1
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
2
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
3
|
Craig LC, Wang LP, Lee MM, Pirtle IL, Pirtle RM. A human tRNA gene cluster encoding the major and minor valine tRNAs and a lysine tRNA. DNA (MARY ANN LIEBERT, INC.) 1989; 8:457-71. [PMID: 2766931 DOI: 10.1089/dna.1.1989.8.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A human genomic DNA clone hybridizing to mammalian valine tRNA(IAC) contained a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNA(CUU) gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region. At least nine Alu family members were interspersed throughout the 18.5-kb human DNA fragment, with three Alu elements in the intergenic region between the valine tRNA(AAC) gene and the lysine tRNA gene. Each of the five Alu family members in the sequenced region can be categorized into one of the four Alu subfamilies. The coding regions of all three tRNA genes contain characteristic internal split promoter sequences and typical RNA polymerase III termination signals in the 3'-flanking regions. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase T1 fingerprints of the mature-sized tRNA transcription products are consistent with the structural genes. The lysine tRNA(CUU) gene was transcribed only slightly more efficiently than the valine tRNA(CAC) gene in the homologous in vitro transcription system. Surprisingly, the valine tRNA(CAC) gene was transcribed about eightfold more efficiently than the valine tRNA(AAC) gene, implicating the presence of a modulatory element in the upstream region flanking the tRNA(CAC) gene.
Collapse
Affiliation(s)
- L C Craig
- Department of Biochemistry, University of North Texas, Texas College of Osteopathic Medicine, Denton 76203
| | | | | | | | | |
Collapse
|
4
|
Shortridge RD, Johnson GD, Craig LC, Pirtle IL, Pirtle RM. A human tRNA gene heterocluster encoding threonine, proline and valine tRNAs. Gene 1989; 79:309-24. [PMID: 2676726 DOI: 10.1016/0378-1119(89)90213-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A cluster of three tRNA genes encoding a tRNA(UGUThr), a tRNA(UGGPro), and a tRNA(AACVal), and two Alu-elements occur in a 6.0-kb human DNA fragment. The tRNA(Thr) gene is 2.7-kb upstream from the tRNA(Pro) gene, which is separated by 367 bp from the tRNA(Val) gene. One Alu-element actually overlaps the tRNA(Val) gene and is of opposite polarity to all three tRNA genes. All three tRNA genes are accurately transcribed in a homologous HeLa cell extract, since the ribonuclease T1 fingerprints of the tRNA transcripts are consistent with the nucleotide sequences of the tRNAs. The upstream region flanking the tRNA(Thr) gene has two tracts of alternating purine/pyrimidine residues potentially capable of adopting the Z-DNA conformation, and presumptive binding sites for two RNA polymerase II transcription factors. The tRNA(Thr) gene apparently has a substantially higher in vitro transcriptional efficiency than the other two tRNA genes in this cluster, and a tRNA(GCCGly) gene from another human DNA segment. Deletion constructs of the tRNA(Thr) gene retaining 272, 168, and 33 bp of original 5'-flanking DNA had about the same in vitro transcriptional efficiency, whereas that of the construct with only 2 bp of 5'-flanking human DNA was drastically reduced. The tRNA(Thr) gene constructs with 272 and 168 bp of original 5'-flanking DNA apparently reduce the transcriptional efficiencies of the proline and glycine tRNA genes, implicating the upstream region from the tRNA(Thr) gene as being crucial for its high transcriptional efficiency.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA/genetics
- Escherichia coli/genetics
- Gene Expression Regulation
- HeLa Cells
- Humans
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Oligonucleotide Probes
- Plasmids
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Val/genetics
- Restriction Mapping
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- R D Shortridge
- Department of Biochemistry, University of North Texas/Texas College of Osteopathic Medicine, Denton 76203
| | | | | | | | | |
Collapse
|
5
|
Abstract
The stereochemistry and the dynamics of two loops of yeast tRNA-asp, the thymine loop and the anticodon loop, are compared in the hope of a better understanding of the relationships between loop sequence and loop topology. Both loops are seven residues long and both present sharp turns after the second residue, U33 and psi 55, stabilized by hydrogen bonds between N3-H of the pyrimidine and the phosphates of C36 and A58 and stacking interactions of the pyrimidine ring with the phosphates of U35 and A57, respectively. In the thymine loop, the two purines following C56, A57 and A58, open up to leave space for the intercalation of the first invariant guanine residue of the D-loop, while the two pyrimidine bases, which follow A58, turn away from the stacking pattern of the thymine arm and stack instead with the last base pair of the dihydrouridine arm A15-U48. In the anticodon loop, however, the bases G34 to C38 form an helical stack in continuity with the anticodon stem on the 3'-end. At the same time C36 forms Watson-Crick hydrogen bonds with G34 of a twofold symmetrically related molecule. The anticodon-anticodon base pairing interactions between symmetrically-related molecules are stabilized by stacking with the modified base G37 on both sides of the triplet. Some comparisons are made with the structure of yeast tRNA-phe and some implications about the structure of mitochondrial tRNAs are discussed.
Collapse
Affiliation(s)
- E Westhof
- Institut de Biologie Moleculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
6
|
Addison W, Gillam I, Tener G. The nucleotide sequence of tRNA4Val of Drosophila melanogaster. Chloroacetaldehyde modification as an aid to RNA sequencing. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68246-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Purification and characterization of a HeLa cell transfer RNA(cytosine-5-)-methyltransferase. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85542-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman JE, Rajbhandary UL, Gross HJ. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 97:305-18. [PMID: 225173 DOI: 10.1111/j.1432-1033.1979.tb13115.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lysine isoacceptor tRNAs differ in two aspects from the majority of the other mammalian tRNA species: they do not contain ribosylthymine (T) in loop IV, and a 'new' lysine tRNA, which is practically absent in non-dividing tissue, appears at elevated levels in proliferating cells. We have therefore purified the three major isoaccepting lysine tRNAs from rabbit liver and the 'new' lysine tRNA isolated from SV40-transformed mouse fibroblasts, and determined their nucleotide sequences. Our basic findings are as follows. a) The three major lysine tRNAs (species 1, 2 and 3) from rabbit liver contain 2'-O-methylribosylthymine (Tm) in place of T. tRNA1Lys and tRNA2Lys differ only by a single base pair in the middle of the anticodon stem; the anticodon sequence C-U-U is followed by N-threonyl-adenosine (t6A). TRNA3Lys has the anticodon S-U-U and contains two highly modified thionucleosides, S (shown to be 2-thio-5-carboxymethyl-uridine methyl ester) and a further modified derivative of t6 A (2-methyl-thio-N6-threonyl-adenosine) on the 3' side of the anticodon. tRNA3Lys differs in 14 and 16 positions, respectively, from the other two isoacceptors. b) Protein synthesis in vitro, using synthetic polynucleotides of defined sequence, showed that tRNA2Lys with anticodon C-U-U recognized A-A-G only, whereas tRNA3Lys, which contains thio-nucleotides in and next to the anticodon, decodes both lysine codons A-A-G and A-A-A, but with a preference for A-A-A. In a globin-mRNA-translating cell-free system from ascites cells, both lysine tRNAs donated lysine into globin. The rate and extent of lysine incorporation, however, was higher with tRNA2Lys than with tRNA3Lys, in agreement with the fact that alpha-globin and beta-globin mRNAs contain more A-A-G than A-A-A- codons for lysine. c) A comparison of the nucleotide sequences of lysine tRNA species 1, 2 and 3 from rabbit liver, with that of the 'new' tRNA4Lys from transformed and rapidly dividing cells showed that this tRNA is not the product of a new gene or group of genes, but is an undermodified tRNA derived exclusively from tRNA2Lys. Of the two dihydrouridines present in tRNA2Lys, one is found as U in tRNA4Lys; the purine next to the anticodon is as yet unidentified but is known not be t6 A. In addition we have found U, T and psi besides Tm as the first nucleoside in loop IV.
Collapse
|
9
|
Osterman LA. Participation of tRNA in regulation of protein biosynthesis at the translational level in eukaryotes. Biochimie 1979; 61:323-42. [PMID: 378268 DOI: 10.1016/s0300-9084(79)80126-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Harris JS, Randerath K. Aminoacylation of undermethylated mammalian transfer RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 521:566-75. [PMID: 83876 DOI: 10.1016/0005-2787(78)90298-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To study the role of 5-methylcytidine in the aminoacylation of mammalian tRNA, bulk tRNA specifically deficient in 5-methylcytidine was isolated from the livers of mice treated with 5-azacytidine (18 mg/kg) for 4 days. For comparison, more extensively altered tRNA was isolated from the livers of mice treated with DL-ethionine (100 mg/kg) plus adenine (48 mg/kg) for 3 days. The amino acid acceptor capacity of these tRNAs was determined by measuring the incorporation of one of eight different 14C-labeled amino acids or a mixture of 14C-labeled amino acids in homologous assays using a crude synthetase preparation isolated from untreated mice. The 5-methylcytidine-deficient tRNA incorporated each amino acid to the same extent as fully methylated tRNA. The tRNA from DL-ethionine-treated livers showed an overall decreased amino-acylation capacity for all amino acids tested. The 5-methylcytidine-deficient tRNA from DL-ethionine-treated mice were further characterized as substrates in homologous rate assays designed to determine the Km and V of the aminoacylation reaction using four individual 14C-labeled amino acids and a mixture of 14C-labeled amino acids. The Km and V of the reactions for all amino acids tested using 5-methylcytidine-deficient tRNA as substrate were essentially the same as for fully methylated tRNA. However, the Km and V were increased when liver tRNA from mice treated with DL-ethionine plus adenine was used as substrate in the rate reaction with [14C]lysine as label. Our results suggest that although extensively altered tRNA is a poorer substrate than control tRNA in both extent and rate of aminoacylation, 5-methylcytidine in mammalian tRNA is not involved in the recognition of the tRNA by the synthetase as measured by aminoacylation activity.
Collapse
|
11
|
Piper PW. A correlation between a recessive lethal amber suppressor mutation in Saccharomyces cerevisiae and an anticodon change in a minor serine transfer RNA. J Mol Biol 1978; 122:217-35. [PMID: 355641 DOI: 10.1016/0022-2836(78)90037-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Feldman M. Minor components in transfer RNA: The location-function relationships. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1978. [DOI: 10.1016/0079-6107(78)90018-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
Mayr U, Bermayer HP, Weidinger G, Jungwirth C. Release of interferon-induced translation inhibition by tRNA in cell-free extracts from mouse erythroleukemia cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 76:541-51. [PMID: 268283 DOI: 10.1111/j.1432-1033.1977.tb11624.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Jank P, Shindo-Okada N, Nishimura S, Gross HJ. Rabbit liver tRNA1Val:I. Primary structure and unusual codon recognition. Nucleic Acids Res 1977; 4:1999-2008. [PMID: 896481 PMCID: PMC342537 DOI: 10.1093/nar/4.6.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The major valine acceptor tRNA1Val from rabbit liver was purified and its nucleotide sequence determined by in vitro [32P] - labeling with T4 phage induced polynucleotide kinase and finger-printing techniques. Its primary structure was found to be identical with the major valine tRNA from mouse myeloma cells. According to the wobble hypothesis this tRNA, which exclusively has an IAC anticodon, should decode the valine codons GUU, GUC and GUA only. However, this tRNA recognizes all four valine codons with a surprising preference for GUG. It is unknown whether this is due to the lack of A37 modification next to the 3' end of the anticodon IAC. The nature of the inosine-guanosine interaction remains to be clarified.
Collapse
|
16
|
Randerath E, Gopalakrishnan AS, Randerath K. Transfer RNA in hepatomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1977; 92:517-64. [PMID: 205108 DOI: 10.1007/978-1-4615-8852-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Hepatocellular/analysis
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/analysis
- Liver Neoplasms/enzymology
- Liver Neoplasms/metabolism
- Methylation
- Neoplasms, Experimental/analysis
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/metabolism
- Nucleosides/analysis
- RNA, Neoplasm/metabolism
- RNA, Transfer/analysis
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/analysis
- RNA, Transfer, Amino Acyl/metabolism
- Rats
- tRNA Methyltransferases/metabolism
Collapse
|
17
|
Ivanov VI. The binary code for protein-nucleic acid recognition with repulsive guanine: application to tRNA case. FEBS Lett 1975; 59:282-6. [PMID: 1227944 DOI: 10.1016/0014-5793(75)80393-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Piper PW. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 51:283-93. [PMID: 1168134 DOI: 10.1111/j.1432-1033.1975.tb03928.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The major form of methionine tRNA operational in the elongation of protein synthesis in mouse myeloma cells was purufied from these cells after they had been cultured in the presence of [32P]-phosphate. This [32P]tRNA4-Met species was then digested with T1 RNase or pancreatic RNase so as to obtain both complete and partial RNase digestion products. The nucleotide sequences of these fragments were analysed to enable the derivation of the complete primary structure of this tRNA. tRNA4-Met of mouse myeloma cells is 76 nucleotides in length and contains 15 modified nucleotides. It is the only tRNA yet sequenced which has been found to possess the minor nucleoside 2-methylguanosine (m2G) within the amino acid (a) stem, and also to have an anticodon (c) stem of only 4 and not 5 base-pairs. The loop IV sequence of eukaryotic initiator methionine tRNA (tRNAf-Met) species, -A-U-C-G-m1A-A-A-, IS NOT FOUND IN TRNA4-Met and is therefore absent from at least one of the methionine tRNAs functioning in polypeptide elongation in mammalian cells. This is consistent with the suggested importance of this loop structure in the initiator function of tRNAf-Met in eukaryotic organisms. Three distinct regions of the tRNA cloverleaf, the (b) stem, the anticodon loop (loop II), and loop III, are substantially conserved in structure between tRNAf-Met and tRNA4-Met of mouse myeloma cells. These regions of the structures of mammalian methionine tRNAs probably do not determine whether a certain tRNA-Met will function in the initiation or elongation of protein synthesis, although they might be important in tRNA-Met recognition if the different cytoplasmic tRNA-Met species of mammalian cells are aminoacylated by a single activating enzyme.
Collapse
|