1
|
Willi Y, Van Buskirk J. A review on trade-offs at the warm and cold ends of geographical distributions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210022. [PMID: 35184594 PMCID: PMC8859520 DOI: 10.1098/rstb.2021.0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Species' range limits are ubiquitous. This suggests that the evolution of the ecological niche is constrained in general and at the edges of distributions in particular. While there may be many ecological and genetic reasons for this phenomenon, here we focus on the potential role of trade-offs. We performed a literature search on evidence for trade-offs associated with geographical or elevational range limits. The majority of trade-offs were reported as relevant at either the cold end of species' distribution (n = 19), the warm or dry end (n = 19) or both together (n = 14). One common type of trade-off involved accelerating growth or development (27%), often at the cost of small size. Another common type involved resistance to or tolerance of climatic extremes that occur at certain periods of the year (64%), often at the cost of small size or reduced growth. Trade-offs overlapped with some of the classic trade-offs reported in life-history evolution or thermal adaptation. The results highlight several general insights about species' niches and ranges, and we outline how future research should better integrate the ecological context and test for the presence of microevolutionary trade-offs. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Donaldson-Matasci MC, Powell S, Dornhaus A. Distributing defenses: How resource defendability shapes the optimal response to risk. Am Nat 2022; 199:636-652. [DOI: 10.1086/718715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Yang J, Wu Q, Xiao R, Zhao J, Chen J, Jiao X. Seasonal variations in body melanism and size of the wolf spider Pardosa astrigera (Araneae: Lycosidae). Ecol Evol 2018; 8:4352-4359. [PMID: 29721303 PMCID: PMC5916282 DOI: 10.1002/ece3.3988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
Variations in species morphology and life‐history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera, as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.
Collapse
Affiliation(s)
- Jinjian Yang
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Qijia Wu
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Rong Xiao
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Jupeng Zhao
- Guangdong Entry-Exit Inspection and Quarantine Technology Center Guangzhou China
| | - Jian Chen
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| | - Xiaoguo Jiao
- Center for Behavioral Ecology & Evolution Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources College of Life Sciences Hubei University Wuhan China
| |
Collapse
|
4
|
Rajpurohit S, Schmidt PS. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior. Fly (Austin) 2016; 10:149-61. [PMID: 27230726 PMCID: PMC5036927 DOI: 10.1080/19336934.2016.1194145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022] Open
Abstract
Measuring thermal behavior in smaller insects is particularly challenging. In this study, we describe a new horizontal thermal gradient apparatus designed to study adult thermal behavior in small insects and apply it using D. melanogaster as a model and case study. Specifically, we used this apparatus and associated methodology to examine the effects of sex, geographic origin, and developmental rearing temperature on temperature preferences exhibited by adults in a controlled laboratory environment. The thermal gradient established by the apparatus was stable over diurnal and calendar time. Furthermore, the distribution of adult flies across thermal habitats within the apparatus remained stable following the period of acclimation, as evidenced by the high degree of repeatability across both biological and technical replicates. Our data demonstrate significant and predictable variation in temperature preference for all 3 assayed variables. Behaviorally, females were more sensitive than males to higher temperatures. Flies originating from high latitude, temperate populations exhibited a greater preference for cooler temperatures; conversely, flies originating from low latitude, tropical habitats demonstrated a relative preference for higher temperatures. Similarly, larval rearing temperature was positively associated with adult thermal behavior: low culture temperatures increased the relative adult preference for cooler temperatures, and this response was distinct between the sexes and for flies from the temperate and subtropical geographic regions. Together, these results demonstrate that the temperature chamber apparatus elicits robust, predictable, and quantifiable thermal preference behavior that could readily be applied to other taxa to examine the role of temperature-mediated behavior in a variety of contexts.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul S. Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Lack JB, Yassin A, Sprengelmeyer QD, Johanning EJ, David JR, Pool JE. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila. Ecol Evol 2016; 6:5893-906. [PMID: 27547363 PMCID: PMC4983600 DOI: 10.1002/ece3.2327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/29/2023] Open
Abstract
Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.
Collapse
Affiliation(s)
- Justin B. Lack
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
- Present address: Center for Cancer Research National Cancer InstituteNIH BethesdaMaryland20892‐1201
| | - Amir Yassin
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| | | | - Evan J. Johanning
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| | - Jean R. David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE)CNRS, Univ. Paris‐Sud, IRDUniversité Paris‐Saclay1 av. de la Terrasse91198Gif‐sur‐YvetteFrance
| | - John E. Pool
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| |
Collapse
|
6
|
Williams CM, Buckley LB, Sheldon KS, Vickers M, Pörtner HO, Dowd WW, Gunderson AR, Marshall KE, Stillman JH. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter. Integr Comp Biol 2016; 56:73-84. [PMID: 27252194 DOI: 10.1093/icb/icw013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermal performance curves enable physiological constraints to be incorporated in predictions of biological responses to shifts in mean temperature. But do thermal performance curves adequately capture the biological impacts of thermal extremes? Organisms incur physiological damage during exposure to extremes, and also mount active compensatory responses leading to acclimatization, both of which alter thermal performance curves and determine the impact that current and future extremes have on organismal performance and fitness. Thus, these sub-lethal responses to extreme temperatures potentially shape evolution of thermal performance curves. We applied a quantitative genetic model and found that beneficial acclimatization and cumulative damage alter the extent to which thermal performance curves evolve in response to thermal extremes. The impacts of extremes on the evolution of thermal performance curves are reduced if extremes cause substantial mortality or otherwise reduce fitness differences among individuals. Further empirical research will be required to understand how responses to extremes aggregate through time and vary across life stages and processes. Such research will enable incorporating passive and active responses to sub-lethal stress when predicting the impacts of thermal extremes.
Collapse
Affiliation(s)
| | | | | | - Mathew Vickers
- Station d'Ecologie Théorique et Expérimentale, Moulis, 09200, UMR 5321, CNRS 2 route du CNRS, France
| | - Hans-Otto Pörtner
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremerhaven, Germany
| | - W Wesley Dowd
- Loyola Marymount University, Los Angeles, CA, USA 90045
| | - Alex R Gunderson
- *University of California, Berkeley, CA, USA 94720 San Francisco State University, Tiburon, CA, USA 94132
| | | | | |
Collapse
|
7
|
Zardi GI, Nicastro KR, Serrão EA, Jacinto R, Monteiro CA, Pearson GA. Closer to the rear edge: ecology and genetic diversity down the core-edge gradient of a marine macroalga. Ecosphere 2015. [DOI: 10.1890/es14-00460.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Rohde K, Dreher E, Hochkirch A. Sex-specific phenotypic plasticity in response to the trade-off between developmental time and body size supports the dimorphic niche hypothesis. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Katja Rohde
- Department of Biogeography; Trier University; D-54286 Trier Germany
| | - Elena Dreher
- Department of Biogeography; Trier University; D-54286 Trier Germany
| | - Axel Hochkirch
- Department of Biogeography; Trier University; D-54286 Trier Germany
| |
Collapse
|
9
|
Rajpurohit S, Nedved O. Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Couret J. Meta-analysis of factors affecting ontogenetic development rate in the Culex pipiens (Diptera: Culicidae) complex. ENVIRONMENTAL ENTOMOLOGY 2013; 42:614-626. [PMID: 23905724 DOI: 10.1603/en12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Meta-analysis of 33 studies of developmental timing of Culex pipiens s.l. Linnaeus demonstrates that development rate, or the rate of progression through immature life stadia, is primarily driven by temperature, whereas immature survival is driven by temperature, density, and variability in the environmental conditions. As expected, the linear relationship of temperature and development rate is positive for the larval period as well as development to adult emergence. However, the strength of this association varies significantly. Variation in development rate can be explained using additional environmental factors of intraspecific rearing density, sex, and study methodology. Heterogeneity in development rates even once temperature has been considered emphasizes the need for further research of multiple environmental factors and in changing environments. Immature survival is also significantly impacted by variability in environmental conditions. Development rates vary between subspecies of Cx. pipiens, but these population differences are no longer significant once an environmental factor of temperature is considered. Thus, variability in development rate of these insects appears to be primarily driven by response to certain environmental conditions rather than differences between populations. Broad patterns of phenotypic variation across latitude and 96 yr of empirical estimates were not significant once environmental rearing conditions had been considered.
Collapse
Affiliation(s)
- J Couret
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Buckley LB, Nufio CR, Kingsolver JG. Phenotypic clines, energy balances and ecological responses to climate change. J Anim Ecol 2013; 83:41-50. [DOI: 10.1111/1365-2656.12083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/10/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Lauren B. Buckley
- Department of Biology; University of North Carolina; Chapel Hill NC 27599 USA
| | - César R. Nufio
- Department of Ecology and Evolutionary Biology; University of Colorado; Boulder CO 80309 USA
- University of Colorado Natural History Museum; University of Colorado; Boulder CO 80309 USA
| | - Joel G. Kingsolver
- Department of Biology; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
12
|
Buckley LB, Miller EF, Kingsolver JG. Ectotherm Thermal Stress and Specialization Across Altitude and Latitude. Integr Comp Biol 2013; 53:571-81. [DOI: 10.1093/icb/ict026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Forster J, Hirst AG. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2011.01958.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
San Martin Y Gomez G, Van Dyck H. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation. Oecologia 2011; 169:125-33. [PMID: 22108853 DOI: 10.1007/s00442-011-2189-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
Urbanization alters environmental conditions in multiple ways and offers an ecological or evolutionary challenge for organisms to cope with. Urban areas typically have a warmer climate and strongly fragmented herbaceous vegetation; the urban landscape matrix is often assumed to be hostile for many organisms. Here, we addressed the issue of evolutionary differentiation between urban and rural populations of an ectotherm insect, the grasshopper Chorthippus brunneus. We compared mobility-related morphology and climate-related life history traits measured on the first generation offspring of grasshoppers from urban and rural populations reared in a common garden laboratory experiment. We predicted (1) the urban phenotype to be more mobile (i.e., lower mass allocation to the abdomen, longer relative femur and wing lengths) than the rural phenotype; (2) the urban phenotype to be more warm adapted (e.g., higher female body mass); and (3) further evidence of local adaptation in the form of significant interaction effects between landscape of origin and breeding temperature. Both males and females of urban origin had significantly longer relative femur and wing lengths and lower mass allocation to the abdomen (i.e., higher investment in thorax and flight muscles) relative to individuals of rural origin. The results were overall significant but small (2-4%). Body mass and larval growth rate were much higher (+10%) in females of urban origin. For the life history traits, we did not find evidence for significant interaction effects between the landscape of origin and the two breeding temperatures. Our results point to ecotypic differentiation with urbanization for mobility-related morphology and climate-related life history traits. We argue that the warmer urban environment has an indirect effect through longer growth season rather than direct effects on the development.
Collapse
|
15
|
CASSEL-LUNDHAGEN A, KAŇUCH P, LOW M, BERGGREN Å. Limited gene flow may enhance adaptation to local optima in isolated populations of the Roesel’s bush cricket (Metrioptera roeselii). J Evol Biol 2010; 24:381-90. [DOI: 10.1111/j.1420-9101.2010.02174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Banet AI, Au AG, Reznick DN. IS MOM IN CHARGE? IMPLICATIONS OF RESOURCE PROVISIONING ON THE EVOLUTION OF THE PLACENTA. Evolution 2010; 64:3172-82. [DOI: 10.1111/j.1558-5646.2010.01059.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Grasshopper community response to climatic change: variation along an elevational gradient. PLoS One 2010; 5:e12977. [PMID: 20886093 PMCID: PMC2944887 DOI: 10.1371/journal.pone.0012977] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/26/2010] [Indexed: 12/02/2022] Open
Abstract
Background The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology. Methodology/Principal Findings This study utilizes past (1959–1960) and present (2006–2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season. Conclusions Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process-oriented and predictive framework for understanding community level phenological responses to climate change.
Collapse
|
18
|
Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9414-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Liefting M, Weerenbeck M, Van Dooremalen C, Ellers J. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01732.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Frazier HN, Roth MB. Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Curr Biol 2009; 19:859-63. [PMID: 19398339 DOI: 10.1016/j.cub.2009.03.066] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/06/2009] [Accepted: 03/25/2009] [Indexed: 01/08/2023]
Abstract
The ability to adapt to changing environmental conditions is essential to the fitness of organisms. In some cases, adaptation of the parent alters the offspring's phenotype [1-10]. Such parental effects are adaptive for the offspring if the future environment is similar to the current one but can be maladaptive otherwise [11]. One mechanism by which adaptation occurs is altered provisioning of embryos by the parent [12-16]. Here we show that exposing adult Caenorhabditis elegans to hyperosmotic conditions protects their offspring from these conditions but causes sensitivity to anoxia exposure. We show that this alteration of survival is correlated with changes in the sugar content of adults and embryos. In addition, mutations in gene products that alter sugar homeostasis also alter the ability of embryos to survive in hyperosmotic and anoxic conditions and engage in the adaptive parental effect. Our results indicate that there is a physiological trade-off between the presence of glycerol, which protects animals from hyperosmotic conditions, and glycogen, which is consumed during anoxia. These two metabolites play an essential role in the survival of worms in these adverse environments, and the adaptive parental effect we describe is mediated by the provisioning of these metabolites to the embryo.
Collapse
Affiliation(s)
- Harold N Frazier
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
21
|
Gaston KJ. Geographic range limits: achieving synthesis. Proc Biol Sci 2009; 276:1395-406. [PMID: 19324809 PMCID: PMC2677218 DOI: 10.1098/rspb.2008.1480] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 12/12/2008] [Indexed: 11/12/2022] Open
Abstract
Understanding of the determinants of species' geographic range limits remains poorly integrated. In part, this is because of the diversity of perspectives on the issue, and because empirical studies have lagged substantially behind developments in theory. Here, I provide a broad overview, drawing together many of the disparate threads, considering, in turn, how influences on the terms of a simple single-population equation can determine range limits. There is theoretical and empirical evidence for systematic changes towards range limits under some circumstances in each of the demographic parameters. However, under other circumstances, no such changes may take place in particular parameters, or they may occur in a different direction, with limitation still occurring. This suggests that (i) little about range limitation can categorically be inferred from many empirical studies, which document change in only one demographic parameter, (ii) there is a need for studies that document variation in all of the parameters, and (iii) in agreement with theoretical evidence that range limits can be formed in the presence or absence of hard boundaries, environmental gradients or biotic interactions, there may be few general patterns as to the determinants of these limits, with most claimed generalities at least having many exceptions.
Collapse
Affiliation(s)
- Kevin J Gaston
- Biodiversity and Macroecology Group, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
22
|
Banet AI, Reznick DN. Do placental species abort offspring? Testing an assumption of the Trexler–DeAngelis model. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2007.01367.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Jones TC, Riechert SE, Dalrymple SE, Parker PG. Fostering model explains variation in levels of sociality in a spider system. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2006.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|