1
|
Wolmuth-Gordon HS, Sharmin A, Brown MJF. Methods matter: the influence of method on infection estimates of the bumblebee parasite Crithidia bombi. Parasitology 2023; 150:1236-1241. [PMID: 37859420 PMCID: PMC10941228 DOI: 10.1017/s0031182023001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The bumblebee gut parasite, Crithidia bombi, is widespread and prevalent in the field. Its interaction with Bombus spp. is a well-established epidemiological model. It is spread faecal-orally between colonies via the shared use of flowers when foraging. Accurately measuring the level of infection in bumblebees is important for assessing its distribution in the field, and also when conducting epidemiological experiments. Studies generally use 1 of 2 methods for measuring infection. One approach measures infection in faeces whereas the other method measures infection in guts. We tested whether the method of measuring infection affected the estimation of infection. Bumblebees were inoculated with a standardized inoculum and infection was measured 1 week later using either the faecal or gut method. We found that when the gut method was used to measure infection intensity estimates were significantly different to and approximately double those from the faecal method. These results have implications for the interpretation of previous study results and for the planning of future studies. Given the importance of bumblebees as pollinators, the impact of C. bombi on bumblebee health, and its use as an epidemiological model, we call on researchers to move towards consistent quantification of infections to enable future comparisons and meta-analyses of studies.
Collapse
|
2
|
Gimmi E, Vorburger C. Strong genotype-by-genotype interactions between aphid-defensive symbionts and parasitoids persist across different biotic environments. J Evol Biol 2021; 34:1944-1953. [PMID: 34695269 PMCID: PMC9298302 DOI: 10.1111/jeb.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
The dynamics of coevolution between hosts and parasites are influenced by their genetic interactions. Highly specific interactions, where the outcome of an infection depends on the precise combination of host and parasite genotypes (G × G interactions), have the potential to maintain genetic variation by inducing negative frequency‐dependent selection. The importance of this effect also rests on whether such interactions are consistent across different environments or modified by environmental variation (G × G × E interaction). In the black bean aphid, Aphis fabae, resistance to its parasitoid Lysiphlebus fabarum is largely determined by the possession of a heritable bacterial endosymbiont, Hamiltonella defensa, with strong G × G interactions between H. defensa and L. fabarum. A key environmental factor in this system is the host plant on which the aphid feeds. Here, we exposed genetically identical aphids harbouring three different strains of H. defensa to three asexual genotypes of L. fabarum and measured parasitism success on three common host plants of A. fabae, namely Vicia faba, Chenopodium album and Beta vulgaris. As expected, we observed the pervasive G × G interaction between H. defensa and L. fabarum, but despite strong main effects of the host plants on average rates of parasitism, this interaction was not altered significantly by the host plant environment (no G × G × E interaction). The symbiont‐conferred specificity of resistance is thus likely to mediate the coevolution of A. fabae and L. fabarum, even when played out across diverse host plants of the aphid.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| |
Collapse
|
3
|
Córdoba-Aguilar A, Nava-Sánchez A, González-Tokman DM, Munguía-Steyer R, Gutiérrez-Cabrera AE. Immune Priming, Fat Reserves, Muscle Mass and Body Weight of the House Cricket is Affected by Diet Composition. NEOTROPICAL ENTOMOLOGY 2016; 45:404-410. [PMID: 27037705 DOI: 10.1007/s13744-016-0391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Some insect species are capable of producing an enhanced immune response after a first pathogenic encounter, a process called immune priming. However, whether and how such ability is driven by particular diet components (protein/carbohydrate) have not been explored. Such questions are sound given that, in general, immune response is dietary dependent. We have used adults of the house cricket Acheta domesticus L. (Orthoptera: Gryllidae) and exposed them to the bacteria Serratia marcescens. We first addressed whether survival rate after priming and nonpriming treatments is dietary dependent based on access/no access to proteins and carbohydrates. Second, we investigated how these dietary components affected fat reserves, muscle mass, and body weight, three key traits in insect fitness. Thus, we exposed adult house crickets to either a protein or a carbohydrate diet and measured the three traits. After being provided with protein, primed animals survived longer compared to the other diet treatments. Interestingly, this effect was also sex dependent with primed males having a higher survival than primed females when protein was supplemented. For the second experiment, protein-fed animals had more fat, muscle mass, and body weight than carbohydrate-fed animals. Although we are not aware of the immune component underlying immune priming, our results suggest that its energetic demand for its functioning and/or consequent survival requires a higher demand of protein with respect to carbohydrate. Thus, protein shortage can impair key survival-related traits related to immune and energetic condition. Further studies varying nutrient ratios should verify our results.
Collapse
Affiliation(s)
- A Córdoba-Aguilar
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico.
| | - A Nava-Sánchez
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico
| | - D M González-Tokman
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico
- CONACyT Research Fellow, Instituto de Ecología, Xalapa, Mexico
| | - R Munguía-Steyer
- Unidad de Morfología y Función, Fac de Estudios Superiores Iztacala, Univ Nacional Autónoma de México, Tlalnepantla, Mexico
| | - A E Gutiérrez-Cabrera
- CONACyT Research Fellow, Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Biller OM, Adler LS, Irwin RE, McAllister C, Palmer-Young EC. Possible Synergistic Effects of Thymol and Nicotine Against Crithidia bombi Parasitism in Bumble Bees. PLoS One 2015; 10:e0144668. [PMID: 26657643 PMCID: PMC4686078 DOI: 10.1371/journal.pone.0144668] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.
Collapse
Affiliation(s)
- Olivia Masi Biller
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Rebecca E. Irwin
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Caitlin McAllister
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Evan C. Palmer-Young
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Flores-Villegas AL, Salazar-Schettino PM, Córdoba-Aguilar A, Gutiérrez-Cabrera AE, Rojas-Wastavino GE, Bucio-Torres MI, Cabrera-Bravo M. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:523-532. [PMID: 26082354 DOI: 10.1017/s0007485315000504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Triatomines are vectors that transmit the protozoan haemoflagellate Trypanosoma cruzi, the causative agent of Chagas disease. The aim of the current review is to provide a synthesis of the immune mechanisms of triatomines against bacteria, viruses, fungi and parasites to provide clues for areas of further research including biological control. Regarding bacteria, the triatomine immune response includes antimicrobial peptides (AMPs) such as defensins, lysozymes, attacins and cecropins, whose sites of synthesis are principally the fat body and haemocytes. These peptides are used against pathogenic bacteria (especially during ecdysis and feeding), and also attack symbiotic bacteria. In relation to viruses, Triatoma virus is the only one known to attack and kill triatomines. Although the immune response to this virus is unknown, we hypothesize that haemocytes, phenoloxidase (PO) and nitric oxide (NO) could be activated. Different fungal species have been described in a few triatomines and some immune components against these pathogens are PO and proPO. In relation to parasites, triatomines respond with AMPs, including PO, NO and lectin. In the case of T. cruzi this may be effective, but Trypanosoma rangeli seems to evade and suppress PO response. Although it is clear that three parasite-killing processes are used by triatomines - phagocytosis, nodule formation and encapsulation - the precise immune mechanisms of triatomines against invading agents, including trypanosomes, are as yet unknown. The signalling processes used in triatomine immune response are IMD, Toll and Jak-STAT. Based on the information compiled, we propose some lines of research that include strategic approaches of biological control.
Collapse
Affiliation(s)
- A L Flores-Villegas
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - P M Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A Córdoba-Aguilar
- Departamento de Ecología Evolutiva,Instituto de Ecología,Universidad Nacional Autónoma de México,Apdo. P. 70-275,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A E Gutiérrez-Cabrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - G E Rojas-Wastavino
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - M I Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - M Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| |
Collapse
|
6
|
Nava-Sánchez A, González-Tokman D, Munguía-Steyer R, Córdoba-Aguilar A. Does mating activity impair phagocytosis-mediated priming immune response? A test using the house cricket, Acheta domesticus. Acta Ethol 2015. [DOI: 10.1007/s10211-015-0215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Purcell J, Chapuisat M. Foster carers influence brood pathogen resistance in ants. Proc Biol Sci 2014; 281:20141338. [PMID: 25143036 PMCID: PMC4150324 DOI: 10.1098/rspb.2014.1338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/28/2014] [Indexed: 01/28/2023] Open
Abstract
Social organisms face a high risk of epidemics, and respond to this threat by combining efficient individual and collective defences against pathogens. An intriguing and little studied feature of social animals is that individual pathogen resistance may depend not only on genetic or maternal factors, but also on the social environment during development. Here, we used a cross-fostering experiment to investigate whether the pathogen resistance of individual ant workers was shaped by their own colony of origin or by the colony of origin of their carers. The origin of care-giving workers significantly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers that were more resistant to the fungal entomopathogen reared more resistant workers. This effect occurred in the absence of post-infection social interactions, such as trophallaxis and allogrooming. The colony of origin of eggs significantly influenced the survival of the resulting individuals in both control and pathogen treatments. There was no significant effect of the social organization (i.e. whether colonies contain a single or multiple queens) of the colony of origin of either carers or eggs. Our experiment reveals that social interactions during development play a central role in moulding the resistance of emerging workers.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Ecology and Evolution, University of Lausanne, Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Trauer U, Hilker M. Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS One 2013; 8:e63392. [PMID: 23700423 PMCID: PMC3658988 DOI: 10.1371/journal.pone.0063392] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023] Open
Abstract
In insects, a parental immune challenge can prepare and enhance offspring immune activity. Previous studies of such transgenerational immune priming (TGIP) mainly focused on a single offspring life stage. However, different developmental stages may be exposed to different risks and show different susceptibility to parental immune priming. Here we addressed the question (i) whether TGIP effects on the immunity of Manduca sexta offspring vary among the different developmental offspring stages. We differentiated between unchallenged and immunochallenged offspring; for the latter type of offspring, we further investigated (ii) whether TGIP has an impact on the time that enhanced immune levels persist after offspring immune challenge. Finally, we determined (iii) whether TGIP effects on offspring performance depend on the offspring stage. Our results show that TGIP effects on phenoloxidase (PO) activity, but not on antibacterial activity, vary among unchallenged offspring stages. In contrast, TGIP effects on PO and antibacterial activity did not vary among immunochallenged offspring stages. The persistence of enhanced immune levels in immunochallenged offspring was dependent on the parental immune state. Antibacterial (but not PO) activity in offspring of immunochallenged parents decreased over five days after pupal immune challenge, whereas no significant change over time was detectable in offspring of control parents. Finally, TGIP effects on the developmental time of unchallenged offspring varied among stages; young larvae of immunochallenged parents developed faster and gained more weight than larvae of control parents. However, offspring females of immunochallenged parents laid fewer eggs than females derived from control parents. These findings suggest that the benefits which the offspring gains from TGIP during juvenile development are paid by the adults with reduced reproductive power. Our study shows that TGIP effects vary among offspring stages and depend on the type of immunity (PO or antibacterial activity) as well as the time past offspring immune challenge.
Collapse
Affiliation(s)
- Ute Trauer
- Institute of Biology – Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology – Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|