1
|
Dharmaratnam A, Kumar R, Valaparambil BS, Sood N, Pradhan PK, Das S, Swaminathan TR. Establishment and characterization of fantail goldfish fin (FtGF) cell line from goldfish, Carassius auratus for in vitro propagation of Cyprinid herpes virus-2 (CyHV-2). PeerJ 2020; 8:e9373. [PMID: 33005480 PMCID: PMC7512137 DOI: 10.7717/peerj.9373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background Herpesviral hematopoietic necrosis disease, caused by cyprinid herpesvirus-2 (CyHV-2), is responsible for massive mortalities in the aquaculture of goldfish, Carassius auratus. Permissive cell lines for the isolation and propagation of CyHV-2 have been established from various goldfish tissues by sacrificing the fish. Here, we report the development of a cell line, FtGF (Fantail Goldfish Fin), from caudal fin of goldfish using non-lethal sampling. We also describe a simple protocol for successful establishment and characterization of a permissive cell line through explant method and continuous propagation of CyHV-2 with high viral titer using this cell line. Methods Caudal fin tissue samples were collected from goldfish without killing the fish. Cell culture of goldfish caudal fin cells was carried out using Leibovitz’s L-15 (L-15) medium containing 20% FBS and 1X concentration of antibiotic antimycotic solution, incubated at 28 °C. Cells were characterized and origin of the cells was confirmed by sequencing fragments of the 16S rRNA and COI genes. CyHV-2 was grown in the FtGF cells and passaged continuously 20 times. The infectivity of the CyHV-2 isolated using FtGF cells was confirmed by experimental infection of naïve goldfish. Results The cell line has been passaged up to 56 times in L-15 with 10% FBS. Karyotyping of FtGF cells at 30th, 40th and 56th passage indicated that modal chromosome number was 2n = 104. Species authentication of FtGF was performed by sequencing of the 16S rRNA and COI genes. The cell line was used for continuous propagation of CyHV-2 over 20 passages with high viral titer of 107.8±0.26 TCID50/mL. Following inoculation of CyHV-2 positive tissue homogenate, FtGF cells showed cytopathic effect by 2nd day post-inoculation (dpi) and complete destruction of cells was observed by the 10th dpi. An experimental infection of naïve goldfish using supernatant from infected FtGF cells caused 100% mortality and CyHV-2 infection in the challenged fish was confirmed by the amplification of DNA polymerase gene, histopathology and transmission electron microscopy. These findings provide confirmation that the FtGF cell line is highly permissive to the propagation of CyHV-2.
Collapse
Affiliation(s)
- Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - Raj Kumar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | | | - Neeraj Sood
- ICAR National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | | | - Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - T Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| |
Collapse
|
2
|
Swaminathan TR, Dharmaratnam A, Raja SA, Raj NS, Lal KK. Establishment and cryopreservation of a cell line derived from caudal fin of endangered catfish Clarias dussumieri Valenciennes, 1840. JOURNAL OF FISH BIOLOGY 2020; 96:722-730. [PMID: 31989626 DOI: 10.1111/jfb.14265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
We describe a new cell line, Clarias dussumieri fin (ClDuF), from the caudal fin of C. dussumieri using the explant technique followed by cryopreservation. The cryopreserved CiDuF cells were validated for quality and other characteristics. They showed typical epithelial morphology in vitro and epithelial cells outgrew their fibroblast cells after the fifth passage. ClDuF cells had a characteristic sigmoid curve with population doubling in 24 h. Immunotyping of the ClDuF cells against cytokeratin suggested the epithelial lineage. Chromosome analysis showed normal diploid (2n = 50) numbers and the cells did not contain any contamination, including Mycoplasma and other microbes. Partial sequencing of fragments of mitochondrial 16s rRNA and COI genes of ClDuF confirmed that the cell line was initiated from C. dussumieri. Cells at the 10th and 25th passages had more than 80% and 70% viability in the culture, respectively, after 6 months of storage at LN2 . These ClDuF cells were morphologically identical to the cells before freezing and the genetic resource of C. dussumieri was preserved. The species-specific cells can serve as a valuable source for virus isolation, conservation and cloning of somatic cells.
Collapse
Affiliation(s)
- T Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - S Arun Raja
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - N Sundar Raj
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, Kochi, Kerala, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| |
Collapse
|
3
|
Wang Y, Xue T, Wang Q, Xia B, Pan Q, Chen T. Virus susceptibility of a new cell line derived from the fin of black carp Mylopharyngodon piceus. JOURNAL OF FISH BIOLOGY 2020; 96:418-426. [PMID: 31755106 DOI: 10.1111/jfb.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
A continuous cell line MPF derived from the fin of black carp Mylopharyngodon piceus was established and characterised in this study. Mylopharyngodon piceus fin (MPF) cells were subcultured for more than 80 passages with high viability recovery after long-term storage. The karyotyping analysis revealed that MPF had a modal diploid chromosome number (2n = 48) and identical ribosomal RNA sequence with black carp. In addition, the expression of pluripotency-associated markers including nanog, oct4 and vasa, were detected in MPF. The transient transfection efficiency of MPF reached 23% with a fluorescent reporter by modified electroporation and stable expression of red fluorescent MPF was established by the baculovirus system, indicating that MPF is an ideal platform for studying gene functions in vitro. Lastly, cytopathic effects were also observed and RNA transcripts of a viral gene increased after infection by spring viremia of carp virus (SVCV), suggesting that MPF could be an alternative tool for investigating pathogen-host interactions in black carp. In conclusion, a fin cell line that is susceptible to SVCV was established as a potential adult stem-cell line, providing a suitable tool for future genetic analyses and pathogen-host studies in black carp.
Collapse
Affiliation(s)
- Yizhou Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ting Xue
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Qian Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Bilin Xia
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Qihua Pan
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tiansheng Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, China
| |
Collapse
|
4
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
5
|
Chenais N, Lareyre JJ, Le Bail PY, Labbe C. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish. Exp Cell Res 2015; 335:23-38. [PMID: 25929521 DOI: 10.1016/j.yexcr.2015.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 02/07/2023]
Abstract
The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.
Collapse
Affiliation(s)
- Nathalie Chenais
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France
| | - Jean-Jacques Lareyre
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France
| | - Pierre-Yves Le Bail
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France
| | - Catherine Labbe
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France.
| |
Collapse
|
6
|
Böckelmann PK, Ochandio BS, Bechara IJ. Histological study of the dynamics in epidermis regeneration of the carp tail fin (Cyprinus carpio, Linnaeus, 1758). BRAZ J BIOL 2010; 70:217-23. [DOI: 10.1590/s1519-69842010000100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/26/2009] [Indexed: 11/22/2022] Open
Abstract
Teleostean fins when partially amputated suffer a regenerative process called epimorphic regeneration, characterized by the following stages: healing, based on the formation of a multistratified epidermal layer, the formation of a mass of pluripotent cells known as blastema, the differentiation of these cells, the synthesis and disposition of the extracellular matrix, morphological growth and restoration. The epidermis has a fundamental role in the regenerative process of fish fins, as the healing time of this structure leads it to a faster regenerative process and it also works as a defense against the external environment. In this sense, due to the fast regeneration shown by the epidermis, the aim of this paper is to study the histology of the regenerative dynamics of the carp fin tail (Cyprinus carpio), under the light and transmission electron microscope. Epidermic regeneration begins right in the first hours after the fin amputation and it continues throughout the regenerative process. After 24 hours, an apical epidermal cap is established. Cytoplasmatic prolongations and intercellular junctions are observed and the cells of the basal layer of the epidermis change from the cubic form to the cylindrical, due to the development of the cytoplasmatic organelles responsible for the synthesis of the basal membrane, lost after amputation. These results show the importance of histological studies in regenerative processes. We believe that the association of molecular biology with histological studies can throw further light onto these regenerative dynamics.
Collapse
Affiliation(s)
| | - BS. Ochandio
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | |
Collapse
|
7
|
Mohammad MG, Raftos DA, Joss J. Cytoskeletal proteins in thymic epithelial cells of the Australian lungfish Neoceratodus forsteri. J Anat 2009; 214:140-52. [PMID: 19166477 DOI: 10.1111/j.1469-7580.2008.00995.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The vertebrate thymus consists of distinctive subpopulations of epithelial cells that contain a diverse repertoire of cytoskeletal proteins. In this study of the thymus in the Australian lungfish, Neoceratodus forsteri, immunohistochemistry was used to distinguish the cytoskeletal proteins present in each class of thymic epithelial cell. A panel of antibodies (Abs), each specific for a different cytoskeletal polypeptide (keratins, vimentin, desmin, actin and tubulins), was used on paraffin and ultrathin resin sections of thymus. Ab AE I (reactive against human type I cytokeratins (CK) 14, 16 and 19) selectively stained the cytoplasm of capsular, trabecular and the outermost epithelial cells of Hassall's corpuscles. Anti-CK 10 Abs strongly labelled the capsular epithelial cells and less than 20% of cortical and medullary epithelial cells. The anti-50-kDa desmin Ab did not react with any thymic cells, whereas the anti-53-kDa desmin Ab labelled some capsular, cortical and medullary thymic epithelial cells. The anti-vimentin Ab stained most of the capsular and ~60% of the cortical epithelium. Thymic nurse cells and Hassall's corpuscles were found to be devoid of actin, which was strongly detected in medullary and perivascular epithelium. Both alpha and beta tubulins were detected in all thymic cells. This study extends the concept of thymic epithelial heterogeneity. The complexity of thymic epithelium in N. forsteri may indicate a relationship between thymic epithelial subpopulations and the thymic microenvironment. These data identify anti-keratin Abs as a valuable tool for studying differentiation and ontogeny of the thymic epithelium in N. forsteri.
Collapse
Affiliation(s)
- Mohammad G Mohammad
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
8
|
Mauger PE, Labbé C, Bobe J, Cauty C, Leguen I, Baffet G, Le Bail PY. Characterization of goldfish fin cells in culture: some evidence of an epithelial cell profile. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:205-15. [PMID: 19068235 DOI: 10.1016/j.cbpb.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022]
Abstract
Comprehensive characterization of cultured cells in fish was little explored and cell origin is often deduced from morphological analogies with either epithelial of fibroblastic cells. This study aims to characterize cell origin in goldfish fin culture using morphological, immunochemical, and molecular approaches. Time lapse analysis revealed that cultured cell morphology changed within minutes. Therefore, cell morphology cannot predict whether cells are from fibroblastic or epithelial origin. The labeling pattern of heterologous anti-cytokeratin and anti-vimentin antibodies against goldfish epithelial cells and fibroblasts was first tested on skin sections and the corresponding labeling of the cultured cells was analyzed. No cell origin specificity could be obtained with the chosen antibodies. In the molecular approach, detection levels of three cytokeratin (CauK8-IIS, CauK49-IE and CauK50-Ie) and one vimentin transcripts were assessed on skin and fin samples. Specificity for epithelial cells of the most abundant mRNA, CauK49-Ie, was thereafter validated on skin sections by in situ hybridization. The selected markers were used afterwards to characterize fin cultures. CauK49-IE riboprobe labeled every cell in young cultures whereas no labeling was observed in older cultures. Accordingly, CauK49-IE transcript levels decreased after 15 days culture while CauK8-IIS ones increased. The use of homologous marker gave evidence that young cultured cells from goldfish fin are homogeneously of epithelial type and that cell characteristics may change over culture time.
Collapse
Affiliation(s)
- P-E Mauger
- Institut National de la Recherche Agronomique, UR 1037 SCRIBE, Campus de Beaulieu, Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Nakatani Y, Kawakami A, Kudo A. Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 2007; 49:145-54. [PMID: 17335435 DOI: 10.1111/j.1440-169x.2007.00917.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.
Collapse
Affiliation(s)
- Yuki Nakatani
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|