1
|
Lederer F, Vignaud C, North P, Bodevin S. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1215-1221. [PMID: 27155230 DOI: 10.1016/j.bbapap.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire d'Enzymologie, UPR 9063, CNRS, 91198 Gif-sur-Yvette Cedex, France; Laboratoire de Chimie Physique, CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France.
| | - Caroline Vignaud
- Laboratoire d'Enzymologie, UPR 9063, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Paul North
- Laboratoire d'Enzymologie, UPR 9063, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Sabrina Bodevin
- Laboratoire d'Enzymologie, UPR 9063, CNRS, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
2
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
3
|
Lindqvist L, Apostol S, El Hanine-Lmoumene C, Lederer F. Dynamics of flavin semiquinone protolysis in L-alpha-hydroxyacid-oxidizing flavoenzymes--a study using nanosecond laser flash photolysis. FEBS J 2010; 277:964-72. [PMID: 20074210 DOI: 10.1111/j.1742-4658.2009.07539.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of the flavin semiquinone generated by laser-induced stepwise two-photon excitation of reduced flavin have been studied previously (El Hanine-Lmoumene C & Lindqvist L. (1997) Photochem Photobiol 66, 591-595) using time-resolved spectroscopy. In the present work, we have used the same experimental procedure to study the flavin semiquinone in rat kidney long-chain hydroxy acid oxidase and in the flavodehydrogenase domain of flavocytochrome b(2) FDH, two homologous flavoproteins belonging to the family of FMN-dependent L-2-hydroxy acid-oxidizing enzymes. For both proteins, pulsed laser irradiation at 355 nm of the reduced enzyme generated initially the neutral semiquinone, which has rarely been observed previously for these enzymes, and hydrated electron. The radical evolved with time to the anionic semiquinone that is known to be stabilized by these enzymes at physiological pH. The deprotonation kinetics were biphasic, with durations of 1-5 micros and tens of microseconds, respectively. The fast phase rate increased with pH and Tris buffer concentration. However, this increase was about 10-fold less pronounced than that reported for the neutral semiquinone free in aqueous solution. pK(a) values close to that of the free flavin semiquinone were obtained from the transient protolytic equilibrium at the end of the fast phase. The second slow deprotonation phase may reflect a conformational relaxation in the flavoprotein, from the fully reduced to the semiquinone state. The anionic semiquinone is known to be an intermediate in the flavocytochrome b(2) catalytic cycle. In light of published kinetic studies, our results indicate that deprotonation of the flavin radical is not rate-limiting for the intramolecular electron transfer processes in this protein.
Collapse
Affiliation(s)
- Lars Lindqvist
- Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique, Université Paris-Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
4
|
Mowat CG, Gazur B, Campbell LP, Chapman SK. Flavin-containing heme enzymes. Arch Biochem Biophys 2010; 493:37-52. [DOI: 10.1016/j.abb.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
5
|
Capeillere-Blandin C. Flavocytochrome b2-cytochrome c interactions: the electron transfer reaction revisited. Biochimie 1995; 77:516-30. [PMID: 8589063 DOI: 10.1016/0300-9084(96)88168-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review is concerned with the kinetics and mechanism of electron transfer processes which occur intermolecularly between reduced flavocytochrome b2 and cytochrome c molecules within an encounter complex. Analyses are given of previous reports which aimed at describing the formation of stable complexes obtained at low ionic strength in solution and in the crystalline state with a binding stoichiometry of 1 to 1 heme ratio. Relevant data allow to define the respective role of flavin and heme b2 in the electron transfer towards cytochrome c and give a description of the recognition areas on the two redox partners. The paper also refers to a recent computer model of their postulated interactions as based on the three-dimensional structure of the Saccharomyces cerevisiae single molecules. Special emphasis is given to rapid kinetic investigations of the electron transfer reaction between Hansenula anomala flavocytochrome b2 and cytochrome c studied as a function of concentration, ionic strength and temperature. Data showed that reaction rates were modulated by ionic strength, reaching a saturation behaviour at low ionic strength. In the present paper the temperature effects on Kd and kET have been re-examined. Thermodynamic analysis of the dissociation constant points out the importance of hydrophobic interactions in the complex formation. Analysis of the variations of rate constants in terms of semiclassical theory of electron-transfer reaction yields values of 1.12 eV for the reorganization energy and 0.05 cm-1 for the electronic coupling factor. Interpretation of the electronic coupling in terms of through-bond and/or through-space pathways takes into account the hypothetical model proposed for the binary complex. The functional implications of this model in the electron transfer reaction are discussed. Finally the existence of a conformational equilibrium between the initial binding complex and the complex from which electron transfer occurs is considered.
Collapse
Affiliation(s)
- C Capeillere-Blandin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS-URA 400, Université René Descartes, Paris, France
| |
Collapse
|
6
|
Rouvière-Fourmy N, Capeillère-Blandin C, Lederer F. Role of tyrosine 143 in lactate dehydrogenation by flavocytochrome b2. Primary kinetic isotope effect studies with a phenylalanine mutant. Biochemistry 1994; 33:798-806. [PMID: 8292608 DOI: 10.1021/bi00169a022] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Flavocytochrome b2 catalyzes the oxidation of lactate at the expense of cytochrome c. After flavin (FMN) reduction by the substrate, reducing equivalents are transferred one by one to heme b2, and from there on to cytochrome c. The crystal structure of the enzyme is known at 2.4-A resolution, and specific roles in catalysis have been assigned to active side chains. Tyr143 in particular, located at the interface between the flavodehydrogenase moiety and the heme-binding domain, was thought to take part in substrate binding, as well as to orient the heme-binding domain for efficient electron transfer. A first study of the properties of a Tyr143Phe mutant showed that the major effect of the mutation was to decrease the rate of electron transfer from flavin to heme [Miles, C.S., Rouvière-Fourmy, N., Lederer, F., Mathews, F.S., Reid, G.A., Black, M.T., & Chapman, S.K. (1992) Biochem. J. 285, 187-192]. In the present paper, we focus on the effect of the mutation on catalysis of lactate dehydrogenation. We report the deuterium kinetic isotope effects on flavin reduction as measured with stopped-flow methods and on cytochrome c reduction in the steady-state using L-[2-2H]lactate. For the wild-type enzyme, isotope effects on FMN reduction, D(kredF) and D(kredF)/Km), were 7.2 +/- 0.9 and 4.2 +/- 1.3, respectively, and for the Y143F mutant values of 4.4 +/- 0.5 and 3.9 +/- 1.1 were obtained. Calculations, from deuterium isotope effects, of substrate Kd values, combined with knowledge of kcat/Km values, lead to the conclusion that Tyr143 does stabilize the Michaelis complex by hydrogen bonding to a substrate carboxylate, as was postulated; but the mutation does not destabilize the transition state more than the Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Rouvière-Fourmy
- Centre National de la Recherche Scientifique, URA 1461, Hôpital Necker, Paris, France
| | | | | |
Collapse
|
7
|
Abstract
The family of b5-like cytochromes encompasses, besides cytochrome b5 itself, hemoprotein domains covalently associated with other redox proteins, in flavocytochrome b2 (L-lactate dehydrogenase), sulfite oxidase and assimilatory nitrate reductase. A comparison of about 40 amino acid sequences deposited in data banks shows that eight residues are invariant and about 15 positions carry strongly conservative substitutions. Examination of the location of these invariant and conserved positions in the light of the three-dimensional structures of beef cytochrome b5 and S cerevisiae flavocytochrome b2 suggests a strongly conserved protein structure for the b5-like heme-binding domain throughout evolution. Numerous NMR studies have demonstrated the existence of a positional isomerism for the heme, which involves both a 180 degree-rotation around the heme alpha,gamma-meso carbon atoms and a rotation through an axis normal to the heme plane at the iron. NMR studies did not detect significant differences in protein structure between reduced and oxidized states, or between species. The role of a number of side chains was probed by site-directed mutagenesis. Studies of complex formation and of electron transfer rates between cytochrome b5 and redox partners have led to the idea that complexation is driven by electrostatic forces, that it is generally the exposed heme edge which makes contact with electron donors and acceptors, but that there are multiple overlapping sites within this general area. For the bi- and trifunctional members of the family, extrapolation of available data would suggest a mobile heme-binding domain within a complex structure. In these cases the existence of a single interaction area for both electron donor and acceptor, or of two different ones, remains open to discussion.
Collapse
Affiliation(s)
- F Lederer
- CNRS-URA 1461, Hôpital Necker, Paris, France
| |
Collapse
|
8
|
Lederer F. Extreme pKa displacements at the active sites of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. Protein Sci 1992; 1:540-8. [PMID: 1338973 PMCID: PMC2142218 DOI: 10.1002/pro.5560010409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavocytochrome b2 (or L-lactate dehydrogenase) from baker's yeast is thought to operate by the initial formation of a carbanion, as do the evolutionarily related alpha-hydroxy acid-oxidizing FMN-dependent oxidases. Previous work has shown that, in the active site of the unligated reduced flavocytochrome b2, the group that has captured the substrate alpha-proton has a high pKapp, calculated to lie around 15 through the use of Eigen's equation. A detailed inspection of the now known three-dimensional structure of the enzyme leads to the conclusion that the high pKa belongs to His 373, an active site group that plays the role of general base in the forward reaction and of general acid in the reverse direction. Moreover, consideration of the kinetics of proton transfer during the catalytic cycle suggests that the pKa of the reduced FMN N5 position should be lowered by several pH units compared to its pKa of 20 or more when free. The features of the three-dimensional structure possibly responsible for these pK shifts are analyzed; they are proposed to consist of a network of hydrogen bonds with the solvent and of a mutual electrostatic stabilization of anionic reduced flavin and the imidazolium ion. Finally, it is suggested that similar pK shifts affect the active sites of the alpha-hydroxy acid-oxidizing flavooxidases, which are homologous to flavocytochrome b2. The functional significance of these pK shifts in terms of catalysis and semiquinone stabilization is discussed.
Collapse
Affiliation(s)
- F Lederer
- CNRS URA 1461, Hôpital Necker, Paris, France
| |
Collapse
|
9
|
|
10
|
Abstract
The crystal structure of flavocytochrome b2 has been solved at 3.0 A resolution by the method of multiple isomorphous replacement with anomalous scattering. Area detector data from native and two heavy-atom derivative crystals were used. The phases were refined by the B.C. Wang phase-filtering procedure utilizing the 67% (v/v) solvent content of the crystals. A molecular model was built first on a minimap and then on computer graphics from a combination of maps both averaged and not averaged about the molecular symmetry axis. The structure was extended to 2.4 A resolution using film data recorded at a synchrotron and refined by the Hendrickson-Konnert procedure. The molecule, a tetramer of Mr 230,000, is located on a crystallographic 2-fold axis and possesses local 4-fold symmetry. Each subunit is composed of two domains, one binding a heme and the other an FMN prosthetic group. In subunit 1, both the cystochrome and the flavin-binding domain are visible in the electron density map. In subunit 2 the cytochrome domain is disordered. However, in the latter, a molecule of pyruvate, the product of the enzymatic reaction, is bound at the active site. The cytochrome domain consists of residues 1 to 99 and is folded in a fashion similar to the homologous soluble fragment of cytochrome b5. The flavin binding domain contains a parallel beta 8 alpha 8 barrel structure and is composed of residues 100 to 486. The remaining 25 residues form a tail that wraps around the molecular 4-fold axis and is in contact with each remaining subunit. The FMN moiety, which is located at the C-terminal end of the central beta-barrel, is mostly sequestered from solvent; it forms hydrogen bond interactions with main- and side-chain atoms from six of the eight beta-strands. The interaction of Lys349 with atoms N-1 and O-2 of the flavin ring is probably responsible for stabilization of the anionic form of the flavin semiquinone and hydroquinone and enhancing the reactivity of atom N-5 toward sulfite. The binding of pyruvate at the active site in subunit 2 is stabilized by interaction of its carboxylate group with the side-chain atoms of Arg376 and Tyr143. Residues His373 and Tyr254 interact with the keto-oxygen atom and are involved in catalysis. In contrast, four water molecules occupy the substrate-binding site in subunit 1 and Tyr143 forms a hydrogen bond to the ordered heme propionate group. Otherwise the two flavin-binding domains are identical within experimental error.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Z X Xia
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
11
|
de Vries S, Marres CA. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 895:205-39. [PMID: 2849479 DOI: 10.1016/s0304-4173(87)80003-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- S de Vries
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
|
13
|
Urban P, Alliel PM, Lederer F. On the transhydrogenase activity of baker's yeast flavocytochrome b2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 134:275-81. [PMID: 6347687 DOI: 10.1111/j.1432-1033.1983.tb07562.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is shown that, when baker's yeast flavocytochrome b2 is incubated with bromopyruvate in the presence of excess lactate, a transhydrogenation reaction takes place which produces bromolactate and pyruvate. The heme remains reduced during the reaction. It is further shown that reduced flavocytochrome b2 can catalyze the reduction of a number of other keto acids like pyruvate (the product of the physiological reaction) and other halogenopyruvates. Determinations of forward and reverse reaction rates, as well as of the redox potentials of the halogenolactate/halogenopyruvate couples lead to the conclusion that the transhydrogenation reaction is under thermodynamic control. Determinations of the steady-state deuterium isotope effect show that the rate-limiting step in the oxidation of halogenolactates is abstraction of the alpha-hydrogen (probably as a proton), as is the case for lactate itself. According to the principle of microscopic reversibility, the rate-limiting step in the reverse reaction must be protonation of the putative carbanion.
Collapse
|
14
|
|