclusion of brain-injured patients appears to be unfounded, and prone position, while at risk in brain-injured patients, should be evaluated on these patients to review recommendations, considering close monitoring of neurologic and hemodynamic parameters. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yoann Elmaleh
- Intensive Care Unit, Rothschild Foundation Hospital, Paris, France; Quincy Anesthesiology, Private Hospital Claude Galien, Boussy Saint Antoine, France
| | - Amélie Yavchitz
- Clinical Research Department, Rothschild Foundation Hospital, Paris, France
| | - Teddy Léguillier
- Clinical Research Department, Rothschild Foundation Hospital, Paris, France
| | | | - Clément Palpacuer
- Clinical Research Department, Rothschild Foundation Hospital, Paris, France
| | - Charles Grégoire
- Intensive Care Unit, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
5
|
Leppert J, Ditz C, Souayah N, Behrens C, Tronnier VM, Küchler J. Limitations of prone positioning in patients with aneurysmal subarachnoid hemorrhage and concomitant respiratory failure. Clin Neurol Neurosurg 2023; 232:107878. [PMID: 37423091 DOI: 10.1016/j.clineuro.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Prone positioning (PP) is an established treatment modality for respiratory failure. After aneurysmal subarachnoid hemorrhage (aSAH), PP is rarely performed considering the risk of intracranial hypertension. The aim of this study was to analyze the effects of PP on intracranial pressure (ICP), cerebral perfusion pressure (CPP) and cerebral oxygenation following aSAH. PATIENTS AND METHODS Demographic and clinical data of aSAH patients admitted over a 6-year period and treated with PP due to respiratory insufficiency were retrospectively analyzed. ICP, CPP, brain tissue oxygenation (pBrO2), respiratory parameters and ventilator settings were analyzed before and during PP. RESULTS Thirty patients receiving invasive multimodal neuromonitoring were included. Overall, 97 PP sessions were performed. Mean arterial oxygenation and pBrO2 increased significantly during PP. We found a significant increase in median ICP compared to the baseline level in supine position. No significant changes in CPP were observed. Five PP sessions had to be terminated early due to medically refractory ICP-crisis. The affected patients were younger (p = 0.02) with significantly higher baseline ICP values (p = 0.009). Baseline ICP correlates significantly (p < 0.001) with ICP 1 h (R: 0.57) and 4 h (R: 0.55) after onset of PP. CONCLUSION PP in aSAH patients with respiratory insufficiency is an effective therapeutic option improving arterial and global cerebral oxygenation without compromising CPP. The significant increase in ICP was moderate in most sessions. However, as some patients experience intolerable ICP crises during PP, continuous ICP-Monitoring is considered mandatory. Patients with elevated baseline ICP and reduced intracranial compliance should not be considered for PP.
Collapse
Affiliation(s)
- Jan Leppert
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Claudia Ditz
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Noura Souayah
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Carianne Behrens
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Volker M Tronnier
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jan Küchler
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, Derdeyn CP, Du R, Hänggi D, Hetts SW, Ifejika NL, Johnson R, Keigher KM, Leslie-Mazwi TM, Lucke-Wold B, Rabinstein AA, Robicsek SA, Stapleton CJ, Suarez JI, Tjoumakaris SI, Welch BG. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023; 54:e314-e370. [PMID: 37212182 DOI: 10.1161/str.0000000000000436] [Citation(s) in RCA: 167] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AIM The "2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage" replaces the 2012 "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage." The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage. METHODS A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate. Structure: Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients' and their families' and caregivers' interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
Collapse
|
7
|
Demir U, Taşkın Ö, Yılmaz A, Soylu VG, Doğanay Z. Does prolonged prone position affect intracranial pressure? prospective observational study employing Optic nerve sheath diameter measurements. BMC Anesthesiol 2023; 23:79. [PMID: 36918795 PMCID: PMC10012287 DOI: 10.1186/s12871-023-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Our aim in this observational prospective study is to determine whether the prone position has an effect on intracranial pressure, by performing ultrasound-guided ONSD (Optic Nerve Sheath Diameter) measurements in patients with acute respiratory distress syndrome (ARDS) ventilated in the prone position. METHODS Patients hospitalized in the intensive care unit with a diagnosis of ARDS who were placed in the prone position for 24 h during their treatment were included in the study. Standardized sedation and neuromuscular blockade were applied to all patients in the prone position. Mechanical ventilation settings were standardized. Demographic data and patients' pCO2, pO2, PaO2/FiO2, SpO2, right and left ONSD data, and complications were recorded at certain times over 24 h. RESULTS The evaluation of 24-hour prone-position data of patients with ARDS showed no significant increase in ONSD. There was no significant difference in pCO2 values either. PaO2/FiO2 and pO2 values demonstrated significant cumulative increases at all times. Post-prone SPO2 values at the 8th hour and later were significantly higher when compared to baseline (p < 0.001). CONCLUSION As a result of this study, it appears that the prone position does not increase intracranial pressure during the first 24 h and can be safely utilized, given the administration of appropriate sedation, neuromuscular blockade, and mechanical ventilation strategy. ONSD measurements may increase the safety of monitoring in patients ventilated in the prone position.
Collapse
Affiliation(s)
- Ufuk Demir
- grid.412062.30000 0004 0399 5533Department of Anesthesiology and Reanimation, Faculty of Medicine, Kastamonu University, 37100 Kastamonu, Turkey
| | - Öztürk Taşkın
- grid.412062.30000 0004 0399 5533Department of Anesthesiology and Reanimation, Faculty of Medicine, Kastamonu University, 37100 Kastamonu, Turkey
| | - Ayşe Yılmaz
- grid.412062.30000 0004 0399 5533Department of Anesthesiology and Reanimation, Faculty of Medicine, Kastamonu University, 37100 Kastamonu, Turkey
| | - Veysel G. Soylu
- grid.412062.30000 0004 0399 5533Department of Intensive Care, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Zahide Doğanay
- grid.412062.30000 0004 0399 5533Department of Anesthesiology and Reanimation, Faculty of Medicine, Kastamonu University, 37100 Kastamonu, Turkey
| |
Collapse
|
8
|
Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocrit Care 2023; 38:178-191. [PMID: 36071333 DOI: 10.1007/s12028-022-01593-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.
Collapse
|
9
|
Matin N, Sarhadi K, Crooks CP, Lele AV, Srinivasan V, Johnson NJ, Robba C, Town JA, Wahlster S. Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Curr Treat Options Neurol 2022; 24:383-408. [PMID: 35965956 PMCID: PMC9363869 DOI: 10.1007/s11940-022-00726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review To summarize pathophysiology, key conflicts, and therapeutic approaches in managing concomitant severe acute brain injury (SABI) and acute respiratory distress syndrome (ARDS). Recent Findings ARDS is common in SABI and independently associated with worse outcomes in all SABI subtypes. Most landmark ARDS trials excluded patients with SABI, and evidence to guide decisions is limited in this population. Potential areas of conflict in the management of patients with both SABI and ARDS are (1) risk of intracranial pressure (ICP) elevation with high levels of positive end-expiratory pressure (PEEP), permissive hypercapnia due to lung protective ventilation (LPV), or prone ventilation; (2) balancing a conservative fluid management strategy with ensuring adequate cerebral perfusion, particularly in patients with symptomatic vasospasm or impaired cerebrovascular blood flow; and (3) uncertainty about the benefit and harm of corticosteroids in this population, with a mortality benefit in ARDS, increased mortality shown in TBI, and conflicting data in other SABI subtypes. Also, the widely adapted partial pressure of oxygen (PaO2) target of > 55 mmHg for ARDS may exacerbate secondary brain injury, and recent guidelines recommend higher goals of 80-120 mmHg in SABI. Distinct pathophysiology and trajectories among different SABI subtypes need to be considered. Summary The management of SABI with ARDS is highly complex, and conventional ARDS management strategies may result in increased ICP and decreased cerebral perfusion. A crucial aspect of concurrent management is to recognize the risk of secondary brain injury in the individual patient, monitor with vigilance, and adjust management during critical time windows. The care of these patients requires meticulous attention to oxygenation and ventilation, hemodynamics, temperature management, and the neurological exam. LPV and prone ventilation should be utilized, and supplemented with invasive ICP monitoring if there is concern for cerebral edema and increased ICP. PEEP titration should be deliberate, involving measures of hemodynamic, pulmonary, and brain physiology. Serial volume status assessments should be performed in SABI and ARDS, and fluid management should be individualized based on measures of brain perfusion, the neurological exam, and cardiopulmonary status. More research is needed to define risks and benefits in corticosteroids in this population.
Collapse
Affiliation(s)
- Nassim Matin
- Department of Neurology, University of Washington, Seattle, WA USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA USA
| | | | - Abhijit V. Lele
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Chiara Robba
- Departments of Anesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genoa, Italy
| | - James A. Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, WA USA
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
10
|
Whittle RS, Keller N, Hall EA, Vellore HS, Stapleton LM, Findlay KH, Dunbar BJ, Diaz‐Artiles A. Gravitational Dose‐Response Curves for Acute Cardiovascular Hemodynamics and Autonomic Responses in a Tilt Paradigm. J Am Heart Assoc 2022; 11:e024175. [PMID: 35861832 PMCID: PMC9707822 DOI: 10.1161/jaha.121.024175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
The cardiovascular system is strongly dependent on the gravitational environment. Gravitational changes cause mechanical fluid shifts and, in turn, autonomic effectors influence systemic circulation and cardiac control. We implemented a tilt paradigm to (1) investigate the acute hemodynamic response across a range of directions of the gravitational vector, and (2) to generate specific dose‐response relationships of this gravitational dependency.
Methods and Results
Twelve male subjects were tilted from 45° head‐up tilt to 45° head‐down tilt in 15° increments, in both supine and prone postures. We measured the steady‐state hemodynamic response in a range of variables including heart rate, stroke volume, cardiac output, oxygen consumption, total peripheral resistance, blood pressure, and autonomic indices derived from heart rate variability analysis. There is a strong gravitational dependence in almost all variables considered, with the exception of oxygen consumption, whereas systolic blood pressure remained controlled to within ≈3% across the tilt range. Hemodynamic responses are primarily driven by differential loading on the baroreflex receptors, combined with differences in venous return to the heart. Thorax compression in the prone position leads to reduced venous return and increased sympathetic nervous activity, raising heart rate, and systemic vascular resistance while lowering cardiac output and stroke volume.
Conclusions
Gravitational dose‐response curves generated from these data provide a comprehensive baseline from which to assess the efficacy of potential spaceflight countermeasures. Results also assist clinical management of terrestrial surgery in prone posture or head‐down tilt positions.
Collapse
Affiliation(s)
- Richard S. Whittle
- Department of Aerospace Engineering Texas A&M University College Station TX
| | - Nathan Keller
- Department of Health and Kinesiology Texas A&M University College Station TX
| | - Eric A. Hall
- Department of Biomedical Engineering Texas A&M University College Station TX
| | | | | | | | - Bonnie J. Dunbar
- Department of Aerospace Engineering Texas A&M University College Station TX
| | - Ana Diaz‐Artiles
- Department of Aerospace Engineering Texas A&M University College Station TX
- Department of Health and Kinesiology Texas A&M University College Station TX
| |
Collapse
|
11
|
Valle D, Villarreal XP, Lunny C, Chalamgari A, Wajid M, Mahmood A, Buthani S, Lucke-Wold B. Surgical Management of Neurotrauma: When to Intervene. JOURNAL OF CLINICAL TRIALS AND REGULATIONS 2022; 4:41-55. [PMID: 36643025 PMCID: PMC9840531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurotrauma, often defined as abrupt damage to the brain or spinal cord, is a substantial cause of mortality and morbidity that is widely recognized. As such, establishing an effective course of action is crucial to the enhancement of neurotrauma guidelines and patient outcomes in healthcare worldwide. Following the onset of neurotraumatic injuries, time is perhaps the most critical facet in diminishing mortality and morbidity rates. Thus, procuring the airway should be of utmost priority in a patient to allow for optimal ventilation, with a shift in focus resorting to surgical interventions after the patient reaches a suitable care facility. In particular, ventriculoperitoneal shunt (VPS) procedures have long been utilized to treat traumatic brain and spinal cord injuries to direct additional cerebrospinal fluid (CSF) from the lateral ventricles through a ventricular catheter attached to a valve that is further connected to a distal catheter. Decompressive cranio omie (DCs), cranioplasties, and intracranial pressure measurements (ICP) are also frequently performed in combination with VPS to manage intracranial hypertension and cerebral edema. Although the current surgical methods utilized in the treatment of neurotrauma prove to be highly efficacious in the prevention of adverse outcomes, emergent therapies are growing in popularity. Of interest, the Three Pillars Expansive Craniotomy, cisternostomy, and external lumbar drainages are cutting-edge procedures with promising results that can potentially usher change in the neurosurgical industry but require additional examination.
Collapse
Affiliation(s)
- Daisy Valle
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Xuban Palau Villarreal
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Caroline Lunny
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Anjalika Chalamgari
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Manahil Wajid
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Arman Mahmood
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Siya Buthani
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Brandon Lucke-Wold
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| |
Collapse
|
12
|
Focused Management of Patients With Severe Acute Brain Injury and ARDS. Chest 2022; 161:140-151. [PMID: 34506794 PMCID: PMC8423666 DOI: 10.1016/j.chest.2021.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 02/04/2023] Open
Abstract
Considering the COVID-19 pandemic where concomitant occurrence of ARDS and severe acute brain injury (sABI) has increasingly coemerged, we synthesize existing data regarding the simultaneous management of both conditions. Our aim is to provide readers with fundamental principles and concepts for the management of sABI and ARDS, and highlight challenges and conflicts encountered while managing concurrent disease. Up to 40% of patients with sABI can develop ARDS. Although there are trials and guidelines to support the mainstays of treatment for ARDS and sABI independently, guidance on concomitant management is limited. Treatment strategies aimed at managing severe ARDS may at times conflict with the management of sABI. In this narrative review, we discuss the physiological basis and risks involved during simultaneous management of ARDS and sABI, summarize evidence for treatment decisions, and demonstrate these principles using hypothetical case scenarios. Use of invasive or noninvasive monitoring to assess brain and lung physiology may facilitate goal-directed treatment strategies with the potential to improve outcome. Understanding the pathophysiology and key treatment concepts for comanagement of these conditions is critical to optimizing care in this high-acuity patient population.
Collapse
|
13
|
Prone Position Ventilation in Neurologically Ill Patients: A Systematic Review and Proposed Protocol. Crit Care Med 2021; 49:e269-e278. [PMID: 33481406 DOI: 10.1097/ccm.0000000000004820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Prone positioning has been shown to be a beneficial adjunctive supportive measure for patients who develop acute respiratory distress syndrome. Studies have excluded patients with reduced intracranial compliance, whereby patients with concomitant neurologic diagnoses and acute respiratory distress syndrome have no defined treatment algorithm or recommendations for management. In this study, we aim to determine the safety and feasibility of prone positioning in the neurologically ill patients. DESIGN AND SETTING A systematic review of the literature, performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses 2009 guidelines, yielded 10 articles for analysis. Using consensus from these articles, in combination with review of multi-institutional proning protocols for patients with nonneurologic conditions, a proning protocol for patients with intracranial pathology and concomitant acute respiratory distress syndrome was developed. MEASUREMENTS AND MAIN RESULTS Among 10 studies included in the final analysis, we found that prone positioning is safe and feasible in the neurologically ill patients with acute respiratory distress syndrome. Increased intracranial pressure and compromised cerebral perfusion pressure may occur with prone positioning. We propose a prone positioning protocol for the neurologically ill patients who require frequent neurologic examinations and intracranial monitoring. CONCLUSIONS Although elevations in intracranial pressure and reductions in cerebral perfusion pressure do occur during proning, they may not occur to a degree that would warrant exclusion of prone ventilation as a treatment modality for patients with acute respiratory distress syndrome and concomitant neurologic diagnoses. In cases where intracranial pressure, cerebral perfusion pressure, and brain tissue oxygenation can be monitored, prone position ventilation should be considered a safe and viable therapy.
Collapse
|
14
|
Lung-protective ventilation and adjunctive strategies to manage respiratory failure: are they safe in the neurological patient? Curr Opin Crit Care 2021; 27:115-119. [PMID: 33480618 DOI: 10.1097/mcc.0000000000000809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The coexistence of neurological injury and respiratory failure is common in intensive care. This article provides a contemporary overview of the safety and efficacy of different strategies for mechanical ventilation and adjunctive respiratory approaches in patients with acute brain injury. RECENT FINDINGS Available evidence indicates that lung-protective ventilation (LPV) can be implemented safely in a range of patients with concurrent respiratory failure and brain injury of different etiologies; however, the clinical efficacy of LPV in this setting needs to be established. In patients who have severe acute respiratory distress syndrome (ARDS) and brain injury, adjunctive measures (neuromuscular blocker drug infusions, prone positioning, extracorporeal membrane oxygenation) may be considered, although the neurophysiological impact and safety of these techniques need further investigation. Intracranial pressure and other neuromonitoring techniques may be of value to ensure optimal management of mechanical ventilation and adjunctive measures in this population. SUMMARY Research is needed to determine the safety, feasibility, and efficacy of LPV and adjunctive approaches for managing patients with concurrent brain injury and respiratory failure.
Collapse
|
15
|
Robba C, Ball L, Battaglini D, Cardim D, Moncalvo E, Brunetti I, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Rocco PRM, Matta BF, Pelosi P. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2021; 25:111. [PMID: 33741052 PMCID: PMC7978164 DOI: 10.1186/s13054-021-03537-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. METHODS This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. RESULTS Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57-69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51-54]% vs. 49 [47-50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56-71] to 82 [76-87] mmHg, p = 0.005) and rSO2 (from 53 [52-54]% to 60 [59-64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67-73] to 72 [67-73] mmHg, p = 0.015) and rSO2 (from 53 [51-56]% to 57 [55-59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75-79] to 64 [60-70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56-65]% vs. 56 [53-62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). CONCLUSIONS Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Denise Battaglini
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Danilo Cardim
- Department of Neurology, University of Texas, Austin, USA
| | - Emanuela Moncalvo
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Iole Brunetti
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa , Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele R. Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa , Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Basil F. Matta
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
16
|
Towner JE, Rahmani R, Zammit CG, Khan IR, Paul DA, Bhalla T, Roberts DE. Mechanical ventilation in aneurysmal subarachnoid hemorrhage: systematic review and recommendations. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:575. [PMID: 32972406 PMCID: PMC7512211 DOI: 10.1186/s13054-020-03269-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Objective Mechanical ventilation (MV) has a complex interplay with the pathophysiology of aneurysmal subarachnoid hemorrhage (aSAH). We aim to provide a review of the physiology of MV in patients with aSAH, give recommendations based on a systematic review of the literature, and highlight areas that still need investigation. Data sources PubMed was queried for publications with the Medical Subject Headings (MeSH) terms “mechanical ventilation” and “aneurysmal subarachnoid hemorrhage” published between January 1, 1990, and March 1, 2020. Bibliographies of returned articles were reviewed for additional publications of interest. Study selection Study inclusion criteria included English language manuscripts with the study population being aSAH patients and the exposure being MV. Eligible studies included randomized controlled trials, observational trials, retrospective trials, case-control studies, case reports, or physiologic studies. Topics and articles excluded included review articles, pediatric populations, non-aneurysmal etiologies of subarachnoid hemorrhage, mycotic and traumatic subarachnoid hemorrhage, and articles regarding tracheostomies. Data extraction Articles were reviewed by one team member, and interpretation was verified by a second team member. Data synthesis Thirty-one articles met the inclusion criteria for this review. Conclusions We make recommendations on oxygenation, hypercapnia, PEEP, APRV, ARDS, and intracranial pressure monitoring.
Collapse
Affiliation(s)
- James E Towner
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Christopher G Zammit
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Neurocritical Care, Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,TriHealth Critical Care, 10506 Montgomery Road, Suite 301, Cincinnatir, OH, 45242, USA
| | - Imad R Khan
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Neurocritical Care, Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - David A Paul
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 670, Rochester, NY, 14642, USA.,Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Debra E Roberts
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Neurocritical Care, Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
17
|
Vanamoorthy P, Singh GP, Bidkar PU, Mitra R, Sriganesh K, Chavali S, Muthuchellapan R, Keshavan VH, Anand S, Goyal K, Yadav R, Rath GP, Srivastava S. The Neurocritical Care Society of India (NCSI) and the Indian Society of Neuroanaesthesiology and Critical Care (ISNACC) Joint Position Statement and Advisory on the Practice of Neurocritical Care during the COVID-19 Pandemic. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2020. [DOI: 10.1055/s-0040-1714648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractThe COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has rapidly spread across the world including India. Management of patients complicated with neurological illness requiring neurocritical care is challenging during this time. Patients with neurological disease may develop COVID-19 infection or there could be independent neurological manifestations of COVID-19. Critically ill neurological patients are more vulnerable to contracting SARS-CoV-2 infection. Also, neurological patients with comorbidities and multisystem involvement are at increased risk of adverse outcomes. Though SARS-CoV-2 predominantly affects the pulmonary system, it can complicate the assessment and management of neurological patients. With increasing COVID-19 numbers, the hospitalizations of both non-COVID and COVID-19 neurological patients will bring significant strain on the hospital and neurocritical care facilities. Streamlining work pattern, understanding the pathophysiology of COVID-19 and its impact on neurological function, establishing general and specific neurocritical care management strategies, ensuring protection and well-being of health care providers, and implementing effective infection control policies are key elements of efficient neurocritical care management during this pandemic. This joint position statement and advisory on the practice of neurocritical care during the COVID-19 pandemic by the Neurocritical Care Society of India and the Indian Society of Neuroanaesthesiology and Critical Care has been developed to guide clinicians providing care to the critically ill neurological patients in the neurocritical care unit during the current pandemic. As the situation from this novel disease is rapidly evolving, readers must constantly update themselves with newly emerging evidence to provide the best possible care to the critically ill neurological patients.
Collapse
Affiliation(s)
- Ponniah Vanamoorthy
- Department of Neuroanaesthesiology and Neurocritical Care, Institute of Neurosciences and Spinal Disorders, MGM Healthcare, Chennai, Tamil Nadu, India
| | - Gyaninder P. Singh
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Prasanna U. Bidkar
- Division of Neuroanaesthesiology, Department of Anesthesiology and Critical care, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry, India
| | - Ranadhir Mitra
- Department of Neuroanesthesia and Neurocritical Care, Care Hospital, Bhubaneswar, Odisha, India
| | - Kamath Sriganesh
- Department of Neuroanaesthesiology and Neurocritical Care, National Institute of Mental Health and Neuro-Sciences, Bengaluru, Karnataka, India
| | - Siddharth Chavali
- Department of Neurosciences, Aditya Birla Memorial Hospital, Pune, Maharashtra, India
| | - Radhakrishnan Muthuchellapan
- Department of Neuroanaesthesiology and Neurocritical Care, National Institute of Mental Health and Neuro-Sciences, Bengaluru, Karnataka, India
| | - Venkatesh H. Keshavan
- Department of Neuroanaesthesiology and Neurocritical Care, Apollo Hospitals, Bengaluru, Karnataka, India
| | - Saurabh Anand
- Department of Neuroanaesthesia and Neurocritical Care, Artemis Hospital, Gurugram, Haryana, India
| | - Keshav Goyal
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Yadav
- Department of Anaesthesiology and Critical Care, INHS Asvini, Mumbai, Maharashtra, India
| | - Girija P. Rath
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Srivastava
- Department of Anesthesiology and Critical Care, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Ogura T, Kowata K, Nakajima M, Neki H, Oomori S. Nonsurgical treatment of obstructive hydrocephalus by face-down positioning: Report of four cases. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:158. [PMID: 32303255 PMCID: PMC7165367 DOI: 10.1186/s13054-020-02875-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Background Severe traumatic brain injury (TBI) patients often develop acute respiratory failure. Optimal ventilator strategies in this setting are not well established. We performed an international survey to investigate the practice in the ventilatory management of TBI patients with and without respiratory failure. Methods An electronic questionnaire, including 38 items and 3 different clinical scenarios [arterial partial pressure of oxygen (PaO2)/inspired fraction of oxygen (FiO2) > 300 (scenario 1), 150–300 (scenario 2), < 150 (scenario 3)], was available on the European Society of Intensive Care Medicine (ESICM) website between November 2018 and March 2019. The survey was endorsed by ESICM. Results There were 687 respondents [472 (69%) from Europe], mainly intensivists [328 (48%)] and anesthesiologists [206 (30%)]. A standard protocol for mechanical ventilation in TBI patients was utilized by 277 (40%) respondents and a specific weaning protocol by 198 (30%). The most common tidal volume (TV) applied was 6–8 ml/kg of predicted body weight (PBW) in scenarios 1–2 (72% PaO2/FIO2 > 300 and 61% PaO2/FiO2 150–300) and 4–6 ml/kg/PBW in scenario 3 (53% PaO2/FiO2 < 150). The most common level of highest positive end-expiratory pressure (PEEP) used was 15 cmH2O in patients with a PaO2/FiO2 ≤ 300 without intracranial hypertension (41% if PaO2/FiO2 150–300 and 50% if PaO2/FiO2 < 150) and 10 cmH2O in patients with intracranial hypertension (32% if PaO2/FiO2 150–300 and 33% if PaO2/FiO2 < 150). Regardless of the presence of intracranial hypertension, the most common carbon dioxide target remained 36–40 mmHg whereas the most common PaO2 target was 81–100 mmHg in all the 3 scenarios. The most frequent rescue strategies utilized in case of refractory respiratory failure despite conventional ventilator settings were neuromuscular blocking agents [406 (88%)], recruitment manoeuvres [319 (69%)] and prone position [292 (63%)]. Conclusions Ventilatory management, targets and practice of adult severe TBI patients with and without respiratory failure are widely different among centres. These findings may be helpful to define future investigations in this topic.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan - Bicocca, Monza, Italy
| | - Jordi Mancebo
- Department of Intensive Care, Sant Pau Hospital, Barcelona, Spain
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | |
Collapse
|
21
|
Robba C, Bonatti G, Battaglini D, Rocco PRM, Pelosi P. Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:388. [PMID: 31791375 PMCID: PMC6889568 DOI: 10.1186/s13054-019-2662-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
Most patients with ischaemic stroke are managed on the ward or in specialty stroke units, but a significant number requires higher-acuity care and, consequently, admission to the intensive care unit. Mechanical ventilation is frequently performed in these patients due to swallowing dysfunction and airway or respiratory system compromise. Experimental studies have focused on stroke-induced immunosuppression and brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which may increase the risk of infection. Pulmonary complications, such as respiratory failure, pneumonia, pleural effusions, acute respiratory distress syndrome, lung oedema, and pulmonary embolism from venous thromboembolism, are common and found to be among the major causes of death in this group of patients. Furthermore, over the past two decades, tracheostomy use has increased among stroke patients, who can have unique indications for this procedure—depending on the location and type of stroke—when compared to the general population. However, the optimal mechanical ventilator strategy remains unclear in this population. Although a high tidal volume (VT) strategy has been used for many years, the latest evidence suggests that a protective ventilatory strategy (VT = 6–8 mL/kg predicted body weight, positive end-expiratory pressure and rescue recruitment manoeuvres) may also have a role in brain-damaged patients, including those with stroke. The aim of this narrative review is to explore the pathophysiology of brain-lung interactions after acute ischaemic stroke and the management of mechanical ventilation in these patients.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Largo Rosanna Benzi, 15, 16100, Genoa, Italy.
| | - Giulia Bonatti
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Largo Rosanna Benzi, 15, 16100, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Largo Rosanna Benzi, 15, 16100, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Largo Rosanna Benzi, 15, 16100, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Hypoxic Encephalopathy in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ventilatory Strategies in the Brain-injured Patient. Int Anesthesiol Clin 2019; 56:131-146. [PMID: 29227316 DOI: 10.1097/aia.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Cerebral Oxygenation Under General Anesthesia Can Be Safely Preserved in Patients in Prone Position: A Prospective Observational Study. J Neurosurg Anesthesiol 2018; 29:291-297. [PMID: 27271235 DOI: 10.1097/ana.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The effects of prone position (PP) on cerebral tissue metabolism are not well known. The aim of this investigation was to evaluate regional cerebral oxygen desaturation in patients undergoing lumbar spine surgery in PP during routine anesthesia management. MATERIALS AND METHODS Between July 2013 and October 2013, 50 consecutive patients undergoing lumbar spine surgery under general anesthesia in PP were enrolled. The anesthetic technique was standardized. Using near-infrared spectroscopy, bilateral regional cerebrovascular oxygen saturation was recorded during the surgery. RESULTS After 30 and 60 minutes of prone repositioning, significant decreases in bilateral regional cerebral oxygen saturation were observed compared with the values in the supine position (from 76.24% to 73.18% at 30 min and 72.76% at 60 min on the right side and from 77.06% to 73.76% at 30 min and 72.92% at 60 min on the left side; P<0.05). These changes were not clinically important and returned to supine values after 90 minutes of prone positioning. Decreases in cerebral oxygen saturation were accompanied by reductions in heart rate and mean arterial pressure (P<0.05). Older age and higher perioperative risk had a significant effect on the reduction of cerebral oxygen values (P<0.05). CONCLUSIONS The results of our study show that margin of safety against impaired cerebral oxygenation can be maintained in PP. Preventing bradycardia and arterial hypotension is crucial. Older patients and those at higher perioperative risk need more meticulous attention.
Collapse
|
25
|
Della Torre V, Badenes R, Corradi F, Racca F, Lavinio A, Matta B, Bilotta F, Robba C. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis 2017; 9:5368-5381. [PMID: 29312748 PMCID: PMC5756968 DOI: 10.21037/jtd.2017.11.03] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is an important cause of morbidity and mortality worldwide. TBI patients frequently suffer from lung complications and acute respiratory distress syndrome (ARDS), which is associated with poor clinical outcomes. Moreover, the association between TBI and ARDS in trauma patients is well recognized. Mechanical ventilation of patients with a concomitance of acute brain injury and lung injury can present significant challenges. Frequently, guidelines recommending management strategies for patients with traumatic brain injuries come into conflict with what is now considered best ventilator practice. In this review, we will explore the strategies of the best practice in the ventilatory management of patients with ARDS and TBI, concentrating on those areas in which a conflict exists. We will discuss the use of ventilator strategies such as protective ventilation, high positive end expiratory pressure (PEEP), prone position, recruitment maneuvers (RMs), as well as techniques which at present are used for 'rescue' in ARDS (including extracorporeal membrane oxygenation) in patients with TBI. Furthermore, general principles of fluid, haemodynamic and hemoglobin management will be discussed. Currently, there are inadequate data addressing the safety or efficacy of ventilator strategies used in ARDS in adult patients with TBI. At present, choice of ventilator rescue strategies is best decided on a case-by-case basis in conjunction with local expertise.
Collapse
Affiliation(s)
- Valentina Della Torre
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Rafael Badenes
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, Valencia, Spain
| | | | - Fabrizio Racca
- Department of Anesthesiology and Intensive Care Unit, SS Antonio Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Andrea Lavinio
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Federico Bilotta
- Department of Anaesthesia and Intensive Care, La Sapienza University, Rome, Italy
| | - Chiara Robba
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Neuroscience, University of Genova, Italy
| |
Collapse
|
26
|
Anderson AP, Babu G, Swan JG, Phillips SD, Knaus DA, Toutain-Kidd CM, Zegans ME, Fellows AM, Gui J, Buckey JC. Ocular changes over 60 min in supine and prone postures. J Appl Physiol (1985) 2017; 123:415-423. [PMID: 28546470 DOI: 10.1152/japplphysiol.00687.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022] Open
Abstract
Some astronauts are returning from long-duration spaceflight with structural ocular and visual changes. We investigated both the transient and sustained effects of changes in the direction of the gravity vector acting on the eye using changes in body posture. Intraocular pressure (IOP; measured by Perkins tonometer), ocular geometry (axial length, corneal thickness, and aqueous depth-noncontact biometer), and the choroid (volume and subfoveal thickness optical coherence tomography) were measured in 10 subjects (5 males and 5 females). Measures were taken over the course of 60 min and analyzed with repeated-measures analysis of covariance to assess the effects of posture and time. In the supine position, choroidal volume increased significantly with time (average value at <5 min = 8.8 ± 2.3 mm3, 60 min = 9.0 ± 2.4 mm3, P = 0.03). In the prone position, IOP and axial length increased with time (IOP at <5 min 15 ± 2.7 mmHg, 60 min = 19.8 ± 4.1 mmHg, P < 0.0001; axial length at <5 min = 24.29 ± 0.77 mm, 60 min = 24.31 ± 0.76 mm, P = 0.002). Each increased exponentially, with time constants of 5.3 and 14 min, respectively. Prone corneal thickness also increased with time (<5 min = 528 ± 35 μm, 60 min = 537 ± 35 μm3, P < 0.001). Aqueous depth was shortened in the prone position (baseline = 3.22 ± 0.31 mm, 60 min = 3.18 ± 0.32 mm, P < 0.0001) but did not change with time. The data show that changes in the gravity vector have pronounced transient and sustained effects on the geometry and physiology of the eye.NEW & NOTEWORTHY We show that gravity has pronounced transient and sustained effects on the eye by making detailed ocular measurements over 60 min in the supine and prone postures. These data inform our understanding of how gravitational forces can affect ocular structures, which is essential for hypothesizing how ocular changes could occur with microgravity exposure.
Collapse
Affiliation(s)
| | - Gautam Babu
- Dartmouth College, Hanover, New Hampshire; and
| | - Jacob G Swan
- Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | | | | | | | - Michael E Zegans
- Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Abigail M Fellows
- Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Jiang Gui
- Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Jay C Buckey
- Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire;
| |
Collapse
|
27
|
Borsellino B, Schultz MJ, Gama de Abreu M, Robba C, Bilotta F. Mechanical ventilation in neurocritical care patients: a systematic literature review. Expert Rev Respir Med 2016; 10:1123-32. [DOI: 10.1080/17476348.2017.1235976] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Tsai HI, Chung PCH, Lee CW, Yu HP. Cerebral perfusion monitoring in acute care surgery: current and perspective use. Expert Rev Med Devices 2016; 13:865-75. [DOI: 10.1080/17434440.2016.1219655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Bein T, Bischoff M, Brückner U, Gebhardt K, Henzler D, Hermes C, Lewandowski K, Max M, Nothacker M, Staudinger T, Tryba M, Weber-Carstens S, Wrigge H. [Short version S2e guidelines: "Positioning therapy and early mobilization for prophylaxis or therapy of pulmonary function disorders"]. Anaesthesist 2016; 64:596-611. [PMID: 26260196 DOI: 10.1007/s00101-015-0060-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The German Society of Anesthesiology and Intensive Care Medicine (DGAI) commissioned a revision of the S2 guidelines on "positioning therapy for prophylaxis or therapy of pulmonary function disorders" from 2008. Because of the increasing clinical and scientific relevance the guidelines were extended to include the issue of "early mobilization" and the following main topics are therefore included: use of positioning therapy and early mobilization for prophylaxis and therapy of pulmonary function disorders, undesired effects and complications of positioning therapy and early mobilization as well as practical aspects of the use of positioning therapy and early mobilization. These guidelines are the result of a systematic literature search and the subsequent critical evaluation of the evidence with scientific methods. The methodological approach for the process of development of the guidelines followed the requirements of evidence-based medicine, as defined as the standard by the Association of the Scientific Medical Societies in Germany. Recently published articles after 2005 were examined with respect to positioning therapy and the recently accepted aspect of early mobilization incorporates all literature published up to June 2014.
Collapse
Affiliation(s)
- T Bein
- Klinik für Anästhesiologie, Universitätsklinikum Regensburg, 93042, Regensburg, Deutschland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Anderson AP, Swan JG, Phillips SD, Knaus DA, Kattamis NT, Toutain-Kidd CM, Zegans ME, Fellows AM, Buckey JC. Acute effects of changes to the gravitational vector on the eye. J Appl Physiol (1985) 2016; 120:939-46. [DOI: 10.1152/japplphysiol.00730.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
Intraocular pressure (IOP) initially increases when an individual enters microgravity compared with baseline values when an individual is in a seated position. This has been attributed to a headward fluid shift that increases venous pressures in the head. The change in IOP exceeds changes measured immediately after moving from seated to supine postures on Earth, when a similar fluid shift is produced. Furthermore, central venous and cerebrospinal fluid pressures are at or below supine position levels when measured initially upon entering microgravity, unlike when moving from seated to supine postures on Earth, when these pressures increase. To investigate the effects of altering gravitational forces on the eye, we made ocular measurements on 24 subjects (13 men, 11 women) in the seated, supine, and prone positions in the laboratory, and upon entering microgravity during parabolic flight. IOP in microgravity (16.3 ± 2.7 mmHg) was significantly elevated above values in the seated (11.5 ± 2.0 mmHg) and supine (13.7 ± 3.0 mmHg) positions, and was significantly less than pressure in the prone position (20.3 ± 2.6 mmHg). In all measurements, P < 0.001. Choroidal area was significantly increased in subjects in a microgravity environment ( P < 0.007) compared with values from subjects in seated (increase of 0.09 ± 0.1 mm2) and supine (increase of 0.06 ± 0.09 mm2) positions. IOP results are consistent with the hypothesis that hydrostatic gradients affect IOP, and may explain how IOP can increase beyond supine values in microgravity when central venous and intracranial pressure do not. Understanding gravitational effects on the eye may help develop hypotheses for how microgravity-induced visual changes develop.
Collapse
Affiliation(s)
| | - Jacob G. Swan
- Giesel School of Medicine at Dartmouth College, Lebanon, New Hampshire; and
| | | | | | | | | | - Michael E. Zegans
- Giesel School of Medicine at Dartmouth College, Lebanon, New Hampshire; and
| | - Abigail M. Fellows
- Giesel School of Medicine at Dartmouth College, Lebanon, New Hampshire; and
| | - Jay C. Buckey
- Giesel School of Medicine at Dartmouth College, Lebanon, New Hampshire; and
| |
Collapse
|
31
|
Bein T, Bischoff M, Brückner U, Gebhardt K, Henzler D, Hermes C, Lewandowski K, Max M, Nothacker M, Staudinger T, Tryba M, Weber-Carstens S, Wrigge H. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders : Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 2015; 64 Suppl 1:1-26. [PMID: 26335630 PMCID: PMC4712230 DOI: 10.1007/s00101-015-0071-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The German Society of Anesthesiology and Intensive Care Medicine (DGAI) commissioneda revision of the S2 guidelines on "positioning therapy for prophylaxis or therapy of pulmonary function disorders" from 2008. Because of the increasing clinical and scientificrelevance the guidelines were extended to include the issue of "early mobilization"and the following main topics are therefore included: use of positioning therapy and earlymobilization for prophylaxis and therapy of pulmonary function disorders, undesired effects and complications of positioning therapy and early mobilization as well as practical aspects of the use of positioning therapy and early mobilization. These guidelines are the result of a systematic literature search and the subsequent critical evaluation of the evidence with scientific methods. The methodological approach for the process of development of the guidelines followed the requirements of evidence-based medicine, as defined as the standard by the Association of the Scientific Medical Societies in Germany. Recently published articles after 2005 were examined with respect to positioning therapy and the recently accepted aspect of early mobilization incorporates all literature published up to June 2014.
Collapse
Affiliation(s)
- Th Bein
- Clinic for Anaesthesiology, University Hospital Regensburg, 93042, Regensburg, Germany.
| | - M Bischoff
- Clinic for Anaesthesiology, University Hospital Regensburg, 93042, Regensburg, Germany
| | - U Brückner
- Physiotherapy Department, Clinic Donaustauf, Centre for Pneumology, 93093, Donaustauf, Germany
| | - K Gebhardt
- Clinic for Anaesthesiology, University Hospital Regensburg, 93042, Regensburg, Germany
| | - D Henzler
- Clinic for Anaesthesiology, Surgical Intensive Care Medicine, Emergency Care Medicine, Pain Management, Klinikum Herford, 32049, Herford, Germany
| | - C Hermes
- HELIOS Clinic Siegburg, 53721, Siegburg, Germany
| | - K Lewandowski
- Clinic for Anaesthesiology, Intensive Care Medicine and Pain Management, Elisabeth Hospital Essen, 45138, Essen, Germany
| | - M Max
- Centre Hospitalier, Soins Intensifs Polyvalents, 1210, Luxembourg, Luxemburg
| | - M Nothacker
- Association of Scientific Medical Societies (AWMF), 35043, Marburg, Germany
| | - Th Staudinger
- University Hospital for Internal Medicine I, Medical University of Wien, General Hospital of Vienna, 1090, Vienna, Austria
| | - M Tryba
- Clinic for Anaesthesiology, Intensive Care Medicine and Pain Management, Klinikum Kassel, 34125, Kassel, Germany
| | - S Weber-Carstens
- Clinic for Anaesthesiology and Surgical Intensive Care Medicine, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - H Wrigge
- Clinic and Policlinic for Anaesthesiology and Intensive Care Medicine, University Hospital Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
32
|
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
|
33
|
Roth C, Ferbert A, Deinsberger W, Kleffmann J, Kästner S, Godau J, Schüler M, Tryba M, Gehling M. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care 2015; 21:186-91. [PMID: 24985500 DOI: 10.1007/s12028-014-0004-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE The objective of our trial was to obtain more comprehensive data on the risks and benefits of kinetic therapy in intensive care patients with intracerebral pathology. METHODS Standardized data of prone positioning in our NeuroIntensive Care Unit were collected from 2007 onward. A post hoc analysis of all available data was undertaken, with special consideration given to values of intracranial pressure (ICP), cerebral perfusion pressure (CPP) and oxygenation in correlation to prone (PP), or supine positioning (SP) of patients. Cases were considered eligible if kinetic therapy and ICP were documented. Prone positioning was performed in a 135° position for 8 h per treatment unit. RESULTS A total of 115 patients treated with prone positioning from 2007 to 2013 were identified in our medical records. Of these, 29 patients received ICP monitoring. Overall, 119 treatment units of prone positioning with a mean duration of 2.5 days per patient were performed. The mean baseline ICP in SP was 9.5 ± 5.9 mmHg and was increased significantly during PP (p < 0.0001). There was no significant difference between CPP in SP (82 ± 14.5 mmHg) compared to PP (p > 0.05). ICP values >20 mmHg occurred more often during PP than SP (p < 0.0001) and were associated with significantly more episodes of decreased CPP <70 mmHg (p < 0.0022). The mean paO(2)/FiO(2) ratio (P/F ratio) was increased significantly in prone positioning of patients (p < 0.0001). CONCLUSIONS The analyzed data allow a more precise understanding of changes in ICP and oxygenation during prone positioning in patients with acute brain injury and almost normal baseline ICP. Our study shows a moderate, yet significant elevation of ICP during prone positioning. However, the achieved increase of oxygenation by far exceeded the changes in ICP. It is evident that continuous monitoring of cerebral pressure is required in this patient group.
Collapse
Affiliation(s)
- Christian Roth
- Department of Neurology, Klinikum Kassel, Mönchebergstraße 41-43, 34125, Kassel, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Changes in cerebral oxygen saturation following prone positioning for orthopaedic surgery under general anaesthesia. Eur J Anaesthesiol 2015; 32:381-6. [DOI: 10.1097/eja.0000000000000259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Prone position is associated with mild cerebral oxygen desaturation in elderly surgical patients. PLoS One 2014; 9:e106387. [PMID: 25216265 PMCID: PMC4162535 DOI: 10.1371/journal.pone.0106387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 08/06/2014] [Indexed: 11/24/2022] Open
Abstract
Purpose A variety of hemodynamic and respiratory alterations accompany patients in the prone position; however the effect of the prone position on intraoperative cerebral saturation has not been studied. We sought to examine whether the incidence of cerebral oxygen desaturation in elderly patients (≥68 years of age) undergoing spine surgery in the prone position was more common than patients undergoing major surgery in the supine position. Methods We performed a retrospective cohort study of 205 patients; 63 patients underwent surgery in the prone position and 142 in the supine position. Patients were evaluated for cerebral desaturation with bilateral cerebral oximetry. The primary predictor was position, secondary were: length of the surgery, incidence and duration of cerebral desaturation episodes at several thresholds, average time of Bispectral index below threshold of 45 in minutes, average electroencephalogram suppression ratio >0, amount of blood transfused, and the incidence of hypotension and hypertension. Results Elderly spine surgery patients in the prone position were more than twice as likely to experience mild cerebral desaturation as patients in the supine position. Patients in the prone position had longer surgeries; however cerebral desaturation in the prone position was significantly more common even when adjusted for surgery time and the occurrence of intraoperative hypotension. Conclusion Cerebral desaturation is related to the prone position in elderly surgery patients. Future studies are necessary to determine whether this translates to a higher incidence of postoperative cognitive dysfunction and delirium.
Collapse
|
36
|
Athota KP, Millar D, Branson RD, Tsuei BJ. A practical approach to the use of prone therapy in acute respiratory distress syndrome. Expert Rev Respir Med 2014; 8:453-63. [PMID: 24832577 DOI: 10.1586/17476348.2014.918850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this article we propose a practical approach to the use of prone therapy for acute respiratory distress syndrome (ARDS). We have attempted to provide information to improve the understanding and implementation of prone therapy based on the literature available and our own experience. We review the basic physiology behind ARDS and the theoretical mechanism by which prone therapy can be of benefit. The findings of the most significant studies regarding prone therapy in ARDS as they pertain to its implementation are summarized. Also provided is a discussion of the nuances of utilizing prone therapy, including potential pitfalls, complications, and contraindications. The specific considerations of prone therapy in open abdomens and traumatic brain injuries are discussed as well. Finally, we supply suggested protocols for the implementation of prone therapy discussing criteria for initiation and cessation of therapy as well as addressing issues such as the use of neuromuscular blockade and nutritional supplementation.
Collapse
Affiliation(s)
- Krishna P Athota
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
37
|
Kawati R, Larsson A. Brain death due to fat embolism - could moderate hypercapnia and prone position be blamed for the tonsillar herniation? Ups J Med Sci 2013; 118:276-8. [PMID: 23977867 PMCID: PMC4190893 DOI: 10.3109/03009734.2013.818600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fat embolism to the systemic circulation in polytrauma patients is very common. The fat embolism syndrome (FES), however, is a rare condition. We describe a case of traumatic femur fracture with FES that was presented as acute tonsillar herniation (coning) and brain death postoperatively. We believe that in this case the prone position and moderate hypercapnia contributed to the acute coning.
Collapse
Affiliation(s)
- Rafael Kawati
- Central Intensive Care Unit, Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Larsson
- Central Intensive Care Unit, Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
38
|
Gritti P, Lanterna LA, Re M, Martchenko S, Olivotto P, Brembilla C, Agostinis C, Paganoni G, Lorini FL. The use of inhaled nitric oxide and prone position in an ARDS patient with severe traumatic brain injury during spine stabilization. J Anesth 2012; 27:293-7. [PMID: 23065049 DOI: 10.1007/s00540-012-1495-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
The use of inhaled nitric oxide in patients with traumatic brain injury, intracranial hypertension, and acute respiratory distress syndrome (ARDS) has been reported in an intensive care unit setting only in a few case reports. The use of the prone position for patients with traumatic brain injury and lung impairment has been reported only in selected cases. Here we report our experience with the use of both inhaled nitric oxide and the prone position together in the operating room in a patient with head injury and ARDS who underwent column stabilization.
Collapse
Affiliation(s)
- Paolo Gritti
- Anaesthesia and Intensive Care IV, Department of Anaesthesia, Ospedali Riuniti di Bergamo, Largo Barozzi no. 1, Bergamo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Effect of head rotation on cerebral blood velocity in the prone position. Anesthesiol Res Pract 2012; 2012:647258. [PMID: 22988456 PMCID: PMC3440850 DOI: 10.1155/2012/647258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/03/2012] [Accepted: 07/25/2012] [Indexed: 01/15/2023] Open
Abstract
Background. The prone position is applied to facilitate surgery of the back and to improve oxygenation in the respirator-treated patient. In particular, with positive pressure ventilation the prone position reduces venous return to the heart and in turn cardiac output (CO) with consequences for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA Vmean) and jugular vein diameters bilaterally in 22 healthy subjects in the prone position with the head centered, respectively, rotated sideways, with and without positive pressure breathing (10 cmH2O). Results. The prone position reduced SV (by 5.4 ± 1.5%; P < 0.05) and CO (by 2.3 ± 1.9
%), and slightly increased MAP (from 78 ± 3
to 80 ± 2 mmHg) as well as bilateral jugular vein diameters, leaving MCA Vmean unchanged. Positive pressure breathing in the prone position increased MAP (by 3.6 ± 0.8 mmHg) but further reduced SV and CO (by 9.3 ± 1.3
% and 7.2 ± 2.4
% below baseline) while MCA Vmean was maintained. The head-rotated prone position with positive pressure breathing augmented MAP further (87 ± 2 mmHg) but not CO, narrowed both jugular vein diameters, and reduced MCA Vmean (by 8.6 ± 3.2
%). Conclusion. During positive pressure breathing the prone position with sideways rotated head reduces MCA Vmean ~10% in spite of an elevated MAP. Prone positioning with rotated head affects both CBF and cerebrovenous drainage indicating that optimal brain perfusion requires head centering.
Collapse
|
40
|
Perioperative neuroprotection. Best Pract Res Clin Anaesthesiol 2010; 24:535-49. [DOI: 10.1016/j.bpa.2010.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 01/25/2023]
|
41
|
Effect of Body Position on Cerebral Oxygenation and Physiologic Parameters in Patients With Acute Neurological Conditions. J Neurosci Nurs 2010; 42:280-7. [DOI: 10.1097/jnn.0b013e3181ecafd4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Meyer MJ, Megyesi J, Meythaler J, Murie-Fernandez M, Aubut JA, Foley N, Salter K, Bayley M, Marshall S, Teasell R. Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj 2010; 24:694-705. [PMID: 20353284 DOI: 10.3109/02699051003692118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To review the literature on non-pharmacological interventions used in acute settings to manage elevated intracranial pressure (ICP) and minimize cerebral damage in patients with acquired brain injury (ABI). MAIN OUTCOMES A literature search of multiple databases (CINAHL, EMBASE, MEDLINE and PSYCHINFO) and hand-searched articles covering the years 1980-2008 was performed. Peer reviewed articles were assessed for methodological quality using the PEDro scoring system for randomized controlled trials (RCTs) and the Downs and Black tool for RCTs and non-randomized trials. Levels of evidence were assigned and recommendations made. RESULTS Five non-invasive interventions for acute ABI management were assessed: adjusting head posture, body rotation (continuous rotational therapy and prone positioning), hyperventilation, hypothermia and hyperbaric oxygen. Two invasive interventions were also reviewed: cerebrospinal fluid (CSF) drainage and decompressive craniectomy (DC). CONCLUSIONS There is a paucity of information regarding non-pharmacological acute management of patients with ABI. Strong levels of evidence were found for only four of the seven interventions (decompressive craniectomy, cerebrospinal fluid drainage, hypothermia and hyperbaric oxygen) and only for specific components of their use. Further research into all interventions is warranted.
Collapse
Affiliation(s)
- Matthew J Meyer
- Aging, Rehabilitation and Geriatric Care Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Domínguez-Berrot A. Decúbito prono en pacientes con hipertensión endocraneal e insuficiencia respiratoria aguda grave. Med Intensiva 2009; 33:403-6. [DOI: 10.1016/j.medin.2009.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/29/2008] [Accepted: 01/07/2009] [Indexed: 10/20/2022]
|
44
|
Abstract
PURPOSE OF THE REVIEW Neurosurgical patients frequently develop respiratory complications, adversely affecting neurologic outcome and survival. The review summarizes current literature and management of respiratory complications associated with brain injury. MAJOR FINDINGS Respiratory complications are commonly associated with traumatic brain injury and subarachnoid haemorrhage. Lung-protective ventilation with reduced tidal volumes improves outcome in acute lung injury, and should be applied to neurosurgical patients in the absence of increased intracranial pressure. Weaning from the mechanical ventilation should be initiated as soon as possible, although the role of neurological status in the weaning process is not clear. Prevention of pneumonia and aspiration improves survival. In patients with difficult weaning, early bedside percutaneous tracheostomy should be considered. FURTHER INVESTIGATIONS Further studies are warranted to elucidate an optimal oxygenation and ventilation in brain-injured patients, weaning strategies, predictors of the failed weaning and extubation, respiratory support in patients with difficulties to wean, and early tracheostomy.
Collapse
Affiliation(s)
- Irene Rozet
- Department of Anesthesiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356540, Seattle, WA 98195-6540, USA.
| | | |
Collapse
|
45
|
Sethuraman M, Umamaheswara Rao GS. Effects of the prone position on arterial carbon-di-oxide depends on proper positioning. Acta Anaesthesiol Scand 2007; 51:514-5. [PMID: 17378794 DOI: 10.1111/j.1399-6576.2006.01244.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Abstract
Neurogenic pulmonary edema (NPE) is usually defined as an acute pulmonary edema occurring shortly after a central neurologic insult. It has been reported regularly for a long time in numerous and various injuries of the central nervous system in both adults and children, but remains poorly understood because of the complexity of its pathophysiologic mechanisms involving hemodynamic and inflammatory aspects. NPE seems to be under-diagnosed in acute neurologic injuries, partly because the prevention and detection of non-neurologic complications of acute cerebral insults are not at the forefront of the strategy of physicians. The presence of NPE should be high on the list of diagnoses when patients with central neurologic injury suddenly become dyspneic or present with a decreased P(a)o(2)/F(i)o(2) ratio. The associated mortality rate is high, but recovery is usually rapid with early and appropriate management. The treatment of NPE should aim to meet the oxygenation needs without impairing cerebral hemodynamics, to avoid pulmonary worsening and to treat possible associated myocardial dysfunction. During brain death, NPE may worsen myocardial dysfunction, preventing heart harvesting.
Collapse
Affiliation(s)
- A Baumann
- Département d'Anesthésie - Réanimation, Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy, France
| | | | | | | |
Collapse
|