1
|
Pelin M, De Iudicibus S, Fusco L, Taboga E, Pellizzari G, Lagatolla C, Martelossi S, Ventura A, Decorti G, Stocco G. Role of oxidative stress mediated by glutathione-s-transferase in thiopurines' toxic effects. Chem Res Toxicol 2015; 28:1186-95. [PMID: 25928802 DOI: 10.1021/acs.chemrestox.5b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azathioprine (AZA), 6-mercaptopurine (6-MP), and 6-thioguanine (6-TG) are antimetabolite drugs, widely used as immunosuppressants and anticancer agents. Despite their proven efficacy, a high incidence of toxic effects in patients during standard-dose therapy is recorded. The aim of this study is to explain, from a mechanistic point of view, the clinical evidence showing a significant role of glutathione-S-transferase (GST)-M1 genotype on AZA toxicity in inflammatory bowel disease patients. To this aim, the human nontumor IHH and HCEC cell lines were chosen as predictive models of the hepatic and intestinal tissues, respectively. AZA, but not 6-MP and 6-TG, induced a concentration-dependent superoxide anion production that seemed dependent on GSH depletion. N-Acetylcysteine reduced the AZA antiproliferative effect in both cell lines, and GST-M1 overexpression increased both superoxide anion production and cytotoxicity, especially in transfected HCEC cells. In this study, an in vitro model to study thiopurines' metabolism has been set up and helped us to demonstrate, for the first time, a clear role of GST-M1 in modulating AZA cytotoxicity, with a close dependency on superoxide anion production. These results provide the molecular basis to shed light on the clinical evidence suggesting a role of GST-M1 genotype in influencing the toxic effects of AZA treatment.
Collapse
Affiliation(s)
- Marco Pelin
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara De Iudicibus
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Laura Fusco
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Eleonora Taboga
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giulia Pellizzari
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Cristina Lagatolla
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Stefano Martelossi
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Alessandro Ventura
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy.,§Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Stocco
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
2
|
Hason S, Stepankova S, Kourilova A, Vetterl V, Lata J, Fojta M, Jelen F. Simultaneous Electrochemical Monitoring of Metabolites Related to the Xanthine Oxidase Pathway Using a Grinded Carbon Electrode. Anal Chem 2009; 81:4302-7. [DOI: 10.1021/ac900201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stanislav Hason
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Sona Stepankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alena Kourilova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Vladimir Vetterl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Lata
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Frantisek Jelen
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Kalra S, Jena G, Tikoo K, Mukhopadhyay AK. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol. BMC BIOCHEMISTRY 2007; 8:8. [PMID: 17511860 PMCID: PMC1885804 DOI: 10.1186/1471-2091-8-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 05/18/2007] [Indexed: 01/27/2023]
Abstract
Background The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Results Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 ± 0.29 μM and 0.54 ± 0.01 μM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 ± 0.21 μM and 2.57 ± 0.08 μM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 ± 0.48 μM and 0.96 ± 0.01 μM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 ± 0.28 μM and 1.30 ± 0.09 μM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 ± 0.02 μM and 6.01 ± 0.03 μM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of xanthine. We further undertook the toxicological evaluation of these inhibitors in a single dose acute toxicity study in mice and our preliminary experimental results suggested that the inhibitors were equally non-toxic in the tested doses. Conclusion We conclude that administration of either APT or AHMP along with the major anti-leukemic drug 6MP might serve as a good combination cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Sukirti Kalra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Phase X, S.A.S Nagar, Mohali, Punjab,160062 India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Phase X, S.A.S Nagar, Mohali, Punjab, 160062 India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Phase X, S.A.S Nagar, Mohali, Punjab, 160062 India
| | - Anup Kumar Mukhopadhyay
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Phase X, S.A.S Nagar, Mohali, Punjab, 160062 India
| |
Collapse
|
5
|
Kamiński ZW, Jezewska MM. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect. Biochem J 1981; 200:597-603. [PMID: 6952874 PMCID: PMC1163582 DOI: 10.1042/bj2000597] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.
Collapse
|