1
|
Azarashvili TS, Tyynelä J, Odinokova IV, Grigorjev PA, Baumann M, Evtodienko YV, Saris NEL. Phosphorylation of a peptide related to subunit c of the F0F1-ATPase/ATP synthase and relationship to permeability transition pore opening in mitochondria. J Bioenerg Biomembr 2002; 34:279-84. [PMID: 12392191 DOI: 10.1023/a:1020204518513] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A phosphorylated polypeptide (ScIRP) from the inner membrane of rat liver mitochondria with an apparent molecular mass of 3.5 kDa was found to be immunoreactive with specific antibodies against subunit c of F0F1-ATPase/ATP synthase (Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000). Biochem. Biophys. Res. Commun. 270, 741-744. In the present paper we show that the dephosphorylation of ScIRP was promoted by the Ca2+-induced mitochondrial permeability transition (MPT) and prevented by cyclosporin A. Preincubation of ScIRP isolated in its dephosphorylated form with the mitochondrial suspension decreased the membrane potential (delta psiM) and the Ca2+-uptake capacity by promoting MPT. Incorporation of ScIRP into black-lipid membranes increased the membrane conductivity by inducing channel formation that was also suppressed by antibodies to subunit c. These data indicate that the phosphorylation level of ScIRP is influenced by the MPT pore state, presumably by stimulation of calcineurin phosphatase by the Ca2+ used to induce MPT. The possibility of ScIRP being part of the MPT pore assembly is discussed in view of its capability to induced channel activity.
Collapse
Affiliation(s)
- Tamara S Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
2
|
García JJ, Ogilvie I, Robinson BH, Capaldi RA. Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho(0) cells completely lacking mtdna. J Biol Chem 2000; 275:11075-81. [PMID: 10753912 DOI: 10.1074/jbc.275.15.11075] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and functioning of the ATP synthase of human fibroblast cell lines with 91 and 100%, respectively, of the T8993G mutation have been studied, with MRC5 human fibroblasts and Rho(0) cells derived from this cell line as controls. ATP hydrolysis was normal but ATP synthesis was reduced by 60% in the 100% mutants. Both activities were highly oligomycin-sensitive. The levels of F(1)F(0) were close to normal, and the enzyme was stable. It is concluded that the loss of ATP synthesis is because of disruption of the proton translocation step within the F(0) part. This is supported by membrane potential measurements using the dye JC-1. Cells with a 91% mutation load grew well and showed only a 25% loss in ATP synthesis. This much reduced effect for only a 9% difference in mutation load mirrors the reduced pathogenicity in patients. F(1)F(0) has been purified for the first time from human cell lines. A partial complex was obtained from Rho(0) cells containing the F(1) subunits associated with several stalk, as well as F(0) subunits, including oligomycin sensitivity conferring protein, b, and c subunits. This partial complex no longer binds inhibitor protein.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
3
|
Hamasur B, Glaser E. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:409-16. [PMID: 1313368 DOI: 10.1111/j.1432-1033.1992.tb16794.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.
Collapse
Affiliation(s)
- B Hamasur
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
4
|
Hamasur B, Glaser E. F0F1-ATPase of plant mitochondria: isolation and polypeptide composition. Biochem Biophys Res Commun 1990; 170:1352-8. [PMID: 2143900 DOI: 10.1016/0006-291x(90)90543-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.
Collapse
Affiliation(s)
- B Hamasur
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
5
|
Hermolin J, Fillingame RH. H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84937-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
De Pinto V, Tommasino M, Benz R, Palmieri F. The 35 kDa DCCD-binding protein from pig heart mitochondria is the mitochondrial porin. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 813:230-42. [PMID: 2578813 DOI: 10.1016/0005-2736(85)90238-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protein which can be labelled by low concentrations of dicyclohexylcarbodiimide in the Mr region of 30 000-35 000 has been purified from pig heart mitochondria with a high yield and as a single band of apparent Mr 35 000 in dodecyl sulphate-containing gels. The protein is not identical with the phosphate carrier as suggested before, since the two proteins behave differently during isolation. Incorporation of the isolated 35 kDa dicyclohexylcarbodiimide-binding protein into lipid bilayer membranes causes an increase of the membrane conductance in definite steps, due to the formation of pores. The specific pore-forming activity increases during the purification procedure. The single pore conductance is about 4.0 nS, suggesting a diameter of 1.7 nm of the open pore. The pore conductance is dependent on the voltage across the membrane. Anion permeability of the pore is higher than cation permeability. These properties are similar to those described for isolated mitochondrial and bacterial porins. It is concluded that the 35 kDa dicyclohexylcarbodiimide-binding protein from pig heart mitochondria is identical with porin from outer mitochondrial membrane.
Collapse
|
7
|
Dreyfus G, Célis H, Ramírez J. Isolation of the mitochondrial F1-F0 adenosine triphosphatase by Sepharose-hexylammonium chromatography: properties and reconstitution in liposomes. Anal Biochem 1984; 142:215-20. [PMID: 6083734 DOI: 10.1016/0003-2697(84)90541-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lauryl dimethylamino oxide, a zwitterionic detergent, was employed to solubilize the H+ ATPase from beef heart mitochondria. A simple preparation procedure has been devised to obtain F1-F0 based on a method described to purify F1 ATPase (M. Tuena de Gómez-Puyou and A. Gómez-Puyou, 1977, Arch. Biochem. Biophys. 182, 82-86) which consists of the selective adsorption of F1 to Sepharose-hexylammonium beads. The preparation showed approximately 18 bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 5 correspond to F1 subunits and the rest probably to the stalk and hydrophobic sector F0. The binding of [14C]dicyclohexylcarbodiimide to a low-molecular-weight component of this preparation was demonstrated. The F1-F0 complex was reconstituted into phospholipid vesicles which displayed ATP-Pi exchange and ATP-dependent 9-aminoacridine fluorescence quenching, both sensitive to proton channel inhibitors.
Collapse
|
8
|
Hoppe J, Sebald W. The proton conducting F0-part of bacterial ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:1-27. [PMID: 6231051 DOI: 10.1016/0304-4173(84)90005-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Ernster L. Mechanism and regulation of mitochondrial ATP synthesis. CURRENT TOPICS IN CELLULAR REGULATION 1984; 24:313-34. [PMID: 6238808 DOI: 10.1016/b978-0-12-152824-9.50035-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Degli Esposti M, Meier EM, Timoneda J, Lenaz G. Modification of the catalytic function of the mitochondrial cytochrome b-c1 complex by dicyclohexylcarbodiimide. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 725:349-60. [PMID: 6315061 DOI: 10.1016/0005-2728(83)90209-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
N,N'-Dicyclohexylcarbodiimide (DCCD) induces a complex set of effects on the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations below 1000 mol per mol of cytochrome c1, DCCD is able to block the proton-translocating activity associated to succinate or ubiquinol oxidation without inhibiting the steady-state redox activity of the b-c1 complex either in intact mitochondrial particles or in the isolated ubiquinol-cytochrome c reductase reconstituted in phospholipid vesicles. In parallel to this, DCCD modifies the redox responses of the endogenous cytochrome b, which becomes more rapidly reduced by succinate, and more slowly oxidized when previously reduced by substrates. At similar concentrations the inhibitor apparently stimulates the redox activity of the succinate-ubiquinone reductase. Moreover, DCCD, at concentrations about one order of magnitude higher than those blocking proton translocation, produces inactivation of the redox function of the b-c1 complex. The binding of [14C]DCCD to the isolated b-c1 complex has shown that under conditions leading to the inhibition of the proton-translocating activity of the enzyme, a subunit of about 9500 Da, namely Band VIII, is the most heavily labelled polypeptide of the complex. The possible correlations between the various effects of DCCD and its modification of the b-c1 complex are discussed.
Collapse
|
11
|
Kopecky J, Guerrieri F, Papa S. Interaction of dicyclohexylcarbodiimide with the proton-conducting pathway of mitochondrial H+-ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:17-24. [PMID: 6299729 DOI: 10.1111/j.1432-1033.1983.tb07226.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Glaser E, Norling B. Kinetics of interaction between the H+-translocating component of the mitochondrial ATPase complex and oligomycin or dicyclohexylcarbodiimide. Biochem Biophys Res Commun 1983; 111:333-9. [PMID: 6219674 DOI: 10.1016/s0006-291x(83)80156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kinetics of interaction between the H+-translocating component of the mitochondrial ATPase complex and oligomycin or dicyclohexylcarbodiimide were studied in beef heart submitochondrial particles, and the results suggest that the two inhibitors have different binding sites with respect to the membrane and to F1. Oligomycin seems to be bound to a subunit or a part of a subunit in F0, which is localized superficially, and which is influenced by F1, since the presence of F1 considerably lowers the rate of inhibition. The oligomycin binding site further seems to be influenced by the different conformational states of F1 occurring during the catalytic cycle of the enzyme. The binding site of DCCD on F0, on the other hand, seems to be deeply embedded in the membrane and not influenced by F1.
Collapse
|
13
|
Schmidt B, Hennig B, Zimmermann R, Neupert W. Biosynthetic pathway of mitochondrial ATPase subunit 9 in Neurospora crassa. J Cell Biol 1983; 96:248-55. [PMID: 6219116 PMCID: PMC2112243 DOI: 10.1083/jcb.96.1.248] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subunit 9 of mitochondrial ATPase (Su9) is synthesized in reticulocyte lysates programmed with Neurospora poly A-RNA, and in a Neurospora cell free system as a precursor with a higher apparent molecular weight than the mature protein (Mr 16,400 vs. 10,500). The RNA which directs the synthesis of Su9 precursor is associated with free polysomes. The precursor occurs as a high molecular weight aggregate in the postribosomal supernatant of reticulocyte lysates. Transfer in vitro of the precursor into isolated mitochondria is demonstrated. This process includes the correct proteolytic cleavage of the precursor to the mature form. After transfer, the protein acquires the following properties of the assembled subunit: it is resistant to added protease, it is soluble in chloroform/methanol, and it can be immunoprecipitated with antibodies to F1-ATPase. The precursor to Su9 is also detected in intact cells after pulse labeling. Processing in vivo takes place posttranslationally. It is inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). A hypothetical mechanism is discussed for the intracellular transfer of Su9. It entails synthesis on free polysomes, release of the precursor into the cytosol, recognition by a receptor on the mitochondrial surface, and transfer into the inner mitochondrial membrane, which is accompanied by proteolytic cleavage and which depends on an electrical potential across the inner mitochondrial membrane.
Collapse
|
14
|
Kopecký J, Dĕdina J, Votruba J, Svoboda P, Houstĕk J, Babitch S, Drahota Z. Stoicheiometry of dicyclohexylcarbodiimide-ATPase interaction in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 680:80-7. [PMID: 6462177 DOI: 10.1016/0005-2728(82)90318-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. The oligomeric dicyclohexylcarbodiimide (DCCD)-binding protein of mitochondrial ATPase was studied using (a) the relationship between (14C] DCCD binding and inhibition of ATPase activities and (b) the analysis of the kinetics of inhibition. 2. The [14C]DCCD binding to bovine heart mitochondria is linearly proportional to the inhibition of ATP hydrolysis up to a 50% decrease of the original activity resulting in 0.6 mol DCCD bound covalently to the specific inhibitory site (Houstĕk, J., Svoboda, P., Kopecký, J., Kuzela, S. and Drahota, Z. (1981) Biochim. Biophys. Acta 634, 331-339) per mol of the fully inhibited enzyme. 3. Kinetics of the inhibition of both the ATPase activity (heart and liver mitochondria) and ADP-stimulated respiration (liver) reveal that 1 mol DCCD per mol ATPase eliminates both the synthetic and the hydrolytic activities. It is inferred that the activity-binding correlation underestimates that number of DCCD-reactive sites. 4. The second-order rate constant of the DCCD-ATPase interaction (k) is inversely related to the concentration of membranes, indicating that DCCD reaches the inhibitory site by concentrating in the hydrophobic (phospholipid) environment. 5. At a given concentration of liver mitochondria, comparable k values are obtained both for the inhibition of ATP hydrolysis (k = 5.35.10(2)M-1.min-1) and ADP-stimulated respiration (k = 5.67.10(2)M-1.min-1). 6. It is concluded that both the synthetic and the hydrolytic functions if ATPase are inhibited via a common single DCCD-reactive site. This site is represented by one of the several polypeptide chains forming the oligomer of the DCCD-binding protein. The inhibitor-ATPase interaction does not exhibit cooperativity, indicating that the preferential reactivity towards DCCD is an inherent property of the inhibitory site.
Collapse
|
15
|
Serrahima-Zieger M, Monteil H, Luu B. Isolation and purification of dicyclohexylcarbodiimide-reactive proteolipid from Bacillus subtilis membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 679:369-75. [PMID: 6461355 DOI: 10.1016/0005-2728(82)90156-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The membrane-bound ATPase activity of Bacillus subtilis was inhibited by dicyclohexylcarbodiimide (DCCD). The DCCD-reactive proteolipid of B. subtilis was extracted, from labelled or untreated membranes containing F1 or depleted of F1, with neutral or acidic chloroform/methanol. Purification of the [14C]DCCD-binding proteolipid was attempted by column chromatography on methylated Sephadex G-50 and on DEAE-cellulose. The maximal amount of DCCD which could be bound to the purified proteolipid was found to exceed the amount bound by the purified proteolipid extracted from membranes labelled with the lowest [14C]DCCD concentration required for maximal inhibition of the membrane-bound ATPase activity. The radioactive protein peaks eluted by gel filtration and ion-exchange chromatography were analysed by urea-SDS polyacrylamide slab gel electrophoresis and autoradiography. Radioactivity was incorporated into two components of Mr 18 000 and 6000 when proteolipid was purified by methylated Sephadex. The 6000 polypeptide was always present, whatever the extraction and purification procedures. However, the 18 000 polypeptide was present in largest quantity only when proteolipid was extracted from membranes containing F1 and purified by methylated Sephadex. When proteolipid was purified on DEAE-cellulose this [14C]DCCD binding component of Mr 18 000 was absent.
Collapse
|
16
|
Webster KA, Oliver NA, Wallace DC. Assignment of an oligomycin-resistance locus to human chromosome 10. SOMATIC CELL GENETICS 1982; 8:223-44. [PMID: 9732751 DOI: 10.1007/bf01538679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An oligomycin-resistant variant of human fibrosarcoma HT1080 was isolated and characterized as nuclear and codominant. The mutant was stable, was not cross-resistant to respiratory inhibitors, and it contained a mitochondrial ATPase which was less sensitive to oligomycin. Hybrids formed between the human mutant and a mouse cell line expressed the resistance phenotype. By a detailed karyotypic analysis of these hybrids using trypsin-Giemsa banding it was found that resistance to oligomycin correlated with the retention of two human chromosomes 10. The hybrid lines contained only mouse mitochondrial DNA as shown by analyses of mitochondrially synthesized proteins and mitochondrial DNA. The study assigns an ATPase oligomycin-resistance locus to human chromosome 10 and suggests that mouse and human subunits can combine in a functional enzyme complex.
Collapse
Affiliation(s)
- K A Webster
- Department of Genetics, School of Medicine, Stanford University, California 94305, USA
| | | | | |
Collapse
|
17
|
Houstĕk J, Kopecký J, Svoboda P, Drahota Z. Structure and function of the membrane-integral components of the mitochondrial H+-ATPase. J Bioenerg Biomembr 1982; 14:1-13. [PMID: 6216249 DOI: 10.1007/bf00744075] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Collins JH, Zot AS, Kranias EG. Isolation of two proteolipids from rabbit skeletal muscle sarcoplasmic reticulum. PREPARATIVE BIOCHEMISTRY 1982; 12:255-64. [PMID: 6216473 DOI: 10.1080/00327488208065566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have isolated two proteolipids from rabbit skeletal muscle sarcoplasmic reticulum by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. One, PL-II, is identical to the proteolipid previously obtained by others using organic solvent extraction. The other, PL-I, has an amino acid composition very similar to those of proteolipids we previously isolated from canine cardiac SR and lamb kidney (Na,K)-ATPase.
Collapse
|
19
|
Glaser E, Norling B, Kopecký J, Ernster L. Comparison of the effects of oligomycin and dicyclohexylcarbodiimide on mitochondrial ATPase and related reactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 121:525-31. [PMID: 6276175 DOI: 10.1111/j.1432-1033.1982.tb05818.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Kopecký J, Glaser E, Norling B, Ernster L. Relationship between the binding of dicyclohexylcarbodiimide and the inhibition of H+-translocation in submitochondrial particles. FEBS Lett 1981; 131:208-12. [PMID: 6271569 DOI: 10.1016/0014-5793(81)80369-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Houstĕk J, Pavelka S, Kopecký J, Drahota Z, Palmieri F. Is the mitochondrial dicyclohexylcarbodiimide-reactive protein of Mr 33 000 identical with the phosphate transport protein? FEBS Lett 1981; 130:137-40. [PMID: 6456936 DOI: 10.1016/0014-5793(81)80682-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|