1
|
Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH. Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100054. [PMID: 36158162 PMCID: PMC9482557 DOI: 10.1016/j.bea.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.
Collapse
Key Words
-
γ
, Gamma
-
δ
, Delta
- ACE2, Angiotensin-converting enzyme 2
- ADCC, Antibody-dependent cell-mediated cytotoxicity
- ADCP, Antibody-dependent cellular phagocytosis
- ADE, Antibody-dependent enhancement
- Alb, Albumin
- Bat-SL-CoV, Bat SARS-like coronavirus
- Broad neutralization
- CDC, Complement-dependent cytotoxicity
- CDR, Complementarity-determining region
- CH, Constant domain of antibody heavy chain
- CHO, Chinese hamster ovary
- CL, Constant domain of antibody light chain
- CNAR, Constant domain of immunoglobulin new antigen receptor
- COVID-19
- COVID-19, Coronavirus disease 2019
- Cryo-EM, Cryogenic electron microscopy
- Cu, Copper
- DNA, Deoxyribonucleic acid
- DPP4, Dipeptidyl peptidase 4
- E, Envelope
- EC50, Half-maximal effective concentration
- FDA, The United States Food and Drug Administration
- Fab, Antigen-binding fragment
- Fc, Crystallisable fragment
- FcR, Crystallisable fragment receptor
- Fig., Figure
- HCoV, Human coronavirus
- HIV, Human immunodeficiency virus
- HR, Heptad repeat
- HRP, Horseradish peroxidase
- HV, Hypervariable region
- IC50, Half-maximal inhibitory concentration
- Ig, Immunoglobulin
- IgNAR, Immunoglobulin new antigen receptor
- KD, Equilibrium dissociation constant
- L, Litre
- LRT, Lower respiratory tract
- M, Membrane
- MERS, Middle East respiratory syndrome
- MERS-CoV, Middle East respiratory syndrome coronavirus
- N, Nucleocapsid
- ND50, 50% neutralizing dose
- NTD, N-terminal domain
- Nb, Nanobody
- PCR, Polymerase chain reaction
- PEG, Polyethylene glycol
- RBD, Receptor-binding domain
- RBM, Receptor-binding motif
- RNA, Ribonucleic acid
- S, Spike
- SARS, Severe acute respiratory syndrome
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SARS-CoV-2 mutation
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SPAAC, Strain-promoted azide-alkyne cycloaddition
- Single-domain antibody
- Spike protein
- TMPRSS2, Transmembrane serine protease 2
- Therapeutic
- URT, Upper respiratory tract
- VH, Variable domain of antibody heavy chain
- VHH, Variable domain of camelid heavy-chain only antibody
- VL, Variable domain of antibody light chain
- VNAR, Variable domain of immunoglobulin new antigen receptor
- WHO, World Health Organization
- cDNA, Complementary deoxyribonucleic acid
- dpi, Days' post infection
- g, Gram
- kDa, Kilodalton
- koff, Dissociation rate constant
- mAb, Monoclonal antibody
- mRNA, Messenger ribonucleic acid
- nM, Nanomolar
- pM, Picomolar
- scFv, Single-chain variable fragment
- sdAb, Single-domain antibody
- ß, Beta
- α, Alpha
Collapse
Affiliation(s)
- H T Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - B H Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C P Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - A B Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - C Y Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C H Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
2
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
3
|
Friedman J, Levinsky H, Allalouf D, Staroselsky A. Sialic acid content in mouse myeloma cells and derived B-cell hybridomas with different metastatic potentials. Cancer Lett 1988; 43:79-84. [PMID: 3264519 DOI: 10.1016/0304-3835(88)90217-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In a previous work we have reported on the metastatic capacities of mouse myeloma cells (NSO) and of two hybridomas derived from them. The present study was designed to examine the sialic acid content of these cell types, their attachment to glass and their capping in the presence of wheat germ agglutinin (WGA). The results showed no significant differences in sialic acid content between NSO and Hybridoma A (Hy A) cells which are non and low metastatic, respectively, whereas Hybridoma B (Hy B), which is highly metastatic, contained 1.4-1.6-fold higher sialic acid compared to the other two cell types. NSO cells exhibited a high, Hy A a moderate and Hy B a negligible attachment to glass. Capping experiments showed a low response of NSO cells, a moderate response of Hy A and a high response of Hy B in the presence of WGA. The results are discussed with regard to the metastatic potential of these cell types taking into consideration the properties cell surface sialic acid is known to endow to cells, determining various aspects of their behaviour.
Collapse
Affiliation(s)
- J Friedman
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
4
|
Martinod SR. Quantitative detection of lectin receptors on cell membranes using an enzyme linked lectin binding assay. PREPARATIVE BIOCHEMISTRY 1985; 15:171-81. [PMID: 2865724 DOI: 10.1080/10826068508062270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Kennedy SM, Burchell B. Single-step purification of epoxide hydrolase from rat liver microsomes using monoclonal-antibody chromatography. Biochem Pharmacol 1983; 32:2029-32. [PMID: 6870932 DOI: 10.1016/0006-2952(83)90423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Monoclonal antibody to rat liver microsomal epoxide hydrolase has been obtained after immunization of mice with the enzyme prepared by conventional methods. Antibody from ascitic fluid was purified and coupled to CNBr-activated Sepharose 4B, to give a specific affinity column. Monoclonal-antibody affinity chromatography provided a rapid single-step method of purifying to homogeneity active epoxide hydrolase from crude solubilized microsomes. The techniques used offer an effective method for characterization of a non-inhibitory monoclonal antibody.
Collapse
|
7
|
Pike JW, Marion SL, Donaldson CA, Haussler MR. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3. Generation by a preparation enriched in a 64,000-dalton protein. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33191-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|