1
|
Liang P, Ning J, Wang W, Zhu P, Gui L, Xie W, Zhang Y. Catalase promotes whitefly adaptation to high temperature by eliminating reactive oxygen species. INSECT SCIENCE 2023; 30:1293-1308. [PMID: 36478361 DOI: 10.1111/1744-7917.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Thermal stress usually leads to excessive production of reactive oxygen species (ROS) in all aerobic organisms. Catalases (CAT) are the key antioxidant enzymes, which act as the first line of defense against ROS in the antioxidant pathway. The highly invasive and widely distributed whitefly Bemisia tabaci MED damages plants by feeding as well as by transmitting many plant viruses. Previous studies have shown that strong adaptability to high temperature helps explain the spread of MED around the world. However, the mechanism underlying high temperature adaptation of this pest is not well understood. In this study, 6 CAT genes were identified from the MED genome and transcriptome dataset, among which BtCAT1, BtCAT2, and BtCAT3 were found to be highly expressed in adults. The expression of BtCAT1, BtCAT2, or BtCAT3 increased with induction temperature and induction time. The MED was exposed with mean high temperature (30 °C or 35 °C) and a short-term extremely high temperature (39 °C or 41 °C) after the silencing of BtCAT1, BtCAT2, or BtCAT3 to significantly increased ROS levels by at least 0.5 times and significantly decreased survival rate and fecundity of MED adults. The ROS level in the treated specimens gradually returned to a normal level after 24 h at 25 °C, but the survival rate still declined significantly. Taken together, our results demonstrate that CAT could help B. tabaci adapt to long-term mean high temperatures and short-term extremely high temperatures by eliminating excessive ROS.
Collapse
Affiliation(s)
- Peng Liang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Ning
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pu Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Lianyou Gui
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
|
3
|
Armstrong EJ, Tanner RL, Stillman JH. High Heat Tolerance Is Negatively Correlated with Heat Tolerance Plasticity in Nudibranch Mollusks. Physiol Biochem Zool 2019; 92:430-444. [PMID: 31192766 DOI: 10.1086/704519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Rapid ocean warming may alter habitat suitability and population fitness for marine ectotherms. Susceptibility to thermal perturbations will depend in part on plasticity of a species' upper thermal limits of performance (CTmax). However, we currently lack data regarding CTmax plasticity for several major marine taxa, including nudibranch mollusks, thus limiting predictive responses to habitat warming for these species. In order to determine relative sensitivity to future warming, we investigated heat tolerance limits (CTmax), heat tolerance plasticity (acclimation response ratio), thermal safety margins, temperature sensitivity of metabolism, and metabolic cost of heat shock in nine species of nudibranchs collected across a thermal gradient along the northeastern Pacific coast of California and held at ambient and elevated temperature for thermal acclimation. Heat tolerance differed significantly among species, ranging from 25.4 ° ± 0.5 ° C to 32.2 ° ± 1.8 ° C ( x ¯ ± SD ), but did not vary with collection site within species. Thermal plasticity was generally high ( 0.52 ± 0.06 , x ¯ ± SE ) and was strongly negatively correlated with CTmax in accordance with the trade-off hypothesis of thermal adaptation. Metabolic costs of thermal challenge were low, with no significant alteration in respiration rate of any species 1 h after exposure to acute heat shock. Thermal safety margins, calculated against maximum habitat temperatures, were negative for nearly all species examined ( -8.5 ° ± 5.3 ° C , x ¯ ± CI [confidence interval]). From these data, we conclude that warm adaptation in intertidal nudibranchs constrains plastic responses to acute thermal challenge and that southern warm-adapted species are likely most vulnerable to future warming.
Collapse
|
4
|
Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:97-104. [PMID: 30195394 DOI: 10.1016/j.pestbp.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/24/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Bemisia tabaci (Gennadius) Q biotype (BTQ) has spread to many tropical and subtropical regions over the past several decades. This may reflect an advantage biotype Q has over closely related forms in having greater thermal and/or insecticide resistance, although the effects of higher temperatures on insecticide tolerance of BTQ has, to date, been largely ignored. In this study, the effects of elevated temperatures on BTQ's tolerance to the insecticide thiamethoxam were investigated. The effect on the activities of detoxifying enzymes [carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 monooxygenase (P450)] and expression profiling of eleven genes of detoxifying enzymes were also determined. In addition, RNA interference (RNAi) and bioassay methods were used to further identify the function of CYP6CM1 in tolerance to thiamethoxam following exposure to higher temperatures. The results showed that elevated temperatures were responsible for causing different outcomes in the tolerance of BTQ to thiamethoxam: Temperatures of 35 °C or higher decreased the tolerance of BTQ to thiamethoxam, while a moderately high temperature of 31 °C increased the tolerance. The high temperature influenced the tolerance of BTQ by affecting the activity of P450. Quantitative real-time PCR (qPCR) showed that CYP6CM1 was significantly up-regulated in most treatments at 31 °C, but was suppressed at 35 °C, which was closely associated with the mortality rates. Feeding on double-stranded RNA (dsRNA) of CYP6CM1 significantly reduced the mRNA levels of the target gene in the adults, and dramatically decreased tolerance to thiamethoxam induced by a temperature of 31 °C for 6 h. Our finding provides useful information to better understand the invasion mechanism of BTQ.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingming Su
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuo Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
5
|
Dai TM, Wang YS, Liu WX, Lü ZC, Wan FH. Thermal Discrimination and Transgenerational Temperature Response in Bemisia tabaci Mediterranean (Hemiptera: Aleyrodidae): Putative Involvement of the Thermo-Sensitive Receptor BtTRPA. ENVIRONMENTAL ENTOMOLOGY 2018; 47:204-209. [PMID: 29304195 DOI: 10.1093/ee/nvx202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic climate change and global warming are expected to alter the geographic distribution and abundance of many ectothermic species, which will increase the invasion of new areas by exotic species. To survive in variable or fluctuating temperature conditions, insects require sensitive thermal sensory mechanisms to detect external thermal stimuli and induce the appropriate behavioral and physiological responses. TRPA, a thermal-activated transient receptor potential (TRP) family ion channel, is essential for thermotaxis in insects. Here, we investigated the potential role of BtTRPA in short-term and long-term thermal stress in Bemisia tabaci Mediterranean (Gennadius; Hemiptera: Aleyrodidae). We found that BtTRPA was mainly expressed in the head, where the antennae are located. Under short-term thermal stress, the BtTRPA gene was robustly expressed after exposure to acute low or high temperatures, BtTRPA expression reached the highest levels after exposure to 0°C for 3 h and 40°C for 5 h, but was relatively low after exposure to milder stimuli (12 and 35°C). These results demonstrated that BtTRPA could discriminate between innocuous and noxious temperature stimuli. Under long-term thermal stress, the highest expression level of BtTRPA occurred at G1 exposed to mild innocuous temperature of 21 and 31°C, along with BtTRPA sharply increased and peaked in adult females, implying that mild innocuous long-term thermal exposure could cause transgenerational expression effects to enhance the ability of offspring to cope with the same stress. This study demonstrates that the channel BtTRPA is important in temperature sensing and provides a molecular basis for thermosensation regulation in response to varied environmental temperature in B. tabaci Mediterranean.
Collapse
Affiliation(s)
- Tian-Mei Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yu-Sheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, PR China
| |
Collapse
|
6
|
Jiang R, Qi LD, Du YZ, Li YX. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2190-2198. [PMID: 28961720 DOI: 10.1093/jee/tox224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan-Da Qi
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Zhou Du
- Institute of Applied Entomology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuan-Xi Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, Dash CK, Wang L. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol 2017; 19:3439-3449. [PMID: 28618183 DOI: 10.1111/1462-2920.13821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts.
Collapse
Affiliation(s)
- Mubasher Hussain
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Plant Health Division, International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Keppanan Ravindran
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongwen Lin
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bamisope Steve Bamisile
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Qasim
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chandra Kanta Dash
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3300, Bangladesh
| | - Liande Wang
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Yao FL, Zheng Y, Huang XY, Ding XL, Zhao JW, Desneux N, He YX, Weng QY. Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian province in China during 2005-2014. Sci Rep 2017; 7:40803. [PMID: 28112233 PMCID: PMC5256031 DOI: 10.1038/srep40803] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
The whitefly Bemisia tabaci (Gennadius) is an important agricultural insect pest worldwide. The B and Q biotypes are the two most predominant and devastating biotypes prevalent across China. However, there are few studies regarding the occurrence of the Q biotype in Fujian Province, China, where high insecticide resistance has been reported in the B biotype. Differences in some biological characteristics between the B and Q biotypes, especially insecticide resistance, are considered to affect the outcome of their competition. Extensive surveys in Fujian revealed that the B biotype was predominant during 2005–2014, whereas the Q biotype was first detected in some locations in 2013 and widely detected throughout the province in 2014. Resistance to neonicotinoids (that have been used for more than 10 years) exhibited fluctuations in open fields, but showed a continual increasing trend in protected areas. Resistance to lambda-cyhalothrin, chlorpyrifos, and abamectin exhibited a declining trend. Resistance to novel insecticides, such as nitenpyram, pymetrozine, sulfoxaflor, and cyantraniliprole, in 2014 was generally below a moderate level. A decline in insecticide resistance in the B biotype and the rapid buildup of protected crops under global temperature increase may have promoted the establishment of the Q biotype in Fujian.
Collapse
Affiliation(s)
- Feng-Luan Yao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| | - Yu Zheng
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| | - Xiao-Yan Huang
- Provincial Station of Plant Protection and Quarantine, Fujian Provincial Department of Agriculture, Fuzhou 350001, China
| | - Xue-Ling Ding
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| | - Jian-Wei Zhao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06903, Sophia-Antipolis, France
| | - Yu-Xian He
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| | - Qi-Yong Weng
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350001, China
| |
Collapse
|
9
|
Zidon R, Tsueda H, Morin E, Morin S. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1198-210. [PMID: 27509758 DOI: 10.1890/15-1045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/12/2023]
Abstract
The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.
Collapse
|
10
|
Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies. Sci Rep 2016; 6:24306. [PMID: 27080927 PMCID: PMC4832212 DOI: 10.1038/srep24306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Thermal response and tolerance to ambient temperature play important roles in determining the geographic distribution and seasonal abundance of insects. We examined the survival and performance, as well as expression of three heat shock protein related genes, of two species of invasive whiteflies, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), of the Bemisia tabaci species complex following exposure to a range of low and high temperatures. Our data demonstrated that the MED species was more tolerant to high temperatures than the MEAM1 species, especially in the adult stage, and this difference in thermal responses may be related to the heat shock protein related genes hsp90 and hsp70. These findings may assist in understanding and predicting the distribution and abundance of the two invasive whiteflies in the field.
Collapse
|
11
|
Halon E, Eakteiman G, Moshitzky P, Elbaz M, Alon M, Pavlidi N, Vontas J, Morin S. Only a minority of broad-range detoxification genes respond to a variety of phytotoxins in generalist Bemisia tabaci species. Sci Rep 2015; 5:17975. [PMID: 26655836 PMCID: PMC4674796 DOI: 10.1038/srep17975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023] Open
Abstract
Generalist insect can utilize two different modes for regulating their detoxification genes, the constitutive mode and the induced mode. Here, we used the Bemisia tabaci sibling species MEAM1 and MED, as a model system for studying constitutive and induced detoxification resistance and their associated tradeoffs. B. tabaci adults were allowed to feed through membranes for 24 h on diet containing only sucrose or sucrose with various phytotoxins. Quantitative real-time PCR analyses of 18 detoxification genes, indicated that relatively few transcripts were changed in both the MEAM1 and MED species, in response to the addition of phytotoxins to the diet. Induced transcription of detoxification genes only in the MED species, in response to the presence of indole-3-carbinol in the insect’s diet, was correlated with maintenance of reproductive performance in comparison to significant reduction in performance of the MEAM1 species. Three genes, COE2, CYP6-like 5 and BtGST2, responded to more than one compound and were highly transcribed in the insect gut. Furthermore, functional assays showed that the BtGST2 gene encodes a protein capable of interacting with both flavonoids and glucosinolates. In conclusion, several detoxification genes were identified that could potentially be involved in the adaptation of B. tabaci to its host plants.
Collapse
Affiliation(s)
- Eyal Halon
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Galit Eakteiman
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Pnina Moshitzky
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Moshe Elbaz
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michal Alon
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nena Pavlidi
- Department of Biology, University of Crete, Heraklion, Crete 71409, Greece
| | - John Vontas
- Institute of Molecular Biology &Biotechnology, Foundation for Research &Technology Hellas, Heraklion, Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
12
|
Pan H, Preisser EL, Chu D, Wang S, Wu Q, Carriére Y, Zhou X, Zhang Y. Insecticides promote viral outbreaks by altering herbivore competition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1585-95. [PMID: 26552266 DOI: 10.1890/14-0752.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/13/2023]
Abstract
While the management of biological invasions is often characterized by a series of single-specieg decisions, invasive species exist within larger food webs. These biotic interactions can alter the impact of control/eradication programs and may cause suppression efforts to inadvertently facilitate invasion spread and impact. We document the rapid replacement of the invasive Bemisia Middle East-Asia Minor I (MEAM1) cryptic biotype by the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV) than MEAMJ. While MEAM1 usually excludes MED under natural conditions, insecticide application reverses the MEAM1-MED competitive hierarchy and allows MED to exclude MEAMI. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout China. Our work strongly supports the hypothesis that insecticide use in China reverses the MEAMl-MED competitive hierarchy and allows MED to displace MEAM1 in managed landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector, insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.
Collapse
|
13
|
Díaz F, Orobio RF, Chavarriaga P, Toro-Perea N. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1). J Therm Biol 2015; 52:199-207. [DOI: 10.1016/j.jtherbio.2015.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
|
14
|
Lü ZC, Gao QL, Wan FH, Yu H, Guo JY. Increased survival and prolonged longevity mainly contribute to the temperature-adaptive evolutionary strategy in invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East Asia Minor 1. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:143. [PMID: 25347834 PMCID: PMC5443472 DOI: 10.1093/jisesa/ieu005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/09/2012] [Accepted: 05/01/2013] [Indexed: 06/04/2023]
Abstract
With increasing global climate change, analyses of stress-inducing conditions have important significance in ecological adaptation and the biological distribution of species. To reveal the difference in temperature-adaptive strategy between Turpan and Beijing populations of Bemisia tabaci (Gennadius) Middle East Asia Minor 1 (MEAM1) under high-temperature stress conditions, we compared thermal tolerance and life history traits between Beijing and Turpan populations of MEAM1 after exposure to different heat shock treatments for different times. The experimental design reflected the nature of heat stress conditions suffered by MEAM1. The results showed that eggs, red-eyed pupae, and adults of the Turpan population were more heat tolerant than those of the Beijing population under the same stress conditions. Additionally, it was found that longevity and F1 adult survival rate were significantly higher in the Turpan population than in the Beijing population after heat shock stress, but egg number and F1 female ratio were not significantly different between Turpan population and Beijing population. Overall, it was suggested that heat tolerance and longevity traits were the most relevant for climate characteristics and not reproductive traits, and improved heat tolerance and prolonged longevity were important adaptive strategies that helped MEAM1 to survive in harsh high-temperature conditions such as Turpan arid desert climate. The present results provided further insight into the modes of heat tolerance and the ways in which survival and longevity traits respond to environmental selection pressures.
Collapse
Affiliation(s)
- Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Qing-Lei Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing 100193, China
| | - Hao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China Department of Entomology, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Jian-Ying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
15
|
Shan HW, Lu YH, Bing XL, Liu SS, Liu YQ. Differential responses of the whitefly Bemisia tabaci symbionts to unfavorable low and high temperatures. MICROBIAL ECOLOGY 2014; 68:472-482. [PMID: 24788211 DOI: 10.1007/s00248-014-0424-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/30/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The whitefly Bemisia tabaci complex contains many cryptic species, of which the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) are notorious invasive pests. In our field-collected whitefly samples, MEAM1 harbors an obligate primary symbiont "Candidatus Portiera aleyrodidarum" and two secondary symbionts, "Candidatus Hamiltonella defensa" and Rickettsia sp., whereas MED has only "Ca. Portiera aleyrodidarum" and "Ca. Hamiltonella defensa." Both "Ca. Portiera aleyrodidarum" and "Ca. Hamiltonella defensa" are intracellular endosymbionts residing in the bacteriomes, whereas Rickettsia sp. has a scattered distribution throughout the host body cavity. We examined responses of these symbionts to adverse temperatures as well as survival of the host insects. After cold treatment at 5 or 10 °C or heat treatment at 35 or 40 °C for 24 h, respectively, the infection rates of all symbionts were not significantly decreased based on diagnosis PCR. However, quantitative PCR assays indicated significant reduction of "Ca. Hamiltonella defensa" at 40 °C, and the reduction became greater as the duration increased. Compared with "Ca. Hamiltonella defensa," "Ca. Portiera aleyrodidarum" was initially less affected in the first day but then showed more rapid reduction at days 3-5. The density of Rickettsia sp. fluctuated but was not reduced significantly at 40 °C. Meanwhile, the mortality rates of the host whiteflies elevated rapidly as the duration of exposure to heat treatment increased. The differential responses of various symbionts to adverse temperatures imply complex interactions among the symbionts inside the same host insect and highlight the importance of taking the whole bacterial community into account in studies of symbioses.
Collapse
Affiliation(s)
- Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
16
|
Gilioli G, Pasquali S, Parisi S, Winter S. Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. PEST MANAGEMENT SCIENCE 2014; 70:1611-1623. [PMID: 24458692 DOI: 10.1002/ps.3734] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/02/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bemisia tabaci is a serious pest of agricultural and horticultural crops in greenhouses and fields around the world. This paper deals with the distribution of the pest under field conditions. In Europe, the insect is currently found in coastal regions of Mediterranean countries where it is subject to quarantine regulations. To assess the risk presented by B. tabaci to Europe, the area of potential establishment of this insect, in light of the climate change scenario, was assessed by a temperature-dependent physiologically based demographic model (PBDM). RESULTS The simulated potential distribution under current climate conditions has been successfully validated with the available field records of B. tabaci in Europe. Considering climate change scenarios of +1 and +2 °C, range expansion by B. tabaci is predicted, particularly in Spain, France, Italy, Greece and along the Adriatic coast of the Balkans. Nonetheless, even under the scenario of +2 °C, northern European countries are not likely to be at risk of B. tabaci establishment because of climatic limitations. CONCLUSION Model validation with field observations and evaluation of uncertainties associated with model parameter variability support the reliability of model results. The PBDM developed here can be applied to other organisms and offers significant advantages for assessing the potential distribution of invasive species.
Collapse
|
17
|
Díaz F, Muñoz-Valencia V, Juvinao-Quintero DL, Manzano-Martínez MR, Toro-Perea N, Cárdenas-Henao H, Hoffmann AA. Evidence for adaptive divergence of thermal responses among Bemisia tabaci populations from tropical Colombia following a recent invasion. J Evol Biol 2014; 27:1160-71. [PMID: 24800647 DOI: 10.1111/jeb.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2014] [Revised: 03/11/2014] [Accepted: 03/30/2014] [Indexed: 11/29/2022]
Abstract
There is an increasing evidence that populations of ectotherms can diverge genetically in response to different climatic conditions, both within their native range and (in the case of invasive species) in their new range. Here, we test for such divergence in invasive whitefly Bemisia tabaci populations in tropical Colombia, by considering heritable variation within and between populations in survival and fecundity under temperature stress, and by comparing population differences with patterns established from putatively neutral microsatellite markers. We detected significant differences among populations linked to mean temperature (for survival) and temperature variation (for fecundity) in local environments. A QST - FST analysis indicated that phenotypic divergence was often larger than neutral expectations (QST > FST ). Particularly, for survival after a sublethal heat shock, this divergence remained linked to the local mean temperature after controlling for neutral divergence. These findings point to rapid adaptation in invasive whitefly likely to contribute to its success as a pest species. Ongoing evolutionary divergence also provides challenges in predicting the likely impact of Bemisia in invaded regions.
Collapse
Affiliation(s)
- F Díaz
- Department of Biology, Universidad del Valle, Cali, Colombia
| | | | | | | | | | | | | |
Collapse
|
18
|
Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
|
19
|
Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics 2012; 13:529. [PMID: 23036081 PMCID: PMC3478168 DOI: 10.1186/1471-2164-13-529] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2012] [Accepted: 09/28/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. RESULTS More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. CONCLUSIONS Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
20
|
ELBAZ M, HALON E, MALKA O, MALITSKY S, BLUM E, AHARONI A, MORIN S. Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species ofBemisia tabaci(Hemiptera: Aleyrodidae). Mol Ecol 2012; 21:4533-46. [DOI: 10.1111/j.1365-294x.2012.05713.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|