1
|
Singh A, Hasan A, Agrawal AF. An investigation of the sex-specific genetic architecture of fitness in Drosophila melanogaster. Evolution 2023; 77:2015-2028. [PMID: 37329263 DOI: 10.1093/evolut/qpad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
In dioecious populations, the sexes employ divergent reproductive strategies to maximize fitness and, as a result, genetic variants can affect fitness differently in males and females. Moreover, recent studies have highlighted an important role of the mating environment in shaping the strength and direction of sex-specific selection. Here, we measure adult fitness for each sex of 357 lines from the Drosophila Synthetic Population Resource in two different mating environments. We analyze the data using three different approaches to gain insight into the sex-specific genetic architecture for fitness: classical quantitative genetics, genomic associations, and a mutational burden approach. The quantitative genetics analysis finds that on average segregating genetic variation in this population has concordant fitness effects both across the sexes and across mating environments. We do not find specific genomic regions with strong associations with either sexually antagonistic (SA) or sexually concordant (SC) fitness effects, yet there is modest evidence of an excess of genomic regions with weak associations, with both SA and SC fitness effects. Our examination of mutational burden indicates stronger selection against indels and loss-of-function variants in females than in males.
Collapse
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Asad Hasan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ruzicka F, Connallon T, Reuter M. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights. Genetics 2021; 219:6362879. [PMID: 34740242 DOI: 10.1093/genetics/iyab143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Fitness effects of deleterious mutations can differ between females and males due to: (i) sex differences in the strength of purifying selection; and (ii) sex differences in ploidy. Although sex differences in fitness effects have important broader implications (e.g., for the evolution of sex and lifespan), few studies have quantified their scope. Those that have belong to one of two distinct empirical traditions: (i) quantitative genetics, which focusses on multi-locus genetic variances in each sex, but is largely agnostic about their genetic basis; and (ii) molecular population genetics, which focusses on comparing autosomal and X-linked polymorphism, but is poorly suited for inferring contemporary sex differences. Here, we combine both traditions to present a comprehensive analysis of female and male adult reproductive fitness among 202 outbred, laboratory-adapted, hemiclonal genomes of Drosophila melanogaster. While we find no clear evidence for sex differences in the strength of purifying selection, sex differences in ploidy generate multiple signals of enhanced purifying selection for X-linked loci. These signals are present in quantitative genetic metrics-i.e., a disproportionate contribution of the X to male (but not female) fitness variation-and population genetic metrics-i.e., steeper regressions of an allele's average fitness effect on its frequency, and proportionally less nonsynonymous polymorphism on the X than autosomes. Fitting our data to models for both sets of metrics, we infer that deleterious alleles are partially recessive. Given the often-large gap between quantitative and population genetic estimates of evolutionary parameters, our study showcases the benefits of combining genomic and fitness data when estimating such parameters.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia.,Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tim Connallon
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Centre for Life's Origins and Evolution, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
4
|
Hosking CJ, Raubenheimer D, Charleston MA, Simpson SJ, Senior AM. Macronutrient intakes and the lifespan-fecundity trade-off: a geometric framework agent-based model. J R Soc Interface 2020; 16:20180733. [PMID: 30958189 DOI: 10.1098/rsif.2018.0733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lifespan and fecundity, the main components in evolutionary fitness, are both strongly affected by nutritional state. Geometric framework of nutrition (GFN) experiments has shown that lifespan and fecundity are separated in nutrient space leading to a functional trade-off between the two traits. Here we develop a spatially explicit agent-based model (ABM) using the GFN to explore how ecological factors may cause selection on macronutrient appetites to optimally balance these life-history traits. We show that increasing the risk of extrinsic mortality favours intake of a mixture of nutrients that is associated with maximal fecundity at the expense of reduced longevity and that this result is robust across spatial and nutritional environments. These model behaviours are consistent with what has been observed in studies that quantify changes in life history in response to environmental manipulations. Previous GFN-derived ABMs have treated fitness as a single value. This is the first such model to instead decompose fitness into its primary component traits, longevity and fecundity, allowing evolutionary fitness to be an emergent property of the two. Our model demonstrates that selection on macronutrient appetites may affect life-history trade-offs and makes predictions that can be directly tested in artificial selection experiments.
Collapse
Affiliation(s)
- Cameron J Hosking
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - David Raubenheimer
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - Michael A Charleston
- 3 School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7005 , Australia
| | - Stephen J Simpson
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - Alistair M Senior
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
5
|
Ruzicka F, Hill MS, Pennell TM, Flis I, Ingleby FC, Mott R, Fowler K, Morrow EH, Reuter M. Genome-wide sexually antagonistic variants reveal long-standing constraints on sexual dimorphism in fruit flies. PLoS Biol 2019; 17:e3000244. [PMID: 31022179 PMCID: PMC6504117 DOI: 10.1371/journal.pbio.3000244] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
The evolution of sexual dimorphism is constrained by a shared genome, leading to ‘sexual antagonism’, in which different alleles at given loci are favoured by selection in males and females. Despite its wide taxonomic incidence, we know little about the identity, genomic location, and evolutionary dynamics of antagonistic genetic variants. To address these deficits, we use sex-specific fitness data from 202 fully sequenced hemiclonal Drosophila melanogaster fly lines to perform a genome-wide association study (GWAS) of sexual antagonism. We identify approximately 230 chromosomal clusters of candidate antagonistic single nucleotide polymorphisms (SNPs). In contradiction to classic theory, we find no clear evidence that the X chromosome is a hot spot for sexually antagonistic variation. Characterising antagonistic SNPs functionally, we find a large excess of missense variants but little enrichment in terms of gene function. We also assess the evolutionary persistence of antagonistic variants by examining extant polymorphism in wild D. melanogaster populations and closely related species. Remarkably, antagonistic variants are associated with multiple signatures of balancing selection across the D. melanogaster distribution range and in their sister species D. simulans, indicating widespread and evolutionarily persistent (about 1 million years) genomic constraints on the evolution of sexual dimorphism. Based on our results, we propose that antagonistic variation accumulates because of constraints on the resolution of sexual conflict over protein coding sequences, thus contributing to the long-term maintenance of heritable fitness variation. This study characterises antagonistic loci across the genome of the fruit fly Drosophila melanogaster, finding them to be preferentially associated with variation in coding sequences and to be selectively maintained across worldwide populations of D. melanogaster, and even its sister species D. simulans.
Collapse
Affiliation(s)
- Filip Ruzicka
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mark S. Hill
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanya M. Pennell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Ilona Flis
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Fiona C. Ingleby
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Richard Mott
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Edward H. Morrow
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (MR); (EHM)
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail: (MR); (EHM)
| |
Collapse
|
6
|
Berson JD, Simmons LW. Female cuticular hydrocarbons can signal indirect fecundity benefits in an insect. Evolution 2019; 73:982-989. [DOI: 10.1111/evo.13720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob D. Berson
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western Australia Crawley Western Australia 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western Australia Crawley Western Australia 6009 Australia
| |
Collapse
|
7
|
Schneider J, Atallah J, Levine JD. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc 2016; 92:1027-1038. [PMID: 26990016 DOI: 10.1111/brv.12267] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this 'social environment effect' by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group-level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Jade Atallah
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
8
|
Foucaud J, Moreno C, Pascual M, Rezende EL, Castañeda LE, Gibert P, Mery F. Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability. Ecol Evol 2016; 6:1725-36. [PMID: 26925216 PMCID: PMC4755011 DOI: 10.1002/ece3.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at qualitative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions. Learning can be crucial for survival and reproduction of introduced organisms in novel areas, for example, for detecting new predators, or finding mates or oviposition sites. Here we explored how oviposition performance evolved in relation to both fecundity and learning during an invasion, using native and introduced Drosophila subobscura populations performing an ecologically relevant task. Our results indicated that, under comparable conditions, invasive populations performed better during our oviposition task than did native populations. This was because invasive populations had higher fecundity, together with similar cognitive performance when compared to native populations, and that there was no interaction between learning and fecundity. Unexpectedly, our study did not reveal an allocation trade‐off (i.e., a negative relationship) between learning and fecundity. On the contrary, the pattern we observed was more consistent with an acquisition trade‐off, meaning that fecundity could be limited by availability of resources, unlike cognitive ability. This pattern might be the consequence of escaping natural enemies and/or competitors during the introduction. The apparent lack of evolution of learning may indicate that the introduced population did not face novel cognitive challenges in the new environment (i.e., cognitive “pre‐adaptation”). Alternatively, the evolution of learning may have been transient and therefore not detected.
Collapse
Affiliation(s)
- Julien Foucaud
- Laboratoire Evolution, Génomes, Comportement et Ecologie UMR-CNRS 9191 Gif/Yvette France
| | - Céline Moreno
- Laboratoire Evolution, Génomes, Comportement et Ecologie UMR-CNRS 9191 Gif/Yvette France
| | - Marta Pascual
- Department of Genetics and IrBio Universitat de Barcelona Av. Diagonal 643 08028 Barcelona Spain
| | - Enrico L Rezende
- Department of Life Sciences University of Roehampton Holybourne Avenue London SW15 4JD UK
| | - Luis E Castañeda
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile PO 5090000 Valdivia Chile
| | - Patricia Gibert
- Université de Lyon Université Lyon1 Laboratoire de Biométrie et Biologie Evolutive UMR CNRS 5558 43 Bd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | - Frederic Mery
- Laboratoire Evolution, Génomes, Comportement et Ecologie UMR-CNRS 9191 Gif/Yvette France
| |
Collapse
|
9
|
Edward DA, Poissant J, Wilson AJ, Chapman T. Sexual conflict and interacting phenotypes: a quantitative genetic analysis of fecundity and copula duration in Drosophila melanogaster. Evolution 2014; 68:1651-60. [PMID: 24495114 DOI: 10.1111/evo.12376] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
Many reproductive traits that have evolved under sexual conflict may be influenced by both sexes. Investigation of the genetic architecture of such traits can yield important insight into their evolution, but this entails that the heritable component of variation is estimated for males and females-as an interacting phenotype. We address the lack of research in this area through an investigation of egg production and copula duration in the fruit fly, Drosophila melanogaster. Despite egg production rate being determined by both sexes, which may cause sexual conflict, an assessment of this trait as an interacting phenotype is lacking. It is currently unclear whether copula duration is determined by males and/or females. We found significant female, but not male, genetic variance for egg production rate that may indicate reduced potential for ongoing sexually antagonistic coevolution. In contrast, copula duration was determined by significant genetic variance in both sexes. We also identified genetic variation in egg retention among virgin females. Although previously identified in wild populations, it is unclear why this should be present in a laboratory stock. This study provides a novel insight into the shared genetic architecture of reproductive traits that are the subject of sexual conflict.
Collapse
Affiliation(s)
- Dominic A Edward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, United Kingdom; Mammalian Behaviour & Evolution, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Shaw RG, Shaw FH. Quantitative genetic study of the adaptive process. Heredity (Edinb) 2014; 112:13-20. [PMID: 23715015 PMCID: PMC3860163 DOI: 10.1038/hdy.2013.42] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022] Open
Abstract
The additive genetic variance with respect to absolute fitness, VA(W), divided by mean absolute fitness, , sets the rate of ongoing adaptation. Fisher's key insight yielding this quantitative prediction of adaptive evolution, known as the Fundamental Theorem of Natural Selection, is well appreciated by evolutionists. Nevertheless, extremely scant information about VA(W) is available for natural populations. Consequently, the capacity for fitness increase via natural selection is unknown. Particularly in the current context of rapid environmental change, which is likely to reduce fitness directly and, consequently, the size and persistence of populations, the urgency of advancing understanding of immediate adaptive capacity is extreme. We here explore reasons for the dearth of empirical information about VA(W), despite its theoretical renown and critical evolutionary role. Of these reasons, we suggest that expectations that VA(W) is negligible, in general, together with severe statistical challenges of estimating it, may largely account for the limited empirical emphasis on it. To develop insight into the dynamics of VA(W) in a changing environment, we have conducted individual-based genetically explicit simulations. We show that, as optimizing selection on a trait changes steadily over generations, VA(W) can grow considerably, supporting more rapid adaptation than would the VA(W) of the base population. We call for direct evaluation of VA(W) and in support of prediction of rates adaptive evolution, and we advocate for the use of aster modeling as a rigorous basis for achieving this goal.
Collapse
Affiliation(s)
- R G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| | - F H Shaw
- Department of Mathematics, Hamline University, St Paul, MN, USA
| |
Collapse
|
11
|
Zhang XS. Fisher's geometrical model of fitness landscape and variance in fitness within a changing environment. Evolution 2012; 66:2350-68. [PMID: 22834737 DOI: 10.1111/j.1558-5646.2012.01610.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The fitness of an individual can be simply defined as the number of its offspring in the next generation. However, it is not well understood how selection on the phenotype determines fitness. In accordance with Fisher's fundamental theorem, fitness should have no or very little genetic variance, whereas empirical data suggest that is not the case. To bridge these knowledge gaps, we follow Fisher's geometrical model and assume that fitness is determined by multivariate stabilizing selection toward an optimum that may vary among generations. We assume random mating, free recombination, additive genes, and uncorrelated stabilizing selection and mutational effects on traits. In a constant environment, we find that genetic variance in fitness under mutation-selection balance is a U-shaped function of the number of traits (i.e., of the so-called "organismal complexity"). Because the variance can be high if the organism is of either low or high complexity, this suggests that complexity has little direct costs. Under a temporally varying optimum, genetic variance increases relative to a constant optimum and increasingly so when the mutation rate is small. Therefore, mutation and changing environment together can maintain high genetic variance. These results therefore lend support to Fisher's geometric model of a fitness landscape.
Collapse
Affiliation(s)
- Xu-Sheng Zhang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
12
|
|
13
|
|
14
|
Coutellec MA, Collinet M, Caquet T. Parental exposure to pesticides and progeny reaction norm to a biotic stress gradient in the freshwater snail Lymnaea stagnalis. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:524-534. [PMID: 21340555 DOI: 10.1007/s10646-011-0611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
Human-induced environmental stress may lead to rapid evolutionary processes, and can affect the ability of natural populations to respond to other environmental change or stress. We used quantitative genetics tools, pesticide exposure and a gradient of biotic stress to investigate these questions in the freshwater snail Lymnaea stagnalis. The study focused on the genetic component of variance for life-history traits within populations, and the ability of different lines to respond differently to stress. The effect of parental exposure to a xenobiotic stress on the reaction norm of the progeny to another stress was also estimated (parental non-genetic effect). First, under laboratory conditions, inter-family variance suggested significant heritability for most traits. Second, under outdoor exposure to various pesticides, variation among families was significant for individual growth. Clutch size and hatching rate of the clutches laid in the laboratory after exposure showed similar results, and moreover, family interacted significantly with pesticides. Third, under a gradient of biotic stress (food and competition), inter-family variation was again significant for growth, and a significant interaction with biotic stress was observed for juvenile growth and ultimate size. Family heterogeneity and family × environment interactions indicate the possibility of differential evolutionary responses among lines, through different reaction norms. Stressful conditions did not affect the estimated heritability, and for pesticides, no transgenerational effect was detected on progeny growth in response to the biotic stress. Focused on short-term evolutionary responses, the present study illustrates a possible way of incorporating evolutionary approaches into ecotoxicological risk assessment procedures, for example, by accounting for inter-family variation.
Collapse
Affiliation(s)
- Marie-Agnès Coutellec
- INRA UMR 0985 ESE, Agrocampus-Ouest, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex, France.
| | | | | |
Collapse
|
15
|
Long TAF, Pischedda A, Rice WR. Remating in Drosophila melanogaster: are indirect benefits condition dependent? Evolution 2011; 64:2767-74. [PMID: 20394654 DOI: 10.1111/j.1558-5646.2010.00997.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e., remating with different males) vary with female condition, as this may influence the strength and direction of sexual selection. Here, using the model organism Drosophila melanogaster, we test whether the indirect benefits that a nonvirgin female gains by remating (“trading-up”) are influenced by her condition (body size). We found that remating by small-bodied, low-fecundity females resulted in the production of daughters of relatively higher fecundity, whereas the opposite pattern was observed for large-bodied females. In contrast, remating had no measurable effect on the relative reproductive success of sons from dams of either body size. These results are consistent with a hypothesis based on sexually antagonistic genetic variation. The implications of these results to our understanding of the evolution and consequences of polyandry are discussed.
Collapse
Affiliation(s)
- Tristan A F Long
- Department of Ecology, Evolution & Marine Biology, Life Sciences Building, University of Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
16
|
Tien NSH, Sabelis MW, Egas M. The maintenance of genetic variation for oviposition rate in two-spotted spider mites: inferences from artificial selection. Evolution 2011; 64:2547-57. [PMID: 20394655 DOI: 10.1111/j.1558-5646.2010.00996.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the directional selection acting on life-history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade-offs) or from mutation-selection balance. These mechanisms affect allele frequencies in different ways: Under balancing selection alleles are maintained at intermediate frequencies, whereas under mutation-selection balance variation is generated by deleterious mutations and removed by directional selection, which leads to asymmetry in the distribution of allele frequencies. To investigate the importance of these two mechanisms in maintaining heritable variation in oviposition rate of the two-spotted spider mite, we analyzed the response to artificial selection. In three replicate experiments, we selected for higher and lower oviposition rate, compared to control lines. A response to selection only occurred in the downward direction. Selection for lower oviposition rate did not lead to an increase in any other component of fitness, but led to a decline in female juvenile survival. The results suggest standing variation for oviposition rate in this population consists largely of deleterious alleles, as in a mutation-selection balance. Consequently, the standing variation for this trait does not appear to be indicative of its adaptive potential.
Collapse
Affiliation(s)
- Nicola S H Tien
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. N.S.H.Tien@.uva.nl
| | | | | |
Collapse
|
17
|
LONG TAF, PISCHEDDA A, NICHOLS RV, RICE WR. The timing of mating influences reproductive success inDrosophila melanogaster: implications for sexual conflict. J Evol Biol 2010; 23:1024-32. [DOI: 10.1111/j.1420-9101.2010.01973.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Long TAF, Pischedda A, Stewart AD, Rice WR. A cost of sexual attractiveness to high-fitness females. PLoS Biol 2009; 7:e1000254. [PMID: 19997646 PMCID: PMC2780925 DOI: 10.1371/journal.pbio.1000254] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Females are frequently harassed and harmed by males attempting to obtain matings. When these males are also “choosy” with their courtship, there may be negative consequences to the species' ability to adaptively evolve. Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation. We then use a Drosophila melanogaster model system to experimentally test the key prediction of this theoretical cost: that antagonistic male persistence is directed toward, and harms, intrinsically higher-fitness females more than it does intrinsically lower-fitness females. This asymmetry in male persistence causes the tails of the population's fitness distribution to regress towards the mean, thereby reducing the efficacy of natural selection. We conclude that adaptive male mate choice can lead to an important, yet unappreciated, cost of sex and sexual selection. In many species, females are frequently subject to harassing courtship from males attempting to mate with them. These persistent male behaviors can result in females incurring substantial direct fitness costs. We set out to examine how these costs may influence adaptive potential in a species that also exhibits male mate choice, i.e., a preference by males for females exhibiting certain traits. We found that harmful courtship behaviors were directed predominantly towards females of greater reproductive potential (and away from females of lesser potential), resulting in a reduction in the variation of lifetime reproductive successes among females in the population. This change in distribution of realized fitnesses represents a previously unappreciated consequence of sexual conflict–adaptive male mate preference can slow the rate of accumulation of beneficial mutations and speed the rate of accumulation of harmful mutations, thereby creating a “sexual conflict adaptive load” within a species.
Collapse
Affiliation(s)
- Tristan A F Long
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| | | | | | | |
Collapse
|
19
|
DOWLING DK, MAKLAKOV AA, FRIBERG U, HAILER F. Applying the genetic theories of ageing to the cytoplasm: cytoplasmic genetic covariation for fitness and lifespan. J Evol Biol 2009; 22:818-27. [DOI: 10.1111/j.1420-9101.2009.01692.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|