1
|
Appassakij H, Silpapojakul K, Promwong C, Rujirojindakul P. The Potential Impact of Chikungunya Virus Outbreaks on Blood Transfusion. Transfus Med Rev 2019; 34:23-28. [PMID: 31303361 DOI: 10.1016/j.tmrv.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Chikungunya virus (CHIKV) is responsible for large periodic epidemics in both endemic and nonendemic areas where competent mosquitoes are present. Transmission of CHIKV by transfusion during explosive outbreaks has never been documented, and the true impact of CHIKV infection on blood transfusion during an outbreak is unknown. Considerations include not only transfusions in the active outbreak areas but also returning travelers to nonendemic areas. Because there are no documented cases of transfusion-transmitted CHIKV, there are no standard guidelines regarding transfusion policies during a chikungunya fever outbreak. We review current information from studies during outbreaks with the goal of estimating the potential effect of different blood safety interventions (eg, querying donors for possible CHIKV exposure, chikungunya fever-related symptoms, screening for CHIKV RNA).
Collapse
Affiliation(s)
- Hatsadee Appassakij
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | | | | | - Pairaya Rujirojindakul
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
2
|
A systematic review of individual and community mitigation measures for prevention and control of chikungunya virus. PLoS One 2019; 14:e0212054. [PMID: 30811438 PMCID: PMC6392276 DOI: 10.1371/journal.pone.0212054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chikungunya is a mosquito-borne virus transmitted by mosquitoes from the Aedes genus. The virus, endemic to parts of Asia and Africa, has recently undergone an emergence in other parts of the world where it was previously not found including Indian Ocean Islands, Europe, the Western Pacific and the Americas. There is no vaccine against chikungunya virus, which means that prevention and mitigation rely on personal protective measures and community level interventions including vector control. METHODOLOGY/PRINCIPAL FINDINGS A systematic review (SR) was conducted to summarize the literature on individual and community mitigation and control measures and their effectiveness. From a scoping review of the global literature on chikungunya, there were 91 articles that investigated mitigation or control strategies identified at the individual or community level. Of these, 81 were confirmed as relevant and included in this SR. The majority of the research was published since 2010 (76.5%) and was conducted in Asia (39.5%). Cross sectional studies were the most common study design (36.6%). Mitigation measures were placed into six categories: behavioural protective measures, insecticide use, public education, control of blood and blood products, biological vector control and quarantine of infected individuals. The effectiveness of various mitigation measures was rarely evaluated and outcomes were rarely quantitative, making it difficult to summarize results across studies and between mitigation strategies. Meta-analysis of the proportion of individuals engaging in various mitigation measures indicates habitat removal is the most common measure used, which may demonstrate the effectiveness of public education campaigns aimed at reducing standing water. CONCLUSIONS/SIGNIFICANCE Further research with appropriate and consistent outcome measurements are required in order to determine which mitigation measures, or combination of mitigation measures, are the most effective at protecting against exposure to chikungunya virus.
Collapse
|
3
|
Boujnan M, Duits AJ, Koppelman MHGM. Zika virus RNA polymerase chain reaction on the utility channel of a commercial nucleic acid testing system. Transfusion 2018; 58:641-648. [PMID: 29322525 DOI: 10.1111/trf.14460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/25/2017] [Accepted: 11/11/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Several countries have implemented safety strategies to reduce the risk of Zika virus (ZIKV) transmission through blood transfusion. These strategies have included nucleic acid amplification testing (NAT) of blood donations. In this study, a new real-time polymerase chain reaction (PCR) assay including internal control for the detection of ZIKV on the cobas omni Utility Channel (UC) on the cobas 6800 system is presented. STUDY DESIGN AND METHODS PCR conditions and primer/probe concentrations were optimized on the LightCycler 480 instrument. Optimized conditions were transferred to the cobas omni UC on the cobas 6800 system. Subsequently, the limit of detection (LOD) in plasma and urine, genotype inclusivity, specificity, cross-reactivity, and clinical sensitivity were determined. RESULTS The 95% LOD of the ZIKV PCR assay on the cobas 6800 system was 23.0 IU/mL (95% confidence interval [CI], 16.5-37.5) in plasma and 24.5 IU/mL (95% CI, 13.4-92.9) in urine. The assay detected African and Asian lineages of ZIKV. The specificity was 100%. The clinical concordance between the newly developed ZIKV PCR assay and the investigational Roche cobas Zika NAT test was 83% (24/29). CONCLUSIONS We developed a sensitive ZIKV PCR assay on the cobas omni UC on the cobas 6800 system. The assay can be used for large-scale screening of blood donations for ZIKV or for testing of blood donors returning from areas with ZIKV to avoid temporal deferral. This study also demonstrates that the cobas omni UC on the cobas 6800 system can be used for in-house-developed PCR assays.
Collapse
Affiliation(s)
- Mohamed Boujnan
- Sanquin Blood Supply Foundation, National Screening Laboratory of Sanquin (NSS), Amsterdam, the Netherlands
| | - Ashley J Duits
- Biomedical & Health Research Institute, Willemstad, Curaçao.,Red Cross Blood Bank Foundation, Curaçao
| | - Marco H G M Koppelman
- Sanquin Blood Supply Foundation, National Screening Laboratory of Sanquin (NSS), Amsterdam, the Netherlands
| |
Collapse
|
4
|
Coghlan A, Hoad VC, Seed CR, Flower RL, Harley RJ, Herbert D, Faddy HM. Emerging infectious disease outbreaks: estimating disease risk in Australian blood donors travelling overseas. Vox Sang 2017; 113:21-30. [PMID: 29052242 DOI: 10.1111/vox.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES International travel assists spread of infectious pathogens. Australians regularly travel to South-eastern Asia and the isles of the South Pacific, where they may become infected with infectious agents, such as dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses that pose a potential risk to transfusion safety. In Australia, donors are temporarily restricted from donating for fresh component manufacture following travel to many countries, including those in this study. We aimed to estimate the unmitigated transfusion-transmission (TT) risk from donors travelling internationally to areas affected by emerging infectious diseases. MATERIALS AND METHODS We used the European Up-Front Risk Assessment Tool, with travel and notification data, to estimate the TT risk from donors travelling to areas affected by disease outbreaks: Fiji (DENV), Bali (DENV), Phuket (DENV), Indonesia (CHIKV) and French Polynesia (ZIKV). RESULTS We predict minimal risk from travel, with the annual unmitigated risk of an infected component being released varying from 1 in 1·43 million to <1 in one billion and the risk of severe consequences ranging from 1 in 130 million to <1 in one billion. CONCLUSION The predicted unmitigated likelihood of infection in blood components manufactured from donors travelling to the above-mentioned areas was very low, with the possibility of severe consequences in a transfusion recipient even smaller. Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from select infectious disease outbreak areas to source plasma collection provides a simple and effective risk management approach.
Collapse
Affiliation(s)
- A Coghlan
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - V C Hoad
- Medical Services, Australian Red Cross Blood Service, Perth, WA, Australia
| | - C R Seed
- Medical Services, Australian Red Cross Blood Service, Perth, WA, Australia
| | - R Lp Flower
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - R J Harley
- Medical Services, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - D Herbert
- Medical Services, Australian Red Cross Blood Service, Melbourne, VIC, Australia
| | - H M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
|
6
|
Semenza JC, Tran A, Espinosa L, Sudre B, Domanovic D, Paz S. Climate change projections of West Nile virus infections in Europe: implications for blood safety practices. Environ Health 2016; 15 Suppl 1:28. [PMID: 26961903 PMCID: PMC4895699 DOI: 10.1186/s12940-016-0105-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND West Nile virus (WNV) is transmitted by mosquitoes in both urban as well as in rural environments and can be pathogenic in birds, horses and humans. Extrinsic factors such as temperature and land use are determinants of WNV outbreaks in Europe, along with intrinsic factors of the vector and virus. METHODS With a multivariate model for WNV transmission we computed the probability of WNV infection in 2014, with July 2014 temperature anomalies. We applied the July temperature anomalies under the balanced A1B climate change scenario (mix of all energy sources, fossil and non-fossil) for 2025 and 2050 to model and project the risk of WNV infection in the future. Since asymptomatic infections are common in humans (which can result in the contamination of the donated blood) we estimated the predictive prevalence of WNV infections in the blood donor population. RESULTS External validation of the probability model with 2014 cases indicated good prediction, based on an Area Under Curve (AUC) of 0.871 (SD = 0.032), on the Receiver Operating Characteristic Curve (ROC). The climate change projections for 2025 reveal a higher probability of WNV infection particularly at the edges of the current transmission areas (for example in Eastern Croatia, Northeastern and Northwestern Turkey) and an even further expansion in 2050. The prevalence of infection in (blood donor) populations in the outbreak-affected districts is expected to expand in the future. CONCLUSIONS Predictive modelling of environmental and climatic drivers of WNV can be a valuable tool for public health practice. It can help delineate districts at risk for future transmission. These areas can be subjected to integrated disease and vector surveillance, outreach to the public and health care providers, implementation of personal protective measures, screening of blood donors, and vector abatement activities.
Collapse
Affiliation(s)
- Jan C Semenza
- European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden.
| | - Annelise Tran
- CIRAD, UPR Animal et Gestion Intégrée des Risques, Montpellier,, F-34093, France.
| | - Laura Espinosa
- European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden.
| | - Bertrand Sudre
- European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden.
| | - Dragoslav Domanovic
- European Centre for Disease Prevention and Control, Stockholm,, SE-171 83, Sweden.
| | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa,, 31905, Israel.
| |
Collapse
|
7
|
de Groot R, Prinsze FJ, Broekman-Piets R, de Kort WLAM, Pasker-de Jong PCM. On-site deferral of whole blood and plasma donors in the Netherlands between 2006 and 2013. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. de Groot
- Department Donor Studies; Sanquin Research; Amsterdam The Netherlands
| | - F. J. Prinsze
- Department Donor Studies; Sanquin Research; Amsterdam The Netherlands
| | - R. Broekman-Piets
- Unit Donor Services; Department Medical Donor Affairs; Sanquin Blood Supply; Amsterdam The Netherlands
| | - W. L. A. M. de Kort
- Department Donor Studies; Sanquin Research; Amsterdam The Netherlands
- Department of Public Health; Academic Medical Center; Amsterdam The Netherlands
| | | |
Collapse
|
8
|
Petersen LR, Epstein JS. Chikungunya virus: new risk to transfusion safety in the Americas. Transfusion 2014; 54:1911-5. [PMID: 25130331 DOI: 10.1111/trf.12790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lyle R Petersen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO.
| | | |
Collapse
|
9
|
Seed CR. Risk reduction strategies for transfusion-transmissible arboviral infections. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/voxs.12093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C. R. Seed
- Australian Red Cross Blood Service; Perth WA Australia
| |
Collapse
|
10
|
Gan VCH, Leo YS. Current epidemiology and clinical practice in arboviral infections - implications on blood supply in South-East Asia. ISBT SCIENCE SERIES 2014; 9:262-267. [PMID: 25210534 PMCID: PMC4142006 DOI: 10.1111/voxs.12083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
Arthropod-borne viruses (arboviruses) are a growing threat to global health. Complex vector-virus-host interactions lead to unpredictable epidemiological patterns. Difficulties in accurate surveillance including imperfect diagnostic tools impair effective response to outbreaks. With arboviral infections causing a wide spectrum of disease severity, from asymptomatic infection to fatal neuroinvasive and haemorrhagic fevers, the potential impact on blood safety is significant. Asymptomatic or presymptomatic individuals may introduce virus into the blood supply by donation, while recipients can potentially suffer severe consequences. Dengue, West Nile and chikungunya outbreaks have led to responses by blood transfusion services which can inform future planning. Reports of transfusion-associated transmission demonstrate the potentially fatal consequences of lack of haemovigilance. South-East Asia remains vulnerable to arboviruses with permissive climate and high levels of endemic transmission as well as the potential for emerging and re-emerging arboviral diseases. Resource limitations constrain the use of expensive technologies for donor screening. Continued surveillance and research will be required to manage the arboviral threat to the blood supply.
Collapse
Affiliation(s)
- V C H Gan
- Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital Singapore, Singapore
| | - Y-S Leo
- Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital Singapore, Singapore
| |
Collapse
|
11
|
Pogłód R, Rosiek A, Łętowska M. [Emerging infectious diseases in the context of blood safety]. ACTA ACUST UNITED AC 2013; 44:284-293. [PMID: 32226059 PMCID: PMC7094095 DOI: 10.1016/j.achaem.2013.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
Affiliation(s)
- Ryszard Pogłód
- Instytut Hematologii i Transfuzjologii, Dyrektor: prof. dr hab n.med. Krzysztof Warzocha, Warszawa, Polska
| | - Aleksandra Rosiek
- Instytut Hematologii i Transfuzjologii, Dyrektor: prof. dr hab n.med. Krzysztof Warzocha, Warszawa, Polska
| | - Magdalena Łętowska
- Instytut Hematologii i Transfuzjologii, Dyrektor: prof. dr hab n.med. Krzysztof Warzocha, Warszawa, Polska
| |
Collapse
|