1
|
Novel Curcumin Monocarbonyl Analogue-Dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Bathula SR, Sharma K, Singh DK, Reddy MP, Sajja PR, Deshmukh AL, Banerjee D. siRNA Delivery Using a Cationic-Lipid-Based Highly Selective Human DNA Ligase I Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1616-1622. [PMID: 29256581 DOI: 10.1021/acsami.7b19193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present article illustrates the serendipitous discovery of a cationic-lipid-based human DNA ligase (hLig) I inhibitor and the development of siRNA delivering, a hLigI-targeted cationic-lipid-based nonviral vector. We have tested a small in-house library of structurally similar cationic lipo-anisamides for antiligase activity, and amongst tested, N-dodecyl-N-(2-(4-methoxybenzamido)ethyl)-N-methyldodecan-1-ammonium iodide (C12M) selectively and efficiently inhibited the enzyme activity of hLigI, compared to other human ligases (hLigIIIβ and hLigIV/XRCC4) and bacterial T4 DNA ligase. Furthermore, upon hydration with equimolar cholesterol, C12M produced antiligase cationic liposomes, which transfected survivin siRNA and showed significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Surendar R Bathula
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Komal Sharma
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Deependra K Singh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Muktapuram P Reddy
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Pushpa R Sajja
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Amit L Deshmukh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| |
Collapse
|
3
|
Hussain MK, Singh DK, Singh A, Asad M, Ansari MI, Shameem M, Krishna S, Valicherla GR, Makadia V, Meena S, Deshmukh AL, Gayen JR, Imran Siddiqi M, Datta D, Hajela K, Banerjee D. A Novel Benzocoumarin-Stilbene Hybrid as a DNA ligase I inhibitor with in vitro and in vivo anti-tumor activity in breast cancer models. Sci Rep 2017; 7:10715. [PMID: 28878282 PMCID: PMC5587642 DOI: 10.1038/s41598-017-10864-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/16/2017] [Indexed: 11/21/2022] Open
Abstract
Existing cancer therapies are often associated with drug resistance and toxicity, which results in poor prognosis and recurrence of cancer. This necessitates the identification and development of novel therapeutics against existing as well as novel cellular targets. In this study, a novel class of Benzocoumarin-Stilbene hybrid molecules were synthesized and evaluated for their antiproliferative activity against various cancer cell lines followed by in vivo antitumor activity in a mouse model of cancer. The most promising molecule among the series, i.e. compound (E)-4-(3,5-dimethoxystyryl)-2H-benzo[h]chromen-2-one (19) showed maximum antiproliferative activity in breast cancer cell lines (MDA-MB-231 and 4T1) and decreased the tumor size in the in-vivo 4T1 cell-induced orthotopic syngeneic mouse breast cancer model. The mechanistic studies of compound 19 by various biochemical, cell biology and biophysical approaches suggest that the compound binds to and inhibits the human DNA ligase I enzyme activity that might be the cause for significant reduction in tumor growth and may constitute a promising next-generation therapy against breast cancers.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India.,Department of Chemistry Govt. Raza Post Graduate College, Rampur, 244901, India
| | | | - Akhilesh Singh
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India
| | - Mohd Asad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | - Mohd Imran Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | - Mohammad Shameem
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India
| | - Guru R Valicherla
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, 226031, India
| | - Vishal Makadia
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India
| | | | - Jiaur R Gayen
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dipak Datta
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Kanchan Hajela
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
4
|
Mandalapu D, Singh DK, Gupta S, Balaramnavar VM, Shafiq M, Banerjee D, Sharma VL. Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase I inhibitors: in silico design, synthesis and biology. RSC Adv 2016. [DOI: 10.1039/c5ra25853g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pharmacophore model identified a novel class of hLigI inhibitors to treat cancer. 36 compounds were synthesized and the identified inhibitor, compound 23 shown antiligase activity at IC50 24.9 μM by abolishing the interaction between hLigI and DNA.
Collapse
Affiliation(s)
- Dhanaraju Mandalapu
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Deependra Kumar Singh
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Sonal Gupta
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vishal M. Balaramnavar
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Mohammad Shafiq
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Dibyendu Banerjee
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vishnu Lal Sharma
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
5
|
Singh DK, Hussain MK, Krishna S, Deshmukh AL, Shameem M, Maurya P, Hajela K, Siddiqi MI, Banerjee D. Identification of a novel human DNA ligase I inhibitor that promotes cellular apoptosis in DLD-1 cells: an in silico and in vitro mechanistic study. RSC Adv 2016. [DOI: 10.1039/c6ra22364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The compound S-097/98 is a specific inhibitor of hLig1. As shown in the figure, the compound inhibits only hLig1 while other human and non-human DNA ligases are not inhibited.
Collapse
Affiliation(s)
- Deependra Kumar Singh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Mohd. Kamil Hussain
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shagun Krishna
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Amit Laxmikant Deshmukh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Mohammad Shameem
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Pooja Maurya
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Kanchan Hajela
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
6
|
Shameem M, Kumar R, Krishna S, Kumar C, Siddiqi MI, Kundu B, Banerjee D. Synthetic modified pyrrolo[1,4] benzodiazepine molecules demonstrate selective anticancer activity by targeting the human ligase 1 enzyme: An in silico and in vitro mechanistic study. Chem Biol Interact 2015; 237:115-24. [PMID: 26079053 DOI: 10.1016/j.cbi.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022]
Abstract
Human DNA ligase1 (hLig1) is the major replicative enzyme in proliferating mammalian cells that join Okazaki fragments of the lagging strand during DNA replication. Interruptions in the process of ligation cause DNA damage to accumulate, resulting in cytotoxicity and cell death. In the present study we demonstrate that pyrrolo[1,4] benzodiazepine (PBD) derivatives exhibit anticancer properties by targeting the nick sealing activity of hLig1 as opposed to the DNA interaction activity known for such compounds. Our in silico and in vitro assays demonstrate the binding of these molecules with amino acid residues present in the DNA binding domain (DBD) of the hLig1 enzyme. Two of these hLig1 inhibitors S010-015 and S010-018 demonstrated selective cytotoxicity against DLD-1 (colon cancer) and HepG2 (hepatic cancer) cells in a dose dependant manner. The molecules also reduced cell viability and colony formation at concentrations of ⩽20μM in DLD-1 and HepG2 cells and induced apoptotic cell death. In yet another significant finding, the molecules reduced the migration of cancer cells in wound healing experiments, indicating their anti-metastatic property. In summary, we report the anticancer activity of PBD derivatives against DLD-1 and HepG2 cells and propose a new molecular target for their activity.
Collapse
Affiliation(s)
- Mohammad Shameem
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ravi Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Chandan Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Bijoy Kundu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
7
|
Krishna S, Singh DK, Meena S, Datta D, Siddiqi MI, Banerjee D. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity. J Chem Inf Model 2014; 54:781-92. [PMID: 24593844 DOI: 10.1021/ci5000032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human DNA ligases are enzymes that are indispensable for DNA replication and repair processes. Among the three human ligases, ligase I is attributed to the ligation of thousands of Okazaki fragments that are formed during lagging strand synthesis during DNA replication. Blocking ligation therefore can lead to the accumulation of thousands of single strands and subsequently double strand breaks in the DNA, which is lethal for the cells. The reports of the high expression level of ligase I protein in several cancer cells (versus the low ligase expression level and the low rate of division of most normal cells in the adult body) support the belief that ligase I inhibitors can target cancer cells specifically with minimum side effects to normal cells. Recent publications showing exciting data for a ligase IV inhibitor exhibiting antitumor activity in mouse models also strengthens the argument for ligases as valid antitumor targets. Keeping this in view, we performed a pharmacophore-based screening for potential ligase inhibitors in the Maybridge small molecule library and procured some of the top-ranking compounds for enzyme-based and cell-based in vitro screening. We report here the identification of novel ligase I inhibitors with potential anticancer activity against a colon cancer cell line.
Collapse
Affiliation(s)
- Shagun Krishna
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
5('),5(')-Adenylyl pyrophosphoryl DNA (AppDNA) contains a high-energy pyrophosphate linkage and can be exploited as an activated DNA substrate to derive new DNA enzymes for carrying out various DNA modification reactions. For this reason, enzymatic synthesis of AppDNA is highly desirable. AppDNA is a known intermediate in DNA ligase mediated DNA ligation reactions, but rarely accumulates under normal reaction conditions. Here we report that T4 DNA ligase can quantitatively convert 5(')-phosphoryl DNA donor into AppDNA in the absence of acceptor DNA but in the presence of a template DNA that contains at least one unpaired nucleotide opposite the 5(')-phosphoryl DNA donor site. This adenylylation behavior of T4 DNA ligase is not observed with Thermus aquaticus (Taq) and Escherichia coli DNA ligases. We further found that a donor-template duplex of 11-bp in length is required by T4 DNA ligase for the formation of AppDNA.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry/Department of Chemistry, Health Sciences Centre, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
9
|
Abstract
The activities of DNA polymerization and DNA ligation in extract of Chinese hamster ovary cells were both stimulated by MgCl2. DNA polymerization was stimulated by MgCl2 above 0.25 mM, whereas, MgCl2 above 2 mM was required to stimulate DNA ligation. The activity of DNA polymerization maintained a plateau at MgCl2 1-12 mM, whereas DNA ligation reached a maximal activity at MgCl2 6 mM and decreased thereafter. NiCl2 0.1-0.2 mM also had a stimulatory effect on DNA polymerization, but was much less potent than MgCl2. However, nickel ion (Ni2+) had no detectable stimulating effect on the activity of DNA ligation. In the presence of MgCl2, the activities of DNA polymerization and DNA ligation decreased with increasing concentration of NiCl2. Ni2+ inhibition of DNA polymerization was reduced by increasing the concentration of MgCl2, but increasing the concentration of MgCl2 did not reduce Ni2+ inhibition of DNA ligation. Preincubating cell extract with MgCl2 decreased the Ni2+ inhibition of DNA polymerization but not DNA ligation. These results suggest that Ni2+ may compete with magnesium ion (Mg2+) to reduce DNA polymerization, but this mechanism seems not applicable to Ni2+ inhibition of DNA ligation.
Collapse
Affiliation(s)
- S Lynn
- Department of Zoology, National Taiwan University, Taipei
| | | | | |
Collapse
|
10
|
Analysis of the formation of AMP-DNA intermediate and the successive reaction by human DNA ligases I and II. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42414-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Dual mode of inhibition of purified DNA ligase I from human cells by 9-beta-D-arabinofuranosyl-2-fluoroadenine triphosphate. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45884-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Tomkinson AE, Lasko DD, Daly G, Lindahl T. Mammalian DNA ligases. Catalytic domain and size of DNA ligase I. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38387-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
DNA ligase from Drosophila melanogaster embryos. Substrate specificity and mechanism of action. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47911-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Teraoka H, Sawai M, Tsukada K. Kinetic studies on the reaction catalyzed by DNA ligase from calf thymus. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 747:117-22. [PMID: 6882774 DOI: 10.1016/0167-4838(83)90129-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Kinetic analysis of the reaction catalyzed by calf thymus DNA ligase (EC 6.5.1.1) has been carried out using [5'-32P]nicked DNA as substrate. The results of initial velocity and product inhibition studies indicate that the ligase reaction is likely to proceed through the 'uni-uni uni-bi ping-pong' mechanism. The order of substrate addition and product release is as follows: ATP, PPi, nicked DNA, sealed DNA and 5'-AMP. The true Km values for ATP and for nicked DNA (5'-phosphoryl ends) were 2 microM and 0.11 microM, respectively. The turnover number was estimated to be 7 sealing events per min. dATP was an inhibitor competitive with ATP (Ki = 25 microM). The addition of 0.5 mM spermine or 5 mM spermidine resulted in an increase in the apparent Km for nicked DNA as well as in the apparent V, whereas 0.1 M KCl increased only the apparent Km for nicked DNA. Neither polyamine nor KCl affected the apparent Km for ATP. The ligase reaction was not significantly affected by aphidicolin and various phosphate compounds tested.
Collapse
|
15
|
|
16
|
Teraoka H, Tsukada K. Eukaryotic DNA ligase. Purification and properties of the enzyme from bovine thymus, and immunochemical studies of the enzyme from animal tissues. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34590-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
David JC, Vinson D, Lefresne J, Signoret J. Evidence for a DNA ligase change related to early cleavage in axolotl egg. CELL DIFFERENTIATION 1979; 8:451-9. [PMID: 574805 DOI: 10.1016/0045-6039(79)90041-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A definite change in the forms of DNA ligase appears when the axolotl egg enters cleavage. Sucrose gradient and phosphocellulose chromatography show that the a 6S form of DNA ligase exists before division, i.e. in unfertilised and fertilised egg, and a 8.2S form is present at the first division. N-ethylmaleimide sensitivity and heat stability are different for the two forms. The possible significance of this early change is discussed.
Collapse
|
18
|
Abstract
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III(2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.
Collapse
|
19
|
|
20
|
Yoshizawa K, Furuno I, Yada T, Matsudaira H. Induction and repair of strand breaks and 3'-hydroxy terminals in the DNA of mouse brain following gamma irradiation. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 521:144-54. [PMID: 718924 DOI: 10.1016/0005-2787(78)90257-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA was isolated from mouse brain after in vivo gamma-ray irradiation, treated with endonuclease S1 from Aspergillus oryzae if necessary, and analysed further by alkaline and neutral sucrose gradient centrifugation. In parallel, its template activity was determined by DNA polymerase (EC 2.7.7.7, enzyme A of Klenow from Escherichia coli) assay as described previously. Similar experiments were performed with cultured mouse leukaemia cells (L5178Y) irradiated in vitro at 0 degrees C. Irradiation induced single- and double-strand breaks in the DNA of the brain with a yield of 1.0 and 0.1 break per 10(12) dalton per rad (100 eV/break and 770 eV/break), respectively. The yield of single-strand breaks in the brain was lower than that found in the cultured cells, whereas the yield of double-strand breaks was found to be almost the same in both cases. Treatment of irradiated DNA with single-strand-specific S1 endonuclease gave rise to further breaks detected on neutral sucrose gradient analysis. The yield of these breaks was also higher in the brain compared to the cultured cells. The increase per unit dose in the template activity of the DNA from the brain was found to be five times as much as that found in the cultured cells. Then, the average number of deoxyribonucleotides incorporated per break was determined on DNA which had experienced different treatments. The value for the brain DNA irradiated in vivo was found to be five times as much as that found for DNA treated with pancreatic deoxyribonuclease and 10 times as much as those found for DNA from the cultured cells and isolated brain nuclei irradiated in vitro at 0 degrees C. Thus, in vivo irradiation seemed to induce gaps with 3'-OH terminals in addition to simple breaks with or without 3'-OH terminals found in the cultured cells. Radiation-induced single-strand breaks and 3'-OH terminals in the DNA of the brain were repaired following irradiation. Approx. 20--40% of the terminals or breaks induced were, however, remaining at 3 h or more after irradiation, depending on the dose administered.
Collapse
|
21
|
|
22
|
|
23
|
Matsudaira H, Furuno I, Ueno AM, Shinohara K, Yoshizawa K. Induction and repair of strand breaks and 3'-hydroxy terminals in the DNA of mammalian cells in culture following gamma-ray irradiation. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 476:97-107. [PMID: 558803 DOI: 10.1016/0005-2787(77)90087-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA was isolated in a fairly pure and intact state from cultured mouse leukaemia cells (L5178Y) after gamma-ray irradiation using a hydroxyapatite column chromatography method, and analysed further by sucrose gradient centrifugation or DNA polymerase (EC 2.7.7.7, enzyme A of Klenow from Escherichia coli) assay. Irradiation of the cells induced single- and double-strand breaks in the DNA with an efficiency of 100 eV/break and 1300 eV/break, respecitvely. Approximately 50% of the single-strand breaks were estimated to be those arising from allali-labile lesions. A linear, dose-dependent increase was found in the template activity of the DNA, indicating the induction of 3'-OH terminals by gamma-irradiation. Post-irradiation incubation of the cells in serum-free medium allowed the majority of the breaks to rejoin within a few hours. Repair of the alkali-labile lesions was, however, found to be much slower than that of "actual" single-strand breaks. A slight increase of the DNA template activity was found during the period of post-irradiation incubation. The reason for the increase is discussed.
Collapse
|
24
|
|
25
|
Söderhäll S, Lindahl T. Mammalian DNA ligases. Serological evidence for two separate enzymes. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)40777-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|