1
|
Savino S, Borg AJE, Dennig A, Pfeiffer M, de Giorgi F, Weber H, Dubey KD, Rovira C, Mattevi A, Nidetzky B. Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nat Catal 2019; 2:1115-1123. [PMID: 31844840 PMCID: PMC6914363 DOI: 10.1038/s41929-019-0382-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
D-Apiose is a C-branched pentose sugar important for plant cell wall development. Its biosynthesis as UDP-D-apiose involves decarboxylation of the UDP-D-glucuronic acid precursor coupled to pyranosyl-to-furanosyl sugar ring contraction. This unusual multistep reaction is catalyzed within a single active site by UDP-D-apiose/UDP-D-xylose synthase (UAXS). Here, we decipher the UAXS catalytic mechanism based on crystal structures of the enzyme from Arabidopsis thaliana, molecular dynamics simulations expanded by QM/MM calculations, and mutational-mechanistic analyses. Our studies show how UAXS uniquely integrates a classical catalytic cycle of oxidation and reduction by a tightly bound nicotinamide coenzyme with retro-aldol/aldol chemistry for the sugar ring contraction. They further demonstrate that decarboxylation occurs only after the sugar ring opening and identify the thiol group of Cys100 in steering the sugar skeleton rearrangement by proton transfer to and from the C3’. The mechanistic features of UAXS highlight the evolutionary expansion of the basic catalytic apparatus of short-chain dehydrogenases/reductases for functional versatility in sugar biosynthesis.
Collapse
Affiliation(s)
- Simone Savino
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Alexander Dennig
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Francesca de Giorgi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Kshatresh Dutta Dubey
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Catalan Institution for Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
2
|
Rautengarten C, Ebert B, Heazlewood JL. Absolute Quantitation of In Vitro Expressed Plant Membrane Proteins by Targeted Proteomics (MRM) for the Determination of Kinetic Parameters. Methods Mol Biol 2018; 1696:217-234. [PMID: 29086407 DOI: 10.1007/978-1-4939-7411-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purification of a functional soluble protein from biological or in vitro expression systems can be problematic and the enrichment of a functional membrane protein for biochemical analyses can be a serious technical challenge. Recently we have been characterizing plant endomembrane nucleotide sugar transporters using a yeast expression system. However, rather than enriching these in vitro expressed proteins to homogeneity, we have been conducting biochemical characterization of these transport proteins in yeast microsomal fractions. While this approach has enabled us to estimate a variety of kinetic parameters, the accurate determination of the turnover number of an enzyme-substrate complex (k cat) requires that the catalytic site concentration (amount of protein) in the total reaction volume is known. As a result, we have been employing targeted proteomics (multiple reaction monitoring) with peptide standards and a triple quadrupole mass spectrometer to estimate the absolute amount of protein in a mixed protein microsomal fraction. The following method details the steps required to define the absolute quantitation of an in vitro expressed membrane protein to define complete kinetic parameters.
Collapse
Affiliation(s)
- Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA.
| |
Collapse
|
3
|
Bindschedler LV, Wheatley E, Gay E, Cole J, Cottage A, Bolwell GP. Characterisation and expression of the pathway from UDP-glucose to UDP-xylose in differentiating tobacco tissue. PLANT MOLECULAR BIOLOGY 2005; 57:285-301. [PMID: 15821883 DOI: 10.1007/s11103-004-7795-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 12/16/2004] [Indexed: 05/24/2023]
Abstract
The pathway from UDP-glucose to UDP-xylose has been characterised in differentiating tobacco tissue. A xylogenic suspension cell culture of tobacco has been used as a source for the purification of the enzymes responsible for the oxidation of UDP-glucose to UDP-glucuronic acid and its subsequent decarboxylation to UDP-xylose. Protein purification and transcriptional studies show that two possible candidates can contribute to the first reaction. Most of the enzyme activity in the cultured cells could be accounted for by a protein with an Mr of 43 kDa which had dual specificity for UDP-glucose and ethanol. The cognate cDNA, with similarity to alcohol dehydrogenases (NtADH2) was expressed in E. coli to confirm the dual specificity. A second UDP-glucose dehydrogenase, corresponding to the monospecific form, ubiquitous amongst plants and animals, could not be purified from the tobacco cell cultures. However, two cDNAs were cloned with high similarity to the family of UDP-glucose dehydrogenases. Transcripts of both types of dehydrogenase showed highest expression in tissues undergoing secondary wall synthesis. The UDP-glucuronate decarboxylase was purified as polypeptides of Mr 87 and 40 kDa. Peptide fingerprinting of the latter polypeptide identified it as a form of UDP-glucuronate decarboxylase and functionality was established by expressing the cognate cDNA in E. coli. Expression of 40 kDa polypeptide and its corresponding mRNA was also found to be highest in tissues associated with secondary wall formation.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Carboxy-Lyases/genetics
- Carboxy-Lyases/metabolism
- Cell Wall/genetics
- Cell Wall/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/metabolism
- Uridine Diphosphate Glucose/metabolism
- Uridine Diphosphate Glucose Dehydrogenase/genetics
- Uridine Diphosphate Glucose Dehydrogenase/isolation & purification
- Uridine Diphosphate Glucose Dehydrogenase/metabolism
- Uridine Diphosphate Xylose/metabolism
- Xylose/metabolism
Collapse
|
4
|
Mølhøj M, Verma R, Reiter WD. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:693-703. [PMID: 12969423 DOI: 10.1046/j.1365-313x.2003.01841.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
d-Apiose is a plant-specific branched-chain monosaccharide found in rhamnogalacturonan II (RG-II), apiogalacturonan, and several apioglycosides. Within RG-II, d-apiose serves as the binding site for borate, which leads to the formation of cross-links within the wall. Biochemical studies in duckweed and parsley have established that uridine 5'-diphospho-d-apiose (UDP-d-apiose) is formed from UDP-d-glucuronate by decarboxylation and re-arrangement of the carbon skeleton, leading to ring contraction and branch formation. The enzyme catalyzing this reaction also forms UDP-d-xylose by decarboxylation of UDP-d-glucuronate, and has therefore been named UDP-d-apiose/UDP-d-xylose synthase. Using a bioinformatics approach, we identified a candidate gene (AXS1) for this enzyme in Arabidopsis and functionally expressed its cDNA in Escherichia coli. The recombinant enzyme catalyzed the conversion of UDP-d-glucuronate to a mixture of UDP-d-apiose and UDP-d-xylose with a turnover number of 0.3 min-1. AXS1 required NAD+ for enzymatic activity, and was strongly inhibited by UDP-d-galacturonate. It was highly expressed in all plant organs consistent with a function in synthesizing an essential cell wall precursor. Database searches indicated the presence of closely related sequences in a variety of crop plants. The cloning of the AXS1 gene will help to investigate the biosynthesis of RG-II, and permit insights into the mechanism by which d-apiose and other branched monosaccharides are formed.
Collapse
Affiliation(s)
- Michael Mølhøj
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA
| | | | | |
Collapse
|
5
|
Abstract
Carbohydrates are highly abundant biomolecules found extensively in nature. Besides playing important roles in energy storage and supply, they often serve as essential biosynthetic precursors or structural elements needed to sustain all forms of life. A number of unusual sugars that have certain hydroxyl groups replaced by a hydrogen, an amino group, or an alkyl side chain play crucial roles in determining the biological activity of the parent natural products in bacterial lipopolysaccharides or secondary metabolite antibiotics. Recent investigation of the biosynthesis of these monosaccharides has led to the identification of the gene clusters whose protein products facilitate the unusual sugar formation from the ubiquitous NDP-glucose precursors. This review summarizes the mechanistic studies of a few enzymes crucial to the biosynthesis of C-2, C-3, C-4, and C-6 deoxysugars, the characterization and mutagenesis of nucleotidyl transferases that can recognize and couple structural analogs of their natural substrates and the identification of glycosyltransferases with promiscuous substrate specificity. Information gleaned from these studies has allowed pathway engineering, resulting in the creation of new macrolides with unnatural deoxysugar moieties for biological activity screening. This represents a significant progress toward our goal of searching for more potent agents against infectious diseases and malignant tumors.
Collapse
Affiliation(s)
- Xuemei M He
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
6
|
Kobayashi M, Nakagawa H, Suda I, Miyagawa I, Matoh T. Purification and cDNA cloning of UDP-D-glucuronate carboxy-lyase (UDP-D-xylose synthase) from pea seedlings. PLANT & CELL PHYSIOLOGY 2002; 43:1259-65. [PMID: 12461125 DOI: 10.1093/pcp/pcf157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uridine diphospho-D-glucuronate carboxy-lyase (UDP-D-xylose synthase; EC 4.1.1.35), which catalyzes the conversion of UDP-D-glucuronate to UDP-D-xylose, was purified to apparent homogenity from pea (Pisum sativum L.) seedlings. The pH optimum for enzyme activity was around 5-6, and the activity was not affected by exogeneously supplied NAD+ and NADH. The purified enzyme had a molecular weight of 250 kDa and consisted of 42 kDa polypeptides. Based on the amino acid sequence, a probe (400 bp) was prepared with degenerate primers by a reverse transcriptase-PCR. Using this probe, a clone encoding 346 amino acid residues was screened from a pea cDNA library. The recombinant protein expressed in Escherichia coli catalyzed conversion of UDP-D-glucuronate to UDP-D-xylose, confirming that the isolated clone encoded UDP-D-glucuronate carboxy-lyase.
Collapse
Affiliation(s)
- Masaru Kobayashi
- Laboratory of Plant Nutrition, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|
7
|
Reiter WD, Vanzin GF. Molecular genetics of nucleotide sugar interconversion pathways in plants. PLANT MOLECULAR BIOLOGY 2001; 47:95-113. [PMID: 11554483 DOI: 10.1007/978-94-010-0668-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide sugar interconversion pathways represent a series of enzymatic reactions by which plants synthesize activated monosaccharides for the incorporation into cell wall material. Although biochemical aspects of these metabolic pathways are reasonably well understood, the identification and characterization of genes encoding nucleotide sugar interconversion enzymes is still in its infancy. Arabidopsis mutants defective in the activation and interconversion of specific monosaccharides have recently become available, and several genes in these pathways have been cloned and characterized. The sequence determination of the entire Arabidopsis genome offers a unique opportunity to identify candidate genes encoding nucleotide sugar interconversion enzymes via sequence comparisons to bacterial homologues. An evaluation of the Arabidopsis databases suggests that the majority of these enzymes are encoded by small gene families, and that most of these coding regions are transcribed. Although most of the putative proteins are predicted to be soluble, others contain N-terminal extensions encompassing a transmembrane domain. This suggests that some nucleotide sugar interconversion enzymes are targeted to an endomembrane system, such as the Golgi apparatus, where they may co-localize with glycosyltransferases in cell wall synthesis. The functions of the predicted coding regions can most likely be established via reverse genetic approaches and the expression of proteins in heterologous systems. The genetic characterization of nucleotide sugar interconversion enzymes has the potential to understand the regulation of these complex metabolic pathways and to permit the modification of cell wall material by changing the availability of monosaccharide precursors.
Collapse
Affiliation(s)
- W D Reiter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA.
| | | |
Collapse
|
8
|
|
9
|
Branched-chain Sugars and Sugar Alcohols. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461012-5.50013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
|
11
|
Gardiner S, Schröder J, Matern U, Hammer D, Hahlbrock K. mRNA-dependent regulation of UDP-apiose synthase activity in irradiated plant cells. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70371-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
|