1
|
Ljubicic S, Cottet-Dumoulin D, Bosco D. Loss of cell-cell and cell-substrate contacts in single pancreatic β-cells divert insulin release to intracellular vesicular compartments. Biol Cell 2020; 112:427-438. [PMID: 32857433 DOI: 10.1111/boc.202000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Cell-cell or cell-substrate interactions are lost when cells are dissociated in culture, or during pathophysiological breakdowns, therefore impairing their structure and polarity, and affecting their function. We show that single rat β-cells, cultured under non-adhesive conditions, form intracytoplasmic vacuoles increasing in number and size over time. We characterized these structures and their implication in β-cell function. RESULTS Ultrastructurally, the vacuoles resemble vesicular apical compartments and are delimited by a membrane, containing microvilli and expressing markers of the plasma membrane, including glucose transporter 2 and actin. When insulin secretion is stimulated, insulin accumulates in the lumen of the vacuoles. By contrast, when the cells are incubated under low calcium levels, the hormone is undetectable in vesicular compartments. Insulin release studies from single cells revealed that vacuole-containing cells release less insulin as compared to control cells. When added to the medium, a non-permeant fluid phase marker becomes trapped within vacuoles. Inhibition of vesicular trafficking and exocytosis as well as dynamin-dependent endocytosis changed the percentage of vacuole-containing cells, suggesting that both endocytic and exocytic track contribute to their formation. CONCLUSIONS These results suggest that loss of cell-cell and cell-substrate contacts in isolated β-cells affect normal vesicular trafficking and redirects insulin secretion to intracellular vesicular compartments. SIGNIFICANCE Our study reveals for the first time that single β-cells develop vacuolar compartments when cultured in suspension and redirect their insulin secretion to these vacuoles. This may underlie a compensatory process for cultured cells who lost their interactions with adhesive substrates or neighbouring cells.
Collapse
Affiliation(s)
- Sanda Ljubicic
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Vogel GF, Hess MW, Pfaller K, Huber LA, Janecke AR, Müller T. Towards understanding microvillus inclusion disease. Mol Cell Pediatr 2016; 3:3. [PMID: 26830108 PMCID: PMC4733813 DOI: 10.1186/s40348-016-0031-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/07/2016] [Indexed: 01/07/2023] Open
Abstract
Microvillus inclusion disease (MVID) is characterised by onset of intractable life-threatening watery diarrhoea during infancy. Transmission electron microscopy demonstrates shortening or absence of apical microvilli, pathognomonic microvillus inclusions in mature enterocytes and subapical accumulation of periodic acid-Schiff-positive granules or vesicles confirming diagnosis. Mutations in MYO5B have been found to cause MVID. In two patients with MVID, whole-exome sequencing of DNA revealed homozygous truncating mutations in STX3. Mutations in these genes disrupt trafficking between apical cargo vesicles and the apical plasma membrane. Thus, disturbed delivery of certain brush border membrane proteins is a common defect in MVID.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristian Pfaller
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
4
|
Théard D, Steiner M, Kalicharan D, Hoekstra D, van IJzendoorn SC. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions. Mol Biol Cell 2007; 18:2313-21. [PMID: 17429067 PMCID: PMC1877101 DOI: 10.1091/mbc.e06-11-1040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.
Collapse
Affiliation(s)
| | | | - Dharamdajal Kalicharan
- Section of Electron Microscopy, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
5
|
Cohen D, Tian Y, Müsch A. Par1b promotes hepatic-type lumen polarity in Madin Darby canine kidney cells via myosin II- and E-cadherin-dependent signaling. Mol Biol Cell 2007; 18:2203-15. [PMID: 17409351 PMCID: PMC1877095 DOI: 10.1091/mbc.e07-02-0095] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kidney-derived Madin Darby canine kidney (MDCK) cells form lumina at their apices, and target luminal proteins to an intracellular vacuolar apical compartment (VAC) when prevented from polarizing. Hepatocytes, by contrast, organize their luminal surfaces (the bile canaliculi; BC) between their lateral membranes, and, when nonpolarized, they display an intracellular luminal compartment that is distinct from the VACs of MDCK cells. Overexpression of the serine/threonine kinase Par1b/EMK1/MARK2 induces BC-like lateral lumina and a hepatic-type intracellular luminal compartment in MDCK cells, suggesting a role for Par1b in the branching decision between kidney- and hepatic-type epithelial phenotypes. Here, we report that Par1b promotes lateral lumen polarity in MDCK cells independently of Ca(2+)-mediated cell-cell adhesion by inhibiting myosin II in a rho kinase-dependent manner. Polarization was inhibited by E-cadherin depletion but promoted by an adhesion-defective E-cadherin mutant. By contrast, apical surface formation in control MDCK cells required Ca(2+)-dependent cell-cell adhesion, but it occurred in the absence of E-cadherin. We propose that E-cadherin, when in an adhesion-incompetent state at the lateral domain, serves as targeting patch for the establishment of lateral luminal surfaces. E-cadherin depletion also reverted the hepatic-type intracellular luminal compartment in Par1b-MDCK cells to VACs characteristic of control MDCK cells, indicating a novel link between E-cadherin and luminal protein targeting.
Collapse
Affiliation(s)
- David Cohen
- *The Margaret Dyson Institute of Vision Research and
| | - Yuan Tian
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
| | - Anne Müsch
- *The Margaret Dyson Institute of Vision Research and
| |
Collapse
|
6
|
Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 2005; 16:5040-52. [PMID: 16055505 PMCID: PMC1237102 DOI: 10.1091/mbc.e05-03-0193] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.
Collapse
Affiliation(s)
- Markus Utech
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ivanov AI, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 2003; 15:176-88. [PMID: 14528017 PMCID: PMC307538 DOI: 10.1091/mbc.e03-05-0319] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and beta-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and alpha-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
8
|
Low SH, Miura M, Roche PA, Valdez AC, Mostov KE, Weimbs T. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol Biol Cell 2000; 11:3045-60. [PMID: 10982399 PMCID: PMC14974 DOI: 10.1091/mbc.11.9.3045] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular locations when Madin-Darby canine kidney cells lose their cellular polarity. Apical SNAREs relocalize to the previously characterized vacuolar apical compartment, whereas basolateral SNAREs redistribute to a novel organelle that appears to be the basolateral equivalent of the vacuolar apical compartment. Both intracellular plasma membrane compartments have an associated prominent actin cytoskeleton and receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings demonstrate a fundamental shift in plasma membrane traffic toward intracellular compartments while protein sorting is preserved when epithelial cells lose their cell polarity.
Collapse
Affiliation(s)
- S H Low
- Department of Cell Biology, Lerner Research Institute, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ameen NA, Salas PJ. Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 2000; 1:76-83. [PMID: 11208062 DOI: 10.1034/j.1600-0854.2000.010111.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The striking similarities between microvillus inclusions (MIs) in enterocytes in microvillus inclusion disease (MID) and vacuolar apical compartment in tissue culture epithelial cells, led us to analyze endoscopic biopsies of duodenal mucosa of a patient after the samples were used for diagnostic procedures. Samples from another patient with an unrelated disease were used as controls. The MID enterocytes showed a decrease in the thickness of the apical F-actin layer, and normal microtubules. The immunofluorescence analysis of the distribution of five apical membrane markers (sucrase isomaltase, alkaline phosphatase, NHE-3 Na+/H+ exchanger, cGMP-dependent protein kinase, and cystic fibrosis trans-membrane conductance regulator), showed low levels of these proteins in their standard localization at the apical membrane as compared with normal duodenal epithelium processed in parallel. Instead, four of these markers were found in a diffuse distribution in the apical cytoplasm, below the terminal web (as indicated by co-localization with F-actin and cytokeratin 19), and in MIs as well. The basolateral protein Na(+)-K+ATPase, in contrast, was normally localized. These results support the hypothesis that MID may represent the first genetic defect affecting apical membrane traffic, possibly in a late step of apical exocytosis.
Collapse
Affiliation(s)
- N A Ameen
- Department of Pediatrics, Division of Gastroenterology, University of Miami School of Medicine, R-124, P.O. Box 016960, Miami, FL 33173, USA
| | | |
Collapse
|
10
|
Annibali NV, Baldi A. Characterization of the ETSA-21 antigen, a glycosylphosphatidyl-inositol anchor glycoprotein identified in breast cancer cells using monoclonal antibody B21. Hybridoma (Larchmt) 1997; 16:139-45. [PMID: 9145315 DOI: 10.1089/hyb.1997.16.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mab B21 is a monoclonal antibody (Mab) that recognizes an epithelial tumor surface antigen (ETSA-B21) from diverse human tumor cell lines including breast, ovary, uterus, and their cognate carcinoma tissues. A lower reactivity has been observed in normal breast tissue and benign hyperplesia. In this study, the characteristics of the ETSA-B21 antigen have been examined in greater detail in the MCF-7, SK-BR-3, and MDA-MB-453 breast cancer cell lines. Treatment with phosphatidylinositol-phospholipase C, but no neuraminidase were found to partially remove the ETSA-B21 signal from the cell surface as revealed by immunofluorescence microscopy. Inhibition of the N-glycosylation pathway by tunicamycin resulted in a decreased ETSA-B21 signal on the cell membrane. In addition, the antigen-antibody complex was internalized in breast cancer cells as demonstrated by an acidic was internalization assay evaluated using immunofluorescence. In conclusion, this study suggests that ETSA-B21 is a GPI anchor N-glycosylated protein promoting specific antibody internalization in breast cancer cells.
Collapse
Affiliation(s)
- N V Annibali
- Institute of Biology and Experimental Medicine, National Research Council of Argentina, Buenos Aires
| | | |
Collapse
|