1
|
Abstract
Cytokeratins, which comprise a multigene family of 20 related polypeptides (CKs 1–20), are constituents of the intermediate filaments of epithelial cells, in which they are expressed in various combinations depending on the epithelial type and the degree of differentiation. Of these, CK 19 (400 amino acids; 44.1 kilodaltons) is an example of a widely distributed CK, being expressed in various epithelia, including many simple epithelia. In contrast, the recently identified CK 20 (424 amino acids; 48.6 kilodaltons) is essentially confined to gastrointestinal epithelia, the urothelium and Merkel cells. The differential expression of individual CKs in various types of carcinomas makes them useful markers for histopathological carcinoma subtyping, providing relevant information concerning the differentiation and origin of carcinomas, especially when tumors first present as metastases. The CKs that are of particular value for differential diagnosis include CK 20, as it is mainly expressed in carcinomas derived from CK 20-positive epithelia; it is also found in bile-tract, pancreatic and mucinous ovarian adenocarcinomas, being absent in most other carcinomas. In certain carcinoma types, the changes in the expression of individual CKs that may occur during tumor progression could be of prognostic relevance. It remains to be established whether the serological detection of fragments of not only widely distributed but also more restrictedly expressed CKs may provide useful serological tumor markers in the future.
Collapse
Affiliation(s)
- R Moll
- Institute of Pathology, University of Mainz, Germany
| |
Collapse
|
2
|
|
3
|
Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 2010; 508:123-37. [PMID: 21176769 DOI: 10.1016/j.abb.2010.12.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.
Collapse
|
4
|
CD133 expression pattern distinguishes intraductal papillary mucinous neoplasms from ductal adenocarcinomas of the pancreas. Pancreas 2009; 38:e207-14. [PMID: 19786935 DOI: 10.1097/mpa.0b013e3181bb5037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The rate of intraductal papillary mucinous neoplasm (IPMN) progression is much slower than that of invasive ductal adenocarcinomas. The identification of a clinicopathological marker to distinguish IPMNs from ductal adenocarcinomas is important for understanding the molecular mechanisms of pancreatic cancer. METHODS We examined the expression pattern of the cell surface marker CD133, which has been used to identify putative cancer stem cells from solid tumors, in adult pancreatic ductal adenocarcinomas (n = 10) and IPMNs (n = 34). RESULTS CD133 expression was detected in the centroacinar region and intralobular ductal cells of normal pancreas. CD133 expression was also observed in ductal adenocarcinomas. In contrast, CD133 expression was not observed in the mucin-producing epithelial cells and carcinoma cells on IPMNs. CONCLUSIONS These results demonstrate that the expression of CD133 is down-regulated in IPMNs, suggesting that loss of CD133 expression might be a useful clinicopathological marker distinguishing IPMNs from ductal adenocarcinomas.
Collapse
|
5
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
6
|
Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y, Wright CVE, Hebrok M, Lewis BC. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A 2007; 104:5103-8. [PMID: 17372229 PMCID: PMC1828712 DOI: 10.1073/pnas.0701158104] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Activation of sonic hedgehog (Shh) signaling occurs in the majority of pancreatic ductal adenocarcinomas. Here we investigate the mechanisms by which Shh contributes to pancreatic tumorigenesis. We find that Shh expression enhances proliferation of pancreatic duct epithelial cells, potentially through the transcriptional regulation of the cell cycle regulators cyclin D1 and p21. We further show that Shh protects pancreatic duct epithelial cells from apoptosis through the activation of phosphatidylinositol 3-kinase signaling and the stabilization of Bcl-2 and Bcl-X(L). Significantly, Shh also cooperates with activated K-Ras to promote pancreatic tumor development. Finally, Shh signaling enhances K-Ras-induced pancreatic tumorigenesis by reducing the dependence of tumor cells on the sustained activation of the MAPK and phosphatidylinositol 3-kinase/Akt/mTOR signaling pathways. Thus, our data suggest that Shh signaling contributes to tumor initiation in the pancreas through at least two mechanisms and additionally enhances tumor cell resistance to therapeutic intervention. Collectively, our findings demonstrate crucial roles for Shh signaling in multiple stages of pancreatic carcinogenesis.
Collapse
Affiliation(s)
| | | | - David S. Klimstra
- Department of Pathology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021
| | - John P. Morris
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143; and
| | | | - Yoshiya Kawaguchi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Christopher V. E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143; and
| | - Brian C. Lewis
- *Program in Gene Function and Expression
- Program in Molecular Medicine, and
- Cancer Center, University of Massachusetts Medical School, Worcester, MA 01605
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Rugg EL, Leigh IM. The keratins and their disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:4-11. [PMID: 15452838 DOI: 10.1002/ajmg.c.30029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diseases caused by mutations in gene encoding keratin intermediate filaments (IF) are characterized by a loss of structural integrity in the cells expressing those keratins in vivo. This is manifested as cell fragility, compensatory epidermal hyperkeratosis, and keratin filament aggregation in some affected tissues. Keratin disorders are a novel molecular category including quite different phenotypes such as epidermolysis bullosa simplex (EBS), bullous congenital ichthyosiform erthroderma (BCIE), pachyonychia congenital (PC), steatocystoma multiplex, ichthyosis bullosa of Siemens (IBS), and white sponge nevus (WSN) of the orogenital mucosa.
Collapse
Affiliation(s)
- Elizabeth L Rugg
- Department of Dermatology, University of California Irvine, 92697-2400, USA.
| | | |
Collapse
|
8
|
Sahin F, Qiu W, Wilentz RE, Iacobuzio-Donahue CA, Grosmark A, Su GH. RPL38, FOSL1, and UPP1 are predominantly expressed in the pancreatic ductal epithelium. Pancreas 2005; 30:158-67. [PMID: 15714138 PMCID: PMC1373783 DOI: 10.1097/01.mpa.0000151581.45156.e4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Establishing more effective treatment of pancreatic cancer requires an understanding of the molecular events leading to the onset and progression of this disease. The biology of tumorigenesis may be better understood if cell type-specific genes in the pancreas are more recognized. This recognition may be as important as discovering a disease-responsible gene. Identification of a ductal epithelium-specific gene can contribute not only to our knowledge of pancreatic tumorigenesis, tumor marker discovery, and effective drug targeting but also is crucial for making a reliable animal model. METHODS We used the x-Profiler engine online to compare the SAGE (Serial Analysis of Gene Expression) libraries derived from 2 short-term cultures of normal human ductal epithelial cells from the pancreas against 34 other SAGE libraries generated from other normal human tissues to identify the best candidate gene specific for the ductal epithelium of the pancreas. RESULTS We identified 3 genes, ribosomal protein L38 (RPL38), uridine phosphorylase (UPP1), and FOS-like antigen-1 (FOSL1), predominantly expressed in the pancreatic ductal epithelium. The expression patterns of these 3 genes were confirmed by virtual Northern analysis, semi-quantitative RT-PCR, and in situ hybridization. CONCLUSION Although the expressions of these 3 genes are not completely restricted to the ductal epithelium of the pancreas, we showed that they have more specific expression patterns than CK19 and MUC1. We also demonstrated that all 3 genes are highly expressed in a panel of pancreatic cancer cell lines and can potentially be useful in tumor targeting or as tumor markers.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
9
|
Sinha S. Regulation of intermediate filament gene expression. Methods Cell Biol 2005; 78:267-96. [PMID: 15646622 DOI: 10.1016/s0091-679x(04)78010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| |
Collapse
|
10
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
11
|
Zhou Q, Toivola DM, Feng N, Greenberg HB, Franke WW, Omary MB. Keratin 20 helps maintain intermediate filament organization in intestinal epithelia. Mol Biol Cell 2003; 14:2959-71. [PMID: 12857878 PMCID: PMC165690 DOI: 10.1091/mbc.e03-02-0059] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kagaya M, Kaneko S, Ohno H, Inamura K, Kobayashi K. Cloning and characterization of the 5'-flanking region of human cytokeratin 19 gene in human cholangiocarcinoma cell line. J Hepatol 2001; 35:504-11. [PMID: 11682035 DOI: 10.1016/s0168-8278(01)00167-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The regulatory mechanism of cell-specific gene expression in cholangiocytes has not been sufficiently evaluated. In this study, we characterized the 5'-flanking region of the cytokeratin 19 gene expressed specifically in cholangiocytes. METHODS We cloned a 2952-bp fragment in the 5'-flanking region of cytokeratin 19 and evaluated the regulatory mechanism of gene expression in this region by assaying transient expression of reporter gene and DNA footprinting. RESULTS This segment of the 5'-flanking region of the human cytokeratin 19 gene shows an intense transcriptional activity in the cholangioma cell line KMBC, which was about 10 times its activity in the osteosarcoma cell line Saos-2, which does not express cytokeratin 19. From the results of reporter assays, important transcription regulatory elements are considered to be located in the segments from -2249 to -2050 bp and from -732 bp to the first ATG, and six protein-binding sites were detected in the segment from -732 bp to the first ATG by the DNA footprinting technique. CONCLUSIONS Sp1 site, CCAAT box, and TATA box were present in the segment from -374 to the first ATG, and they are considered to constitute a cholangiocyte-specific promoter.
Collapse
Affiliation(s)
- M Kagaya
- First Department of Internal Medicine, Faculty of Medicine, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
13
|
Brembeck FH, Moffett J, Wang TC, Rustgi AK. The keratin 19 promoter is potent for cell-specific targeting of genes in transgenic mice. Gastroenterology 2001; 120:1720-8. [PMID: 11375953 DOI: 10.1053/gast.2001.24846] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Keratins are intermediate filaments that are critical in cytoskeletal organization. Their roles in cellular processes are underscored by inherited human diseases in which germline mutations of keratins are found, as well as by transgenic and knockout mouse models that recapitulate those diseases. Keratin 19 (K19) has unique structural properties and developmental and spatial expression patterns. This suggests that K19 expression may correlate with important cell fate decisions in gastrointestinal tract epithelia. METHODS We used mouse K19 5' untranslated region and promoter sequences and fused it to the lacZ reporter gene in a transgene construct. Characterization was by beta-galactosidase expression and X-gal histochemistry in gastrointestinal epithelia. Because endogenous K19 protein is transcriptionally regulated by the Kruppel-like transcription factor 4 (KLF4), we determined the spatial expression patterns of KLF4 and K19 in relationship to the lacZ reporter gene product. RESULTS K19-lacZ transgenic mice were found to have reporter gene expression in an epithelial-specific pattern. Expression was restricted to ductal epithelial cells in the pancreas, surface colonocytes, small intestinal villi, and gastric isthmus cells. Transgene expression correlated with K19 and KLF4 protein expression in the pancreas and stomach and was overlapping in the small and large intestine. CONCLUSIONS The K19 promoter may be a useful tool to study epithelial cell biology and subsequent transdifferentiation programs, particularly the pancreas and stomach.
Collapse
Affiliation(s)
- F H Brembeck
- Gastroenterology Division, Unversity of Pennsylvania, Philadelphia 19104-6144, USA
| | | | | | | |
Collapse
|
14
|
Grippo PJ, Sandgren EP. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:805-13. [PMID: 10980120 PMCID: PMC1885716 DOI: 10.1016/s0002-9440(10)64594-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2000] [Indexed: 12/22/2022]
Abstract
Transitional cell carcinoma (TCC), a neoplasm of urinary bladder urothelial cells, generally appears in either of two forms, papillary non-invasive or invasive TCC, although intermediate forms can occur. Each has a distinctive morphology and clinical course. Altered expression of the p53 and pRb genes has been associated with the more serious invasive TCC, suggesting that the loss of activity of these tumor suppressor proteins may have a causal role in this disease. To test this hypothesis directly, transgenic mice were developed that expressed the simian virus 40 large T antigen (TAg) in urothelial cells under the control of the cytokeratin 19 gene (CK19) regulatory elements. In one CK19-TAg lineage, all transgenic mice developed highly invasive bladder neoplasms that resembled invasive human bladder TCCs. Stages of disease progression included development of carcinoma in situ, stromal invasion, muscle invasion, rapid growth, and, in 20% of affected mice, intravascular lung metastasis. Papillary lesions never were observed. Western blot analysis indicated that TAg was bound to both p53 and pRb, which has been shown to cause inactivation of these proteins. Our findings support suggestions that (i) inactivation of p53 and/or pRb constitutes a causal step in the etiology of invasive TCC, (ii) papillary and invasive TCC may have different molecular causes, and (iii) carcinoma in situ can represent an early stage in the progression to invasive TCC.
Collapse
Affiliation(s)
- P J Grippo
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Maguire D, O'Sullivan GC, Collins JK, Morgan J, Shanahan F. Bone marrow micrometastases and gastrointestinal cancer detection and significance. Am J Gastroenterol 2000; 95:1644-51. [PMID: 10925963 DOI: 10.1111/j.1572-0241.2000.02199.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accurate staging of cancer is important, as the presence or absence of systemic spread determines treatment. The sensitivity of current imaging and biochemical techniques is suboptimal for the detection of minimal residual disease and latent metastases. This results in understaging and potential undertreatment. To improve detection of disseminated epithelial malignancy, immunohistochemical and molecular methods have been employed that search for epithelial cell-specific proteins in nonepithelial tissue. Bone marrow is mesenchymal tissue (that does not normally express epithelial cell components) and represents an accessible window for detection of micrometastatic carcinoma cells. Detection methods for epithelial cell components (cytokeratins, epithelial membrane antigen, carcinoembryonic antigen) include immunohistochemistry, flow cytometry, reverse transcriptase polymerase chain reaction (rt-PCR), and enzyme linked immunoassay (ELISA). Micrometastatic cells in bone marrow are viable, capable of proliferation, resistant to immune attack, and insensitive to s-phase chemotherapeutic agents. Patients with carcinomas of the lung, breast, prostate, or gastrointestinal tract and in whom bone marrow micrometastases are detected have a foreshortened interval to recurrence and impaired survival. Detection of micrometastases deserves serious consideration in treatment protocols, and standardization of methods is now required.
Collapse
Affiliation(s)
- D Maguire
- Department of Surgery and Medicine, Mercy and Cork University Hospitals, and National University of Ireland
| | | | | | | | | |
Collapse
|
16
|
Toivola DM, Ku NO, Ghori N, Lowe AW, Michie SA, Omary MB. Effects of keratin filament disruption on exocrine pancreas-stimulated secretion and susceptibility to injury. Exp Cell Res 2000; 255:156-70. [PMID: 10694432 DOI: 10.1006/excr.1999.4787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.
Collapse
Affiliation(s)
- D M Toivola
- Department of Medicine, Palo Alto VA Medical Center, Stanford University Digestive Disease Center, 3801 Miranda Avenue, Palo Alto, California, 94304, USA
| | | | | | | | | | | |
Collapse
|
17
|
Crowe DL, Milo GE, Shuler CF. Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. J Dent Res 1999; 78:1256-63. [PMID: 10371250 DOI: 10.1177/00220345990780061001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck is the sixth most frequent cancer worldwide. The survival rate is among the lowest of the major cancers and has not improved significantly in the past two decades. Extensive local invasion and regional lymph node metastasis are, in large part, responsible for the poor clinical outcome of these tumors. Keratin intermediate filaments are the most abundant cytoskeletal proteins in SCCs and regulate the migration of normal and transformed epithelial cells. Previous studies have shown that expression of the 40-kDa keratin K19 is dysregulated in SCCs arising from oral epithelium. Immunohistochemical experiments demonstrated that, while normal epithelium and dysplastic lesions expressed abundant K19 protein, invasive SCCs exhibited a patchy or negative staining pattern. We subsequently determined that K19 expression was consistently downregulated in seven SCC lines compared with normal epithelium. We therefore wanted to determine if K19 downregulation affected the invasive phenotype of these cells. We found that SCC lines which do not express K19 are significantly more invasive in vitro than those which retain expression of this gene. Stable expression of the K19 cDNA in K19 negative cell lines altered cell morphology and intercellular adhesiveness, and significantly decreased the number of cells able to migrate through a reconstituted basement membrane. Reduced invasiveness was not due to decreased metalloproteinase activity in the K19-expressing clones. We conclude that K19 overexpression in oral SCCs decreases their invasive potential by diminishing migratory capability.
Collapse
MESH Headings
- Basement Membrane/pathology
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/secondary
- Cell Adhesion/genetics
- Cell Line, Transformed
- Cell Movement/genetics
- Coloring Agents
- DNA, Complementary/genetics
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Epithelial Cells/pathology
- Fluorescent Antibody Technique
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Intermediate Filament Proteins/genetics
- Keratins/genetics
- Lymphatic Metastasis/pathology
- Metalloendopeptidases/genetics
- Mouth Mucosa/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Neoplasm Invasiveness
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D L Crowe
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
18
|
Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct and context-dependent assembly properties. J Biol Chem 1998; 273:35176-84. [PMID: 9857055 DOI: 10.1074/jbc.273.52.35176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratins (K), the cytoplasmic intermediate filament (IF) proteins of epithelial cells, are encoded by a multigene family and expressed in a tissue- and differentiation-specific manner. In human skin, keratinocytes of the basal layer of epidermis and the outer root sheath of hair follicles express K5 and K14 as their main keratins. A small subpopulation of basal cells exhibiting stem-cell like characteristics express, in addition, K19. At 40 kDa, this keratin is the smallest IF protein due to an exceptionally short carboxyl-terminal domain. We examined the assembly properties of K19 and contrasted them to K14 in vitro and in vivo. Relative to K5-K14, we find that K5-K19 form less stable tetramers that polymerize into shorter and narrower IFs in vitro. When transiently co-expressed in cultured baby hamster kidney cells, the K5 and K19 combination fails to form a filamentous array, whereas the K5-K14 and K8-K19 ones readily do so. Transient expression of K19 in the epithelial cell lines T51B-Ni and A431 results in its integration into the endogenous keratin network with minimal if any perturbation. Collectively, these results indicate that K19 possesses assembly properties that are distinct from those of K14 and suggest that it may impart unique properties to the basal cells expressing it in skin epithelia.
Collapse
Affiliation(s)
- J Fradette
- Laboratoire de Recherche des Grands Brûlés/LOEX, Hôpital du Saint-Sacrement, Québec G1S 4L8, the Department of Surgery, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Whitbread LA, Powell BC. Expression of the intermediate filament keratin gene, K15, in the basal cell layers of epithelia and the hair follicle. Exp Cell Res 1998; 244:448-59. [PMID: 9806795 DOI: 10.1006/excr.1998.4217] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheep K15 gene, focusing on its expression in the follicles of sheep and mice. We show that K15 is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells are K15-negative. In the follicle bulb K15 is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere, K15 is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheep K15 expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheep K15 gene construct exhibited faithful expression and showed no phenotypic consequences of K15 overexpression. An investigation of transgene expression showed that K15 is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle, K15 expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.
Collapse
Affiliation(s)
- L A Whitbread
- John Curtin School of Medical Research, Australian National University, Acton, ACT, 0200, Australia
| | | |
Collapse
|
20
|
Wawersik M, Paladini RD, Noensie E, Coulombe PA. A proline residue in the alpha-helical rod domain of type I keratin 16 destabilizes keratin heterotetramers. J Biol Chem 1997; 272:32557-65. [PMID: 9405470 DOI: 10.1074/jbc.272.51.32557] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The type I keratins 14 (K14) and 16 (K16) are distinct in their assembly properties and their expression pattern despite a high degree of sequence identity. Understanding K16 function and regulation is of interest, given its strong induction in keratinocytes located at the wound edge after injury to stratified epithelia. We reported previously that, compared with K14, K16 forms unstable heterotetramers with either K5 or K6 as the type II keratin pairing partner (Paladini, R. D., Takahashi, K., Bravo, N. S., and Coulombe, P. A. (1996) J. Cell Biol. 132, 381-397). We show here that yet another related type I keratin, K17, forms stable heterotetramers with a variety of type II keratins, further accentuating the unique nature of K16. Analysis of chimeric K14-K16 proteins in a heterotetramer formation assay indicated that the instability determinant resides in a 220-amino acid segment within the alpha-helical rod domain of K16. Site-directed mutagenesis revealed that Pro188, an amino acid residue located in subdomain 1B of the rod, accounts quantitatively for the instability of K16-containing heterotetramers under denaturing conditions. In vitro polymerization studies suggest that the presence of Pro188 correlates with a reduction in assembly efficiency. In addition to their implications for the stable conformation of the keratin heterotetramers, these findings suggest that the tetramer-forming properties of K16 may influence its partitioning between the soluble and polymer pools, and hence contribute to its regulation in epithelial cells under resting and wound repair conditions.
Collapse
Affiliation(s)
- M Wawersik
- Departments of Biological Chemistry and Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
21
|
Salas PJ, Rodriguez ML, Viciana AL, Vega-Salas DE, Hauri HP. The apical submembrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Biophys Biochem Cytol 1997; 137:359-75. [PMID: 9128248 PMCID: PMC2139782 DOI: 10.1083/jcb.137.2.359] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145-3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40-70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical-basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37 degrees C or in n-octyl-beta-D-glycoside at 4 degrees C (representative of GPI-anchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+-K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.
Collapse
Affiliation(s)
- P J Salas
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
22
|
Höchtlen-Vollmar W, Gruber R, Bodenmüller H, Felber E, Lindemann F, Passlick B, Schlimok G, Pantel K, Riethmüller G. Occult epithelial tumor cells detected in bone marrow by an enzyme immunoassay specific for cytokeratin 19. Int J Cancer 1997; 70:396-400. [PMID: 9033645 DOI: 10.1002/(sici)1097-0215(19970207)70:4<396::aid-ijc4>3.0.co;2-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence of isolated carcinoma cells detected immunocytochemically in bone marrow has been shown to be of prognostic relevance for cancer patients. Unfortunately, the immunocytochemical method (ICC) is laborious and depends on the subjective interpretation of the individual investigator. Therefore, an immunoassay was designed for detection of cytokeratin 19 (CK19). By analyzing blood samples from 52 healthy volunteers and 40 bone-marrow aspirates from control patients, a cut-off point of 250 pg/ml CK19 was determined. Application of this cut-off point enabled a specificity of 95% to be shown for bone marrow and of nearly 100% for venous blood. The assay detected 10 HT-29 colon-carcinoma cells among 5 x 10(6) peripheral-blood leukocytes. In comparison with controls, bone-marrow samples of cancer patients were found to have significantly elevated levels of CK19 (p < 0.05). In the analysis of 386 marrow aspirates of cancer patients, a significant concordance of ELISA and ICC was observed (chi 2 = 18.3; p < 0.001). Both procedures, nevertheless, differed in 147 (38%) samples, of which more than two thirds (101) were only ELISA-positive. The CK status detected by ELISA did not correlate with the TNM stage and the histological grading. The established immunoassay allowed sensitive and specific detection of disseminated epithelial tumor cells and appeared to be faster, less laborious and more objective than ICC. Follow-up studies are required to assess the prognostic relevance of this ELISA before it can be applied as a routine method for monitoring of minimal residual epithelial cancer.
Collapse
|
23
|
Bickenbach JR, Longley MA, Bundman DS, Dominey AM, Bowden PE, Rothnagel JA, Roop DR. A transgenic mouse model that recapitulates the clinical features of both neonatal and adult forms of the skin disease epidermolytic hyperkeratosis. Differentiation 1996; 61:129-39. [PMID: 8983179 DOI: 10.1046/j.1432-0436.1996.6120129.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Keratins are the major structural proteins of keratinocytes, which are the most abundant cell type in the mammalian epidermis. Mutations in epidermal keratin genes have been shown to cause severe blistering skin abnormalities. One such disease, epidermolytic hyperkeratosis (EHK), also known as bullous congenital ichthyosiform erythroderma, occurs as a result of mutations in highly conserved regions of keratins K1 and K10. Patients with EHK first exhibit erythroderma with severe blistering, which later is replaced by thick patches of scaly skin. To assess the effect of a mutated K1 gene on skin biology and to produce an animal model for EHK, we removed 60 residues from the 2B segment of HK1 and observed the effects of its expression in the epidermis of transgenic mice. Phenotypes of the resultant mice closely resembled those observed in the human disease, first with epidermal blisters, then later with hyperkeratotic lesions. In neonatal mice homozygous for the transgene, the skin was thicker, with an increased labeling index, and the spinous cells showed a collapse of the keratin filament network around the nuclei, suggesting that a critical concentration of the mutant HK1, over the endogenous MK1, was required to disrupt the structural integrity of the spinous cells. Additionally, footpad epithelium, which is devoid of hair follicles, showed blistering in the spinous layer, suggesting that hair follicles can stabilize or protect the epidermis from trauma. Blisters were not evident in adult mice, but instead they showed a thick, scaly hyperkeratotic skin with increased mitosis, resulting in an increased number of corneocytes and granular cells. Irregularly shaped keratohyalin granules were also observed. To date, this is the only transgenic model to show the typical morphology found in the adult form of EHK.
Collapse
Affiliation(s)
- J R Bickenbach
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Schön M, Rheinwald JG. A limited role for retinoic acid and retinoic acid receptors RAR alpha and RAR beta in regulating keratin 19 expression and keratinization in oral and epidermal keratinocytes. J Invest Dermatol 1996; 107:428-38. [PMID: 8751982 DOI: 10.1111/1523-1747.ep12363411] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different types of stratified squamous epithelia-for example, the "orthokeratinized" epidermis, the "parakeratinized" gingiva, and the "nonkeratinized" oral lining mucosal epithelia-are formed by intrinsically distinct keratinocyte subtypes. These subtypes exhibit characteristic patterns of keratin protein expression in vivo and in culture. Keratin 19 is an informative subtype-specific marker because the basal cells of only nonkeratinizing epithelia express K19 in vivo and in culture. Epidermal keratinocytes normally do not express K19, but can be induced to do so in culture by retinoic acid (RA). Keratinocyte subtypes express the retinoic acid receptor (RAR) beta at levels roughly correlated with their level of K19 expression in culture and their potential for forming a nonkeratinized epithelium in vivo. We tested the hypothesis that the level of RAR beta expressed by a keratinocyte determines its K19 expression and its form of suprabasal differentiation. Normal human epidermal and gingival keratinocytes stably overexpressing either RAR beta or RAR alpha were generated by defective retroviral transduction. Overexpression of either receptor enhanced the RA inducibility of K19 in conventional culture, in that the proportion of the transductants becoming K19+ in response to RA was markedly increased compared with controls. The pattern of differentiation of the epithelium formed in organotypic culture, assessed by basal K19 and suprabasal K1, K4, and filaggrin expression, however, was unaltered by RAR overexpression. Thus, the susceptibility of keratinocytes to regulation of K19 expression by retinoids is conditional, and levels of neither RAR beta nor RAR alpha are limiting to the intrinsic mechanism that specifies alternate differentiation pathways for stratified squamous epithelia.
Collapse
Affiliation(s)
- M Schön
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Jing Y, Zhang J, Waxman S, Mira-y-Lopez R. Upregulation of cytokeratins 8 and 18 in human breast cancer T47D cells is retinoid-specific and retinoic acid receptor-dependent. Differentiation 1996; 60:109-17. [PMID: 8641545 DOI: 10.1046/j.1432-0436.1996.6020109.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mamary gland is chiefly composed of luminal epithelial cells expressing cytokeratins (K) 8, 18 and 19, and basal/myoepithelial cells expressing cytokeratins 5 and 14. Human breast cancer T47D cells have a luminal phenotype and are growth-inhibited by retinoids, a class of compounds known to regulate cytokeratin expression. To extend our knowledge of retinoid action in breast cancer, we have studied the retinoid regulation of cytokeratin expression in the T47D model. We found that retinoid inhibition of T47D cell growth was accompanied by increases in K8, K18 and K19 mRNA steady-state levels (Northern blot analysis). The effect on K8 was studied in greater detail. This effect was seen with as low as 1 nM all-trans retinoic acid (tRA) and was maximal (up to 7 fold over control) with 1 microM tRA (the highest dose tested). Time-course studies revealed a detectable effect at 1 h and a maximal effect at 8-24 h. Non-retinoidal growth inhibitors (tamoxifen, BrcAMP and genistein) did not modulate K8 expression, demonstrating that the effect of tRA was specific, K8 mRNA upregulation was blocked by actinomycin D and cycloheximide, suggesting, in accordance with other studies, that tRA exerted a transcriptional effect that was secondary to de novo protein synthesis. Five retinoids known to activate retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) - tRA; 9-cis-retinoic acid, 9cRA; 13-cis RA, 13cRA; retinyl acetate; and N-(4-hydroxyphenyl) retinamide 4HPR - inhibited T47D cell growth and increased K8 expression, whereas an arotinoid (Ro-40-8757) that is not a RAR activator caused growth inhibition but did not upregulate K8. Activation of RAR alpha contributed to K8 upregulation, since this effect was partially blocked by the RAR alpha-selective antagonist Ro-41-5253. Analogous results were obtained throughout when blots were reprobed with K18 cDNA. Western blot and immunocytochemistry experiments demonstrated that protein levels of K8 and K18 increased by 2 days of treatment with 1 microM tRA. These results show that retinoids enhance the expression of cognate cytokeratin markers of luminal differentiation in T47D breast cancer cells.
Collapse
Affiliation(s)
- Y Jing
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
26
|
Ku NO, Michie S, Oshima RG, Omary MB. Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J Cell Biol 1995; 131:1303-14. [PMID: 8522591 PMCID: PMC2120631 DOI: 10.1083/jcb.131.5.1303] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The two major intermediate filament proteins in glandular epithelia are keratin polypeptides 8 and 18 (K8/18). To evaluate the function and potential disease association of K18, we examined the effects of mutating a highly conserved arginine (arg89) of K18. Expression of K18 arg89-->his/cys and its normal K8 partner in cultured cells resulted in punctate staining as compared with the typical filaments obtained after expression of wild-type K8/18. Generation of transgenic mice expressing human K18 arg89-->cys resulted in marked disruption of liver and pancreas keratin filament networks. The most prominent histologic abnormalities were liver inflammation and necrosis that appeared at a young age in association with hepatocyte fragility and serum transaminase elevation. These effects were caused by the mutation since transgenic mice expressing wild-type human K18 showed a normal phenotype. A relative increase in the phosphorylation and glycosylation of detergent solubilized K8/18 was also noted in vitro and in transgenic animals that express mutant K18. Our results indicate that the highly conserved arg plays an important role in glandular keratin organization and tissue fragility as already described for epidermal keratins. Phosphorylation and glycosylation alterations in the arg mutant keratins may account for some of the potential changes in the cellular function of these proteins. Mice expressing mutant K18 provide a novel animal model for human chronic hepatitis, and for studying the tissue specific function(s) of K8/18.
Collapse
Affiliation(s)
- N O Ku
- Department of Medicine, VA Palo Alto Health Care System, California 94304, USA
| | | | | | | |
Collapse
|
27
|
Coulombe PA, Bravo NS, Paladini RD, Nguyen D, Takahashi K. Overexpression of human keratin 16 produces a distinct skin phenotype in transgenic mouse skin. Biochem Cell Biol 1995; 73:611-8. [PMID: 8714680 DOI: 10.1139/o95-067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human cytokeratin 16 (K16; 48 kDa) is constitutively expressed in postmitotic keratinocytes in a variety of stratified epithelial tissues, but it is best known for the marked enhancement of its expression in stratified squamous epithelia showing hyperproliferation or abnormal differentiation. Of particular interest to us, K16 is strongly induced at the wound edge after injury to the epidermis, and its accumulation correlates spatially and temporally with the onset of reepithelialization. To examine the properties of K16 in its natural cellular context, we introduced a wild-type human K16 gene into the germ line of transgenic mice. Several transgenic lines were established and characterized. Under most conditions, the human K16 transgene is regulated tissue specifically in the skin of transgenic mice. Animals that feature low levels of transgene expression are indistinguishable from controls during the first 6-8 months of life. In contrast, transgenic animals expressing the transgene at higher levels develop skin lesions at 1 week after birth, coinciding with the emergence of fur. At a cellular level, alterations begin with the reorganization of keratin filaments and are first seen at the level of the hair follicle outer root sheath (ORS), where K16 expression is known to occur constitutively. The lesions then progressively spread to involve the proximal epidermis, with which the ORS is contiguous. Elevated transgene expression is associated with a marked thickening of these two epithelia, along with altered keratinocyte cytoarchitecture and aberrant keratinization but no keratinocyte lysis. The implications of this phenotype for epithelial differentiation, human genodermatoses, and wound healing in skin are discussed.
Collapse
Affiliation(s)
- P A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
28
|
Casanova L, Bravo A, Were F, Ramírez A, Jorcano JJ, Vidal M. Tissue-specific and efficient expression of the human simple epithelial keratin 8 gene in transgenic mice. J Cell Sci 1995; 108 ( Pt 2):811-20. [PMID: 7539440 DOI: 10.1242/jcs.108.2.811] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratin 8 is a type II intermediate filament protein found in simple epithelia. We have introduced a 12 kb DNA fragment of the human K8 locus into the germ line of mice. The transgene, containing 1.1 kb of 5′ flanking sequences, 7.7 kb corresponding to the body of the gene and 3.2 kb of 3′ flanking sequences, was expressed in all six lines obtained. Immunolocalization and RNA analysis of adult tissues showed that the tissue-specific expression pattern of the transgene was almost indistinguishable from that of the endogenous gene. This pattern was found in organs containing single epithelial cell types, such as trachea, lung, stomach, intestine, liver, kidney, thymus and glands. The highest expressing line, however, also produced human K8 in tissues such as stratified epithelia, where it formed part of the pre-existing keratin cytoskeleton of basal cells. Steady state levels of human K8 RNA were proportional to the copy number of the transgene, but transgene expression was less efficient, per gene copy, than that of the endogenous gene. When in the 12 kb DNA fragment the exons and introns of the gene were replaced by the Escherichia coli lacZ gene, the resulting construct showed no expression in transgenic mice. This suggests that 5′ and 3′ flanking sequences, in the absence of intragenic sequences, are not sufficient for K8 expression and that important control elements are located in the body of the K8 gene.
Collapse
Affiliation(s)
- L Casanova
- Department of Developmental and Cell Biology, Centro Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Ramírez A, Bravo A, Jorcano JL, Vidal M. Sequences 5' of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation 1994; 58:53-64. [PMID: 7532601 DOI: 10.1046/j.1432-0436.1994.5810053.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of keratin K5 (and K14) in multilayered epithelia occurs predominantly in the basal layer of proliferating keratinocytes. When a keratinocyte becomes committed to terminal differentiation, it moves out of the basal layer towards the epithelial surface. As part of this program of terminal differentiation, the expression of K5 (and K14) is downregulated in suprabasal cells, and new pairs of differentiation-specific keratins are expressed. To define the cis-acting DNA sequences required for K5 cell-type- and differentiation-specific expression, chimeric gene fusions between portions of the bovine keratin K5 locus and the Escherichia coli lacZ gene were used to generate transgenic mice. In the genomic fragment consisting of 5.3 kb of 5' flanking sequences, 6.1 kb corresponding to the body of the gene and 4.5 kb of 3' flanking sequences, the subfragment extending from -5300 bp to +138 bp was the smaller region that directed lacZ expression to stratified epithelia in a manner analogous to the endogenous keratin K5. Proximal sequences from -1300 bp to +138 bp were inactive. We also determined the expression pattern of keratin K5 during mouse development using an antiserum specific for mouse keratin K5. Expression was first detected in ectodermal cells of 11.5 days postcoitum embryos, and from day 13.5 postcoitum onwards K5 was detected in the precursors of most epithelia and organs which express K5 at adult stages. This pattern was reproduced, with few differences, by the construct with sequences from -5300 bp to +138 bp fused to the lacZ gene. These findings identify sequences between -5.3 kb and -1.3 kb of the bovine K5 gene as being important for cell-type- and differentiation-specific gene expression both during mouse development and in the adult.
Collapse
Affiliation(s)
- A Ramírez
- Department of Cell and Molecular Biology, CIEMAT, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Takahashi K, Folmer J, Coulombe PA. Increased expression of keratin 16 causes anomalies in cytoarchitecture and keratinization in transgenic mouse skin. J Cell Biol 1994; 127:505-20. [PMID: 7523421 PMCID: PMC2120213 DOI: 10.1083/jcb.127.2.505] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Injury to epidermis and other stratified epithelia triggers profound but transient changes in the pattern of keratin expression. In postmitotic cells located at the wound edge, a strong induction of K6, K16, and K17 synthesis occurs at the expense of the keratins produced under the normal situation. The functional significance of these alterations in keratin expression is not known. Here, we report that overexpression of a wild-type human K16 gene in a tissue-specific fashion in transgenic mice causes aberrant keratinization of the hair follicle outer root sheath and proximal epidermis, and it leads to hyperproliferation and increased thickness of the living layers (acanthosis), as well as cornified layers (hyperkeratosis). The pathogenesis of lesions in transgenic mouse skin begins with a reorganization of keratin filaments in postmitotic keratinocytes, and it progresses in a transgene level-dependent fashion to include disruption of keratinocyte cytoarchitecture and structural alterations in desmosomes at the cell surface. No evidence of cell lysis could be found at the ultrastructural level. These results demonstrate that the disruption of the normal keratin profile caused by increased K16 expression interferes with the program of terminal differentiation in outer root sheath and epidermis. They further suggest that when present at sufficiently high intracellular levels, K16, along with K6 and K17, appear capable of inducing a reorganization of keratin filaments in the cytoplasm of skin epithelial cells.
Collapse
Affiliation(s)
- K Takahashi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
31
|
Troyanovsky SM, Leube RE. Activation of the silent human cytokeratin 17 pseudogene-promoter region by cryptic enhancer elements of the cytokeratin 17 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:61-9. [PMID: 7523124 DOI: 10.1111/j.1432-1033.1994.00061.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously described the three loci CK-CA, CK-CB and CK-CC in the human genome that contain clustered type-I cytokeratin genes and reported the complete nucleic acid sequences of the functional cytokeratin 17 gene located in CK-CA and two closely related pseudogenes present in CK-CB and CK-CC [Troyanovsky, S.M., Leube, R.E. & Franke, W.W. (1992) Eur. J. Cell Biol. 59, 127-137]. By nucleic acid sequence analysis, we now show that extensive similarities between the functional gene and the pseudogenes exist in the 5'-upstream region. However, despite the high degree of nucleic acid identity (94%), only the 5'-upstream region of the functional gene was able to induce significant transcriptional activity in transfected cells of epithelial origin. Using chimeric upstream regions consisting of different fragments from the pseudogene and the functional gene, we made the surprising observation that cis elements in the proximal 5'-upstream region of the pseudogene promoter can cooperate with distal enhancer elements of the functional gene to induce strong chloramphenicol-O-acetyltransferase activity in transfected HeLa cells. A major site in the proximal upstream region was identified by deoxyribonuclease protection experiments to be necessary for this cooperative effect. The structure and properties of this element were further analysed by transfection of different chloramphenicol-O-acetyltransferase gene constructs, and by nucleic acid sequence comparison to corresponding regions of the related cytokeratins 14 and 16. It is concluded that the upstream regions identified in this study contribute to the strong expression of the human cytokeratin 17 gene in a coordinated fashion.
Collapse
Affiliation(s)
- S M Troyanovsky
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
32
|
van de Klundert FA, Raats JM, Bloemendal H. Intermediate filaments: regulation of gene expression and assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:351-66. [PMID: 8513786 DOI: 10.1111/j.1432-1033.1993.tb17931.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- F A van de Klundert
- Department of Biochemistry, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
33
|
Abstract
Epidermal keratin intermediate filaments appear to have a structural function. The functions of other intermediate filaments are being elucidated using a combination of molecular genetic methods, including the expression of dominant negative mutant proteins and gene targeting. The differential expression of intermediate filament genes is regulated by both the accessibility of multiple regulatory elements and the activity or level of multiple positive and negative transcription factors.
Collapse
Affiliation(s)
- R G Oshima
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| |
Collapse
|
34
|
Raats JM, Bloemendal H. The role of protein domains in the assembly process of intermediate filaments. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:67-86. [PMID: 1410448 DOI: 10.1016/s0079-6603(08)61044-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|