1
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J. Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131181. [PMID: 36948123 DOI: 10.1016/j.jhazmat.2023.131181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to assess Cd phytoextraction efficiency in well-watered and drought-stressed B. napus plants under current climate (CC, 21/14 °C, 400 ppm CO2) and future climate (FC, 25/18 °C, 800 ppm CO2) conditions. The underlying physiological mechanisms underpinning the obtained results were investigated by studying Cd (1, 10, 50, and 100 mg kg-1) effect on B. napus photosynthetic performance and nutritional status. Only the Cd-50 and Cd-100 treatments caused visible leaf lesions, growth retardation, reductions in both gas exchange and chlorophyll fluorescence-related parameters, and disturbed mineral nutrient balance. Under CC conditions, well-watered plants were affected more than under FC conditions. The most important pathway by which Cd affected B. napus photosynthetic efficiency in well-watered plants was the damage to both photosystems, lowering photosynthetic electron transport. Meanwhile, non-stomatal and stomatal limitations were responsible for the higher reduction in the photosynthetic rate (Pr) of drought-stressed compared to well-watered plants. The significantly higher shoot dry weight, which had a strong positive relationship with Pr, was the main factor determining significantly higher shoot Cd accumulation in high Cd treatments in well-watered plants under FC conditions, resulting in a 65% (p < 0.05) higher soil Cd removal rate in the Cd-50 treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| |
Collapse
|
2
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
3
|
Zakharov SD, Savikhin S, Misumi Y, Kurisu G, Cramer WA. Isothermal titration calorimetry of membrane protein interactions: FNR and the cytochrome b 6f complex. Biophys J 2022; 121:300-308. [PMID: 34902329 PMCID: PMC8790201 DOI: 10.1016/j.bpj.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/03/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
Ferredoxin-NADP+ reductase (FNR) was previously inferred to bind to the cytochrome b6f complex in the electron transport chain of oxygenic photosynthesis. In the present study, this inference has been examined through analysis of the thermodynamics of the interaction between FNR and the b6f complex. Isothermal titration calorimetry (ITC) was used to characterize the physical interaction of FNR with b6f complex derived from two plant sources (Spinacia oleracea and Zea maize). ITC did not detect a significant interaction of FNR with the b6f complex in detergent solution nor with the complex reconstituted in liposomes. A previous inference of a small amplitude but defined FNR-b6f interaction is explained by FNR interaction with micelles of the undecyl β-D maltoside (UDM) detergent micelles used to purify b6f. Circular dichroism, employed to analyze the effect of detergent on the FNR structure, did not reveal significant changes in secondary or tertiary structures of FNR domains in the presence of UDM detergent. However, thermodynamic analysis implied a significant decrease in an interaction between the N-terminal FAD-binding and C-terminal NADP+-binding domains of FNR caused by detergent. The enthalpy, ΔHo, and the entropy, ΔSo, associated with FNR unfolding decreased four-fold in the presence of 1 mM UDM at pH 6.5. In addition to the conclusion regarding the absence of a binding interaction of significant amplitude between FNR and the b6f complex, these studies provide a precedent for consideration of significant background protein-detergent interactions in ITC analyses involving integral membrane proteins.
Collapse
Affiliation(s)
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Yuko Misumi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
4
|
Li H, Yang M, Zhao C, Wang Y, Zhang R. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC PLANT BIOLOGY 2021; 21:513. [PMID: 34736392 PMCID: PMC8567644 DOI: 10.1186/s12870-021-03295-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. RESULTS The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. CONCLUSIONS Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.
Collapse
Affiliation(s)
- Hongjie Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
6
|
Islam MS, Van Nguyen T, Sakamoto W, Takagi S. Phototropin- and photosynthesis-dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1352-1371. [PMID: 31961050 DOI: 10.1111/jipb.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue-light-dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue-light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop-and-go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma-membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2- and photosynthesis-dependent signals. The present study might add novel regulatory mechanism for light-dependent plant organelle interactions.
Collapse
Affiliation(s)
- Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Toan Van Nguyen
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
- Agricultural Genetics Institute, National Key Laboratory for Plant Cell Biotechnology, Pham Van Dong road, Bac Tu Liem district, Ha Noi, Vietnam
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
7
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
8
|
H 2O 2 Induces Association of RCA with the Thylakoid Membrane to Enhance Resistance of Oryza meyeriana to Xanthomonas oryzae pv. oryzae. PLANTS 2019; 8:plants8090351. [PMID: 31527548 PMCID: PMC6784163 DOI: 10.3390/plants8090351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022]
Abstract
Oryza meyeriana is a wild species of rice with high resistance to Xanthomonas oryzae pv. oryzae (Xoo), but the detailed resistance mechanism is unclear. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is an important enzyme that regulates photosynthesis by activating Rubisco. We have previously reported that Xoo infection induced the relocation of RCA from the chloroplast stroma to the thylakoid membrane in O. meyeriana, but the underlying regulating mechanism and physiological significance of this association remains unknown. In this study, "H2O2 burst" with rapid and large increase in the amount of H2O2 was found to be induced by Xoo invasion in the leaves of O. meyeriana. 3, 3-diaminobenzidine (DAB) and oxidative 2, 7-Dichlorodi-hydrofluorescein diacetate (H2DCFDA) staining experiments both showed that H2O2 was generated in the chloroplast of O. meyeriana, and that this H2O2 generation as well as Xoo resistance of the wild rice were dramatically dependent on light. H2O2, methyl viologen with light, and the xanthine-xanthine oxidase system all induced RCA to associate with the thylakoid membrane in vitro, which showed that H2O2 could induce the relocation of RCA. In vitro experiments also showed that H2O2 induced changes in both the RCA and thylakoid membrane that were required for them to associate and that this association only occurred in O. meyeriana and not in the susceptible cultivated rice. These results suggest that the association of RCA with the thylakoid membrane helps to protect the thylakoid membrane against oxidative damage from H2O2. Therefore, in addition to its universal function of activating Rubisco, RCA appears to play a novel role in the resistance of O. meyeriana to Xoo.
Collapse
|
9
|
Taylor RM, Sallans L, Frankel LK, Bricker TM. Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex. PHOTOSYNTHESIS RESEARCH 2018; 137:141-151. [PMID: 29380263 DOI: 10.1007/s11120-018-0485-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10-20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2•-, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p•- (possible sources for O2•-), the Rieske iron-sulfur cluster (possible source of O2•- and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2•- and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.
Collapse
Affiliation(s)
- Ryan M Taylor
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
10
|
Lojek LJ, Farrand AJ, Weiss A, Skaar EP. Fur regulation of Staphylococcus aureus heme oxygenases is required for heme homeostasis. Int J Med Microbiol 2018; 308:582-589. [PMID: 29409696 DOI: 10.1016/j.ijmm.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/04/2018] [Accepted: 01/27/2018] [Indexed: 01/23/2023] Open
Abstract
Heme is a cofactor that is essential for cellular respiration and for the function of many enzymes. If heme levels become too low within the cell, S. aureus switches from producing energy via respiration to producing energy by fermentation. S. aureus encodes two heme oxygenases, IsdI and IsdG, which cleave the porphyrin heme ring releasing iron for use as a nutrient source. Both isdI and isdG are only expressed under low iron conditions and are regulated by the canonical Ferric Uptake Regulator (Fur). Here we demonstrate that unregulated expression of isdI and isdG within S. aureus leads to reduced growth under low iron conditions. Additionally, the constitutive expression of these enzymes leads to decreased heme abundance in S. aureus, an increase in the fermentation product lactate, and increased resistance to gentamicin. This work demonstrates that S. aureus has developed tuning mechanisms, such as Fur regulation, to ensure that the cell has sufficient quantities of heme for efficient ATP production through aerobic respiration.
Collapse
Affiliation(s)
- Lisa J Lojek
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison J Farrand
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andy Weiss
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Lojek LJ, Farrand AJ, Wisecaver JH, Blaby-Haas CE, Michel BW, Merchant SS, Rokas A, Skaar EP. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. mSphere 2017; 2:e00176-17. [PMID: 28815214 PMCID: PMC5557675 DOI: 10.1128/msphere.00176-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenase (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. IMPORTANCE This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is conserved in all domains of life. Additionally, C. reinhardtii contains two previously identified HO-1 family heme oxygenases, making C. reinhardtii the first organism shown to contain two families of heme oxygenases. These data indicate that C. reinhardtii may have unique mechanisms for regulating iron homeostasis within the chloroplast.
Collapse
Affiliation(s)
- Lisa J. Lojek
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison J. Farrand
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc Natl Acad Sci U S A 2017; 114:1323-1328. [PMID: 28115711 DOI: 10.1073/pnas.1618840114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome b6f This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions.
Collapse
|
13
|
Structure-Function of the Cytochrome b 6 f Lipoprotein Complex. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Komatsu S, Kamal AHM, Hossain Z. Wheat proteomics: proteome modulation and abiotic stress acclimation. FRONTIERS IN PLANT SCIENCE 2014; 5:684. [PMID: 25538718 PMCID: PMC4259124 DOI: 10.3389/fpls.2014.00684] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/18/2014] [Indexed: 05/21/2023]
Abstract
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput "Omics" techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Abu H. M. Kamal
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State UniversityKolkata, India
| |
Collapse
|
15
|
Heinemeyer W, Alt J, Herrmann RG. Nucleotide sequence of the clustered genes for apocytochrome b6 and subunit 4 of the cytochrome b/f complex in the spinach plastid chromosome. Curr Genet 2013; 8:543-9. [PMID: 24177956 DOI: 10.1007/bf00410442] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1984] [Indexed: 11/29/2022]
Abstract
A 2.4 kilobase-pair segment of the spinach plastid chromosome carrying the genes for apocytochrome b6 and subunit 4 of the thylakoid membrane cytochrome b/f complex has been analysed by DNA sequencing and Northern blot analysis. The nucleotide sequence reveals two uninterrupted open reading frames of 211 and 139 triplets coding for two hydrophobic proteins of 23.7 kd (cytochrome b6) and 15.2 kd (subunit 4). The genes are located on the same strand and are separated from each other by 1018 untranslated base pairs. They map adjacent to the gene for the P680 chlorophyll α apoprotein of the photosystem II reaction center. The three genes appear to be under common transcriptional control and the transcripts post-transcriptionally modified. The deduced amino acid sequences of cytochrome b6 and subunit 4 both exhibit significant homology with published sequences from mitochondrial b cytochromes (42 kd) suggesting that these functionally equivalent polypeptides in photosynthetic and respiratory electron transport chains arose monophyletically.
Collapse
Affiliation(s)
- W Heinemeyer
- Botanisches Institut der Universität, Universitätsstr. 1, D-4000, Düsseldorf 1, Germany
| | | | | |
Collapse
|
16
|
Kamal AHM, Cho K, Choi JS, Bae KH, Komatsu S, Uozumi N, Woo SH. The wheat chloroplastic proteome. J Proteomics 2013; 93:326-42. [PMID: 23563086 DOI: 10.1016/j.jprot.2013.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. BIOLOGICAL SIGNIFICANCE In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Research Center for Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Schaller S, Wilhelm C, Strzałka K, Goss R. Investigating the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase and the thylakoid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:119-25. [PMID: 22705077 DOI: 10.1016/j.jphotobiol.2012.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/11/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022]
Abstract
In the present study the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase (ZEP) and the thylakoid membrane was investigated. Isolated, active thylakoid membranes of spinach (Spinacia oleracea L.) were subjected to different salt and detergent treatments that are generally used to isolate peripheral and integral membrane proteins. These salt and detergent treatments included the use of the salts NaBr, Na(2)CO(3) and Tris and the detergents octylglucoside (OG) and dodecylmaltoside (DM). After the treatments the activity of the ZEP was determined in washed thylakoid membranes. To obtain additional information about the mode of ZEP binding to the membrane a hydrophobicity plot based on the amino acid sequence of the protein was constructed. The plot was then compared to a diagram obtained for the photosystem II antenna Lhcb1 protein whose integration into the thylakoid membrane is known. The results of the salt and detergent treatments of the thylakoid membrane suggest that the ZEP is a peripheral, rather weakly bound membrane protein. Results from the hydrophobicity plots indicate the existence of specialized protein domains which may realize the partial integration and binding of the ZEP to the thylakoid membrane.
Collapse
Affiliation(s)
- Susann Schaller
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
18
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Szymańska R, Dłużewska J, Slesak I, Kruk J. Ferredoxin:NADP+ oxidoreductase bound to cytochrome b₆f complex is active in plastoquinone reduction: implications for cyclic electron transport. PHYSIOLOGIA PLANTARUM 2011; 141:289-298. [PMID: 21114674 DOI: 10.1111/j.1399-3054.2010.01434.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, we have compared three isolation methods of cytochrome b₆f complex, obtained from spinach (Spinacia oleracea), differing in the preservation of the cytochrome b₆f-associated ferredoxin:NADP+ oxidoreductase (FNR). Although the complexes isolated by all the methods showed the presence of the FNR peptide(s), when incorporated into liposome membranes, the NADPH-PQ (plastoquinone) oxidoreductase activity was not detected for the cytochrome b₆f complex isolated with the original method including a NaBr wash. Some activity was found for the complex isolated with the omission of the wash, but the highest activity was detected for the complex isolated with the use of digitonin. The reaction rate of PQ reduction of the investigated complexes in liposomes was not significantly influenced by the addition of free FNR or ferredoxin. The reaction was inhibited by about 60% in the presence of 2 µM 2-n-nonyl-4-hydroxyquinoline N-oxide, an inhibitor of the cytochrome b₆ f complex at the Q(i) site, while it was not affected by triphenyltin or isobutyl cyanide that interacts with the recently identified heme c(i) . The obtained data indicate that FNR associated with the cytochrome b₆ f complex can participate in the cyclic electron transport as PSI-PQ or NADPH-PQ oxidoreductase. Moreover, we have shown that PQ can be non-enzymatically reduced by ascorbate in liposomes and this reaction might be involved in non-photochemical reduction pathways of the PQ-pool in chloroplasts.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | |
Collapse
|
20
|
Romanowska E. Isolation of cytochrome b6f complex from grana and stroma membranes from spinach chloroplasts. Methods Mol Biol 2011; 684:53-64. [PMID: 20960121 DOI: 10.1007/978-1-60761-925-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The cytochrome b6f complex is located in the appressed granal membranes and nonappressed stroma thylakoids. The procedure presents isolation of the complex from both types of thylakoids by washing with NaBr, detergent treatment, ammonium sulfate fractionation, and sucrose gradient centrifugation. Optimal concentration of the detergent is lower for grana than for stroma vesicles. The cytochrome b6f complex from stroma lamellae locates at a higher density in the sucrose gradient than the granal complex. Electrophoretic analyses indicate that both complexes are dimeric and contain four large subunits and at least three small subunits with masses below 4 kDa. Plastocyanin and 15 kDa protein are also identified in the complexes but in variable amounts.
Collapse
|
21
|
Nechushtai R, Muster P, Binder A, Liveanu V, Nelson N. Photosystem I reaction center from the thermophilic cyanobacterium Mastigocladus laminosus. Proc Natl Acad Sci U S A 2010; 80:1179-83. [PMID: 16593284 PMCID: PMC393557 DOI: 10.1073/pnas.80.5.1179] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem I reaction center was isolated from the cyanobacterium Mastigocladus laminosus. It contained four different subunits with molecular masses (as determined by sodium dodecyl sulfate gels) of about 70,000 (subunit I), 16,000 (subunit II), 11,000 (subunit III), and 10,000 (subunit IV) daltons. The purified reaction center contained about 100 chlorophyll a molecules per P(700); however, they could be readily depleted down to about 50 chlorophyll a per P(700) without loss in the photochemical activities. The reaction center was active in cytochrome c photooxidation, but the photooxidation of an acidic cytochrome, like the Euglena cytochrome 552, required the presence of cations. The purified reaction center was found to be similar in several respects to the photosystem I reaction centers from higher plants and, especially, to the one isolated from green algae. Subunit I appeared on sodium dodecyl sulfate gels in the same position and possessed the same shape of an apparent double band as the corresponding subunits I of green plants and of algae. Subunits I and II of photosystem I reaction centers from Mastigocladus, higher plants, and green algae showed immunological crossreactivity. This observation might serve as biochemical evidence for the common evolution of the photosystem I reaction centers. In higher plants and green algae subunit II is a product of cytoplasmic ribosomes and therefore, a high degree of homology should have been preserved upon transfer of its gene from the prokaryote to the nucleus of the eukaryotes.
Collapse
Affiliation(s)
- R Nechushtai
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
22
|
Lam E, Malkin R. Reconstruction of the chloroplast noncyclic electron transport pathway from water to NADP with three integral protein complexes. Proc Natl Acad Sci U S A 2010; 79:5494-8. [PMID: 16593225 PMCID: PMC346930 DOI: 10.1073/pnas.79.18.5494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RECONSTRUCTION OF PHOTOSYNTHETIC NONCYCLIC ELECTRON TRANSPORT FROM WATER TO NADP HAS BEEN ACCOMPLISHED BY USING THREE INTEGRAL PROTEIN COMPLEXES ISOLATED FROM CHLOROPLAST THYLAKOID MEMBRANES: photosystems I and II and the cytochrome b(6)-f complex. This system shows an absolute dependence on the presence of all three protein complexes for NADP reduction, in addition to plastocyanin, ferredoxin, and ferredoxin-NADP reductase. The reconstructed system was found to be sensitive to low concentrations of known inhibitors of noncyclic electron transport. Depletion of the Rieske iron-sulfur center and bound plastoquinone from the cytochrome b(6)-f complex resulted in an inhibition of the photoreduction of NADP.
Collapse
Affiliation(s)
- E Lam
- Department of Biophysics, University of California, Berkeley, California 94720
| | | |
Collapse
|
23
|
Clark RD, Hind G. Spectrally distinct cytochrome b-563 components in a chloroplast cytochrome b-f complex: Interaction with a hydroxyquinoline N-oxide. Proc Natl Acad Sci U S A 2010; 80:6249-53. [PMID: 16593381 PMCID: PMC394273 DOI: 10.1073/pnas.80.20.6249] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two heme equivalents of cytochrome b-563 in the photosynthetic cytochrome b-f complex can be distinguished by their rate of reduction with dithionite at 25 degrees C and by their optical absorption spectra at 77 K. The cytochrome b component that is rapidly reduced after addition of dithionite or reduced ferredoxin possesses an alpha band that splits at 77 K into two peaks, at 557 and 561 nm. Prolonged incubation with reductant reveals a second, approximately equimolar cytochrome b component that has at 77 K an unsplit alpha-band maximum at 561 nm. The designations cytochrome b-563(H) and cytochrome b-563(L), respectively, are proposed for the rapidly and more slowly reduced cytochrome b-563 components. Potentiometric titration establishes a midpoint potential, E(m), of -30 mV (electron change n approximately 2) for cytochrome b-563(H) and -150 mV (n = 1) for cytochrome b-563(L) at pH 7.5. The reduction potential of these components is raised by 2-heptyl-4-hydroxyquinoline N-oxide, giving E(m) values of +57 and -34 mV, respectively, with each titration slope approximating n = 2.
Collapse
Affiliation(s)
- R D Clark
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973
| | | |
Collapse
|
24
|
Schmidt GW, Mishkind ML. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A 2010; 80:2632-6. [PMID: 16593310 PMCID: PMC393881 DOI: 10.1073/pnas.80.9.2632] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have detected a proteolytic mechanism in chloroplasts that selectively and rapidly degrades the imported small subunit of ribulose 1,5-bisphosphate carboxylase when pools of the chloroplast-synthesized large subunit are depleted. This degradation system is constitutively present and appears to be responsible for precise stoichiometric accumulation of the two subunits of the enzyme. We believe similar proteolytic mechanisms participate in regulating the accumulation of other photosynthetic proteins during chloroplast biogenesis.
Collapse
Affiliation(s)
- G W Schmidt
- Department of Botany, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
25
|
Mitchell R, Spillmann A, Haehnel W. Plastoquinol diffusion in linear photosynthetic electron transport. Biophys J 2010; 58:1011-24. [PMID: 19431770 DOI: 10.1016/s0006-3495(90)82445-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700(+) after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 x 10(-8) cm(2)s(-1) and 3 x 10(-7) cm(2)s(-1), respectively.
Collapse
Affiliation(s)
- R Mitchell
- Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Federal Republic of Germany
| | | | | |
Collapse
|
26
|
Vater J, Heinze K, Friedrich B, Kablitz R, Blokesch A, Irrgang KD, Thiede B, Salnikow J. Novel methodology for topological studies of photosynthetic membrane protein complexes. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Rodriguez M, Greenbaum E. Detection limits for real-time source water monitoring using indigenous freshwater microalgae. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2009; 81:2363-2371. [PMID: 19957768 DOI: 10.2175/106143009x426095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This is true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.
Collapse
Affiliation(s)
- Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | |
Collapse
|
28
|
Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain ofChloroflexus aurantiacus. FEBS Lett 2009; 583:3275-9. [DOI: 10.1016/j.febslet.2009.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/17/2022]
|
29
|
Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA. Structure-function of the cytochrome b6f complex. Photochem Photobiol 2009; 84:1349-58. [PMID: 19067956 DOI: 10.1111/j.1751-1097.2008.00444.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The structure and function of the cytochrome b6f complex is considered in the context of recent crystal structures of the complex as an eight subunit, 220 kDa symmetric dimeric complex obtained from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. A major problem confronted in crystallization of the cyanobacterial complex, proteolysis of three of the subunits, is discussed along with initial efforts to identify the protease. The evolution of these cytochrome complexes is illustrated by conservation of the hydrophobic heme-binding transmembrane domain of the cyt b polypeptide between b6f and bc1 complexes, and the rubredoxin-like membrane proximal domain of the Rieske [2Fe-2S] protein. Pathways of coupled electron and proton transfer are discussed in the framework of a modified Q cycle, in which the heme c(n), not found in the bc1 complex, but electronically tightly coupled to the heme b(n) of the b6f complex, is included. Crystal structures of the cyanobacterial complex with the quinone analogue inhibitors, NQNO or tridecyl-stigmatellin, show the latter to be ligands of heme c(n), implicating heme c(n) as an n-side plastoquinone reductase. Existing questions include (a) the details of the shuttle of: (i) the [2Fe-2S] protein between the membrane-bound PQH2 electron/H+ donor and the cytochrome f acceptor to complete the p-side electron transfer circuit; (ii) PQ/PQH2 between n- and p-sides of the complex across the intermonomer quinone exchange cavity, through the narrow portal connecting the cavity with the p-side [2Fe-2S] niche; (b) the role of the n-side of the b6f complex and heme c(n) in regulation of the relative rates of noncyclic and cyclic electron transfer. The likely presence of cyclic electron transport in the b6f complex, and of heme c(n) in the firmicute bc complex suggests the concept that hemes b(n)-c(n) define a branch point in bc complexes that can support electron transport pathways that differ in detail from the Q cycle supported by the bc1 complex.
Collapse
Affiliation(s)
- D Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
30
|
Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120. J Biol Chem 2009; 284:9861-9. [PMID: 19189962 DOI: 10.1074/jbc.m809196200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the cyanobacterial cytochrome b(6)f complex has previously been solved to 3.0-A resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b(6)f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b(6)f complex. Purified b(6)f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b(6)f complex, determined to a resolution of 3.0A (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme b(p) that is rotated 180 degrees about the alpha- and gamma-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme c(n) is similar to that previously found in the b(6)f complex from other sources.
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A. The Thermodynamics and Kinetics of Electron Transfer between Cytochrome b6f and Photosystem I in the Chlorophyll d-dominated Cyanobacterium, Acaryochloris marina. J Biol Chem 2008; 283:25218-25226. [DOI: 10.1074/jbc.m803047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Suh HJ, Kim CS, Jung J. Cytochrome b6/f Complex as an Indigenous Photodynamic Generator of Singlet Oxygen in Thylakoid Membranes. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710103cbfcaa2.0.co2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Abstract
Crystal structures and their implications for function are described for the energy transducing hetero-oligomeric dimeric cytochrome b6f complex of oxygenic photosynthesis from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. The complex has a cytochrome b core and a central quinone exchange cavity, defined by the two monomers that are very similar to those in the respiratory cytochrome bc1 complex. The pathway of quinol/quinone (Q/QH2) transfer emphasizes the labyrinthine internal structure of the complex, including an 11x12 A portal through which Q/QH2, containing a 45-carbon isoprenoid chain, must pass. Three prosthetic groups are present in the b6f complex that are not found in the related bc1 complex: a chlorophyll (Chl) a, a beta-carotene, and a structurally unique covalently bound heme that does not possess amino acid side chains as axial ligands. It is hypothesized that this heme, exposed to the cavity and a neighboring plastoquinone and close to the positive surface potential of the complex, can function in cyclic electron transport via anionic ferredoxin.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| | | | | | | | | |
Collapse
|
34
|
Chen XB, Zhao XH, Zhu Y, Gong YD, Li LB, Zhang JP, Kuang TY. Hydrogen peroxide-induced chlorophyll a bleaching in the cytochrome b6f complex: a simple and effective assay for stability of the complex in detergent solutions. PHOTOSYNTHESIS RESEARCH 2006; 90:205-14. [PMID: 17235492 DOI: 10.1007/s11120-006-9118-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 11/20/2006] [Indexed: 05/10/2023]
Abstract
The instability of cytochrome b ( 6 ) f complex in detergent solutions is a well-known problem that has been studied extensively, but without finding a satisfactory solution. One of the important reasons can be short of the useful method to verify whether the complex suspended in different detergent is in an intact state or not. In this article, a simple and effective assay for stability of the complex was proposed based on the investigation on the different effects of the two detergents, n-octyl-beta-D: -glucopyranoside (OG) and dodecyl-beta-D: -maltoside (DDM), on the properties of the complex. DDM stabilizes the complex preparation more effectively whereas OG denatures the interactions of the heme groups and pigment molecules with the protein environment, leading to the bleaching of chlorophyll a induced by addition of hydrogen peroxide. The assay of the use of hydrogen peroxide to characterize the complex by studying the bleaching of chlorophyll induced by hydrogen peroxide and the peroxidase activity of the complex was discussed. This simple method will probably be useful to study the stability of the complex.
Collapse
Affiliation(s)
- Xiao-Bo Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nan Xincun 20, Xiangshan, 100093, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Cramer WA, Zhang H. Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:339-45. [PMID: 16787635 DOI: 10.1016/j.bbabio.2006.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/30/2006] [Accepted: 04/24/2006] [Indexed: 11/17/2022]
Abstract
At least two features of the crystal structures of the cytochrome b6f complex from the thermophilic cyanobacterium, Mastigocladus laminosus and a green alga, Chlamydomonas reinhardtii, have implications for the pathways and mechanism of charge (electron/proton) transfer in the complex: (i) The narrow 11 x 12 A portal between the p-side of the quinone exchange cavity and p-side plastoquinone/quinol binding niche, through which all Q/QH2 must pass, is smaller in the b6f than in the bc1 complex because of its partial occlusion by the phytyl chain of the one bound chlorophyll a molecule in the b6f complex. Thus, the pathway for trans-membrane passage of the lipophilic quinone is even more labyrinthine in the b6f than in the bc1 complex. (ii) A unique covalently bound heme, heme cn, in close proximity to the n-side b heme, is present in the b6f complex. The b6f structure implies that a Q cycle mechanism must be modified to include heme cn as an intermediate between heme bn and plastoquinone bound at a different site than in the bc1 complex. In addition, it is likely that the heme bn-cn couple participates in photosytem I-linked cyclic electron transport that requires ferredoxin and the ferredoxin: NADP+ reductase. This pathway through the n-side of the b6f complex could overlap with the n-side of the Q cycle pathway. Thus, either regulation is required at the level of the redox state of the hemes that would allow them to be shared by the two pathways, and/or the two different pathways are segregated in the membrane.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
36
|
Li BX, Zuo P, Chen XB, Li LB, Zhang JP, Zhang JP, Kuang TY. Study on energy transfer between carotenoid and chlorophyll a in cytochrome b6f complex from Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2006; 88:43-50. [PMID: 16688490 DOI: 10.1007/s11120-005-9020-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/19/2005] [Indexed: 05/09/2023]
Abstract
The excitation energy transfer between carotenoid and chlorophyll (Chl) in the cytochrome b ( 6 ) f complex from Bryopsis corticulans (B. corticulans), in which the carotenoid is 9-cis-alpha-carotene, was investigated by means of fluorescence excitation and sub-microsecond time-resolved absorption spectroscopies. The presence of efficient singlet excitation transfer from alpha-carotene to Chl a was found with an overall efficiency as high as approximately approximately 24%, meanwhile the Chl a-to-alpha-carotene triplet excitation transfer was also evidenced. Circular dichroism spectroscopy showed that alpha-carotene molecule existed in an asymmetric environment and Chl a molecule had a certain orientation in this complex.
Collapse
Affiliation(s)
- Bin-Xing Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nan Xincun 20, Xiangshan, 100093, Beijing, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process - the conversion of sunlight into chemical energy - is driven by four, multisubunit, membrane-protein complexes that are known as photosystem I, photosystem II, cytochrome b(6)f and F-ATPase. Structural insights into these complexes are now providing a framework for the exploration not only of energy and electron transfer, but also of the evolutionary forces that shaped the photosynthetic apparatus.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
38
|
Li B, Mao D, Liu Y, Li L, Kuang T. Characterization of the cytochrome b(6)f complex from marine green alga, Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2005; 83:297-305. [PMID: 16143919 DOI: 10.1007/s11120-004-6555-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 11/22/2004] [Indexed: 05/04/2023]
Abstract
A pure, active cytochrome b(6)f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b(6)f complex, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt (6) to Cyt f was 2.01 : 1. The cytochrome b(6) f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin-ferricyanide per Cyt f per second. alpha-Carotene, one kind of carotenoid that has not been found to present in cytochrome b(6)f complex, was discovered in this preparation by reversed phase HPLC. It was different from beta-carotene usually found in cytochrome b(6)f complex. The configuration of the major alpha-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this alpha-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophyll a, cis and all-trans-alpha-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.
Collapse
Affiliation(s)
- Binxing Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing.
| | | | | | | | | |
Collapse
|
39
|
Cramer WA, Yan J, Zhang H, Kurisu G, Smith JL. Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the 'hors d'oeuvres hypothesis' for assembly of the complex. PHOTOSYNTHESIS RESEARCH 2005; 85:133-43. [PMID: 15977064 DOI: 10.1007/s11120-004-2149-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/13/2004] [Indexed: 05/03/2023]
Abstract
3-A crystal structures of the cytochrome b6f complex have provided a structural framework for the photosynthetic electron transport chain. The structures of the 220,000 molecular weight dimeric cytochrome b6f complex from the thermophilic cyanobacterium, Mastigocladis laminosus (Kurisu et al. 2003, Science 302: 1009-1014), and the green alga, Chlamydomonas reinhardtii (Stroebel et al. 2003, Nature 426: 413-418), are very similar. The latter is the first structure of a integral membrane photosynthetic electron transport complex from a eukaryotic source. The M. laminosus and C. reinhardtii structures have provided structural information and experimental insights to the properties and functions of three native and novel prosthetic groups, a chlorophyll a, a beta-carotene, and a unique heme x, one copy of which is found in each monomer of the cytochrome b6f complex, but not the cytochrome bc1 complex from the mitochondrial respiratory chain of animals and yeast. Several functional insights have emerged from the structures including the function of the dimer; the properties of heme x; the function of the inter-monomer quinone-exchange cavity; a quinone diffusion pathway through relatively narrow crevices or portals; a modified reaction scheme for n-side quinone redox reactions; a necessarily novel mechanism for quenching of the bound chlorophyll triplet state; a possible role for the bound chlorophyll a in activation of the LHC kinase; and a structural and assembly role for the four small PetG, L, M, and N subunits. An 'hors d'oeuvres hypothesis' for assembly of the complex is proposed for the small 'hydrophobic stick' or 'picket fence' polypeptides at the periphery of the complex, based on the cis-positive orientation of the small hydrophobic subunits and the 'toothpick' binding mode of the beta-carotene.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|
40
|
Sujak A, Drepper F, Haehnel W. Spectroscopic studies on electron transfer between plastocyanin and cytochrome b6f complex. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 74:135-43. [PMID: 15157909 DOI: 10.1016/j.jphotobiol.2004.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/08/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
This paper reports the results of the research on the interaction between the highly active cytochrome b(6)f complex and plastocyanin, both isolated from the same source - spinachia oleracea plants. An equilibrium constant K between the cytochrome f of the cytochrome b(6)f complex and plastocyanin has been estimated by two independent spectroscopic techniques: steady-state absorption spectroscopy and stopped-flow. The second-order rate constants k2 for forward and backward electron transfer between cytochrome f and plastocyanin have been found between 1.4-2 x 10(7) and 8-10 x 10(6) M(-1)s(-1), respectively, giving the value of an equilibrium constant of about 2+/-0.4 or a difference in redox potential between plastocyanin and cytochrome f of cytochrome b(6)f complex of ca. 17 mV. The value of K=1.7+/-0.3 has been estimated from steady-state experiments in which the initial and final concentrations of participating components after mixing have been estimated via differential spectra analysis or spectra deconvolution. We propose a method of evaluation of the final plastocyanin concentration after the electron transfer reaction between cytochrome bf complex and plastocyanin that overcomes the interference by the strong chlorophyll absorption in the spectral region where oxidised plastocyanin has its low extinction absorption band. The data from both experiments, in the system devoid of quinol being the electron donor to cytochrome b(6), suggest that in case of electron transfer from cytochrome f to plastocyanin electron transfer can either bypass cytochrome f or the Rieske iron-sulfur protein can be reduced prior to its movement to the quinol binding site of cytochrome b(6). The role of the Rieske protein in forward and backward electron transfer reactions is discussed.
Collapse
Affiliation(s)
- A Sujak
- Department of Plant Biochemistry, Freiburg University, Schänzlestrasse 1, Freiburg 79104, Germany.
| | | | | |
Collapse
|
41
|
Stroebel D, Choquet Y, Popot JL, Picot D. An atypical haem in the cytochrome b6f complex. Nature 2003; 426:413-8. [PMID: 14647374 DOI: 10.1038/nature02155] [Citation(s) in RCA: 534] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/28/2003] [Indexed: 11/09/2022]
Abstract
Photosystems I and II (PSI and II) are reaction centres that capture light energy in order to drive oxygenic photosynthesis; however, they can only do so by interacting with the multisubunit cytochrome b(6)f complex. This complex receives electrons from PSII and passes them to PSI, pumping protons across the membrane and powering the Q-cycle. Unlike the mitochondrial and bacterial homologue cytochrome bc(1), cytochrome b(6)f can switch to a cyclic mode of electron transfer around PSI using an unknown pathway. Here we present the X-ray structure at 3.1 A of cytochrome b(6)f from the alga Chlamydomonas reinhardtii. The structure bears similarities to cytochrome bc(1) but also exhibits some unique features, such as binding chlorophyll, beta-carotene and an unexpected haem sharing a quinone site. This haem is atypical as it is covalently bound by one thioether linkage and has no axial amino acid ligand. This haem may be the missing link in oxygenic photosynthesis.
Collapse
Affiliation(s)
- David Stroebel
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, CNRS/Université Paris 7, UMR 7099, France
| | | | | | | |
Collapse
|
42
|
Santillán Torres JL, Atteia A, Claros MG, González-Halphen D. Cytochrome f and subunit IV, two essential components of the photosynthetic bf complex typically encoded in the chloroplast genome, are nucleus-encoded in Euglena gracilis. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:180-9. [PMID: 12837550 DOI: 10.1016/s0005-2728(03)00058-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photosynthetic protist Euglena gracilis contains chloroplasts surrounded by three membranes which arise from secondary endosymbiosis. The genes petA and petD, encoding cytochrome f and subunit IV of the cytochrome bf complex, normally present in chloroplast genomes, are lacking from the chloroplast DNA (cpDNA) of E. gracilis. The bf complex of E. gracilis was isolated, and the identities of cytochrome f and subunit IV were established immunochemically, by heme-specific staining, and by Edman degradation. Based on N-terminal and conserved internal protein sequences, primers were designed and used for PCR gene amplification and cDNA sequencing. The complete sequence of the petA cDNA and the partial sequence of the petD cDNA from E. gracilis are described. Evidence is provided that in this protist, the petA and petD genes have migrated from the chloroplast to the nucleus. Both genes exhibit a typical nuclear codon usage, clearly distinct from the usage of chloroplast genes. The petA gene encodes an atypical cytochrome f, with a unique insertion of 62 residues not present in other f-type cytochromes. The petA gene also acquired a region that encodes a large tripartite chloroplast transit peptide (CTP), which is thought to allow the import of apocytochrome f through the three-membrane envelope of E. gracilis chloroplasts. This is the first description of petA and petD genes that are nucleus-localized.
Collapse
Affiliation(s)
- José Luis Santillán Torres
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 Mexico City, Mexico
| | | | | | | |
Collapse
|
43
|
Soriano GM, Guo LW, De Vitry C, Kallas T, Cramer WA. Electron transfer from the Rieske iron-sulfur protein (ISP) to cytochrome f in vitro. Is a guided trajectory of the ISP necessary for competent docking? J Biol Chem 2002; 277:41865-71. [PMID: 12207018 DOI: 10.1074/jbc.m205772200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The time course of electron transfer in vitro between soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b(6)f complex of oxygenic photosynthesis was measured by stopped-flow mixing. The domains were derived from Chlamydomonas reinhardtii and expressed in Escherichia coli. The expressed 142-residue soluble ISP apoprotein was reconstituted with the [2Fe-2S] cluster. The second-order rate constant, k(2)((ISP-f)) = 1.5 x 10(6) m(-1) s(-1), for ISP to cytochrome f electron transfer was <10(-2) of the rate constant at low ionic strength, k(2)((f-PC))(> 200 x 10(6) m(-1) s(-1)), for the reduction of plastocyanin by cytochrome f, and approximately 1/30 of k(2)((f-PC)) at the ionic strength estimated for the thylakoid interior. In contrast to k(2)((f-PC)), k(2)((ISP-f)) was independent of pH and ionic strength, implying no significant role of electrostatic interactions. Effective pK values of 6.2 and 8.3, respectively, of oxidized and reduced ISP were derived from the pH dependence of the amplitude of cytochrome f reduction. The first-order rate constant, k(1)((ISP-f)), predicted from k(2)((ISP-f)) is approximately 10 and approximately 150 times smaller than the millisecond and microsecond phases of cytochrome f reduction observed in vivo. It is proposed that in the absence of electrostatic guidance, a productive docking geometry for fast electron transfer is imposed by the guided trajectory of the ISP extrinsic domain. The requirement of a specific electrically neutral docking configuration for ISP electron transfer is consistent with structure data for the related cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Glenda M Soriano
- Department of Biological Sciences and Program in Biochemistry/Molecular Biology, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | |
Collapse
|
44
|
Whitelegge JP, Zhang H, Aguilera R, Taylor RM, Cramer WA. Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b(6)f complex from spinach and the cyanobacterium Mastigocladus laminosus. Mol Cell Proteomics 2002; 1:816-27. [PMID: 12438564 DOI: 10.1074/mcp.m200045-mcp200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly active cytochrome b(6)f complexes from spinach and the cyanobacterium Mastigocladus laminosus have been analyzed by liquid chromatography with electrospray ionization mass spectrometry (LCMS+). Both size-exclusion and reverse-phase separations were used to separate protein subunits allowing measurement of their molecular masses to an accuracy exceeding 0.01% (+/-3 Da at 30,000 Da). The products of petA, petB, petC, petD, petG, petL, petM, and petN were detected in complexes from both spinach and M. laminosus, while the spinach complex also contained ferredoxin-NADP(+) oxidoreductase (Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Flavonucleotide:ferredoxin reductase is a subunit of the plant cytochrome b(6)f complex. J. Biol. Chem. 276, 38159-38165). While the measured masses of PetC and PetD (18935.8 and 17311.8 Da, respectively) from spinach are consistent with the published primary structure, the measured masses of cytochrome f (31934.7 Da, PetA) and cytochrome b (24886.9 Da, PetB) modestly deviate from values calculated based upon genomic sequence and known post-translational modifications. The low molecular weight protein subunits have been sequenced using tandem mass spectrometry (MSMS) without prior cleavage. Sequences derived from the MSMS spectra of these intact membrane proteins in the range of 3.2-4.2 kDa were compared with translations of genomic DNA sequence where available. Products of the spinach chloroplast genome, PetG, PetL, and PetN, all retained their initiating formylmethionine, while the nuclear encoded PetM was cleaved after import from the cytoplasm. While the sequences of PetG and PetN revealed no discrepancy with translations of the spinach chloroplast genome, Phe was detected at position 2 of PetL. The spinach chloroplast genome reports a codon for Ser at position 2 implying the presence of a DNA sequencing error or a previously undiscovered RNA editing event. Clearly, complete annotation of genomic data requires detailed expression measurements of primary structure by mass spectrometry. Full subunit coverage of an oligomeric intrinsic membrane protein complex by LCMS+ presents a new facet to intact mass proteomics.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry, Neuropsychiatric Institute, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
45
|
Knight JS, Duckett CM, Sullivan JA, Walker AR, Gray JC. Tissue-specific, light-regulated and plastid-regulated expression of the single-copy nuclear gene encoding the chloroplast Rieske FeS protein of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:522-31. [PMID: 12040099 DOI: 10.1093/pcp/pcf062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The single-copy PetC gene encoding the chloroplast Rieske FeS protein of Arabidopsis thaliana consists of five exons interrupted by four introns and encodes a protein of 229 amino acid residues with extensive sequence similarity to the chloroplast Rieske proteins of other higher plants. The N-terminal 50 amino acid residues constitute a presequence for targeting to the chloroplast and the remaining 179 amino acid residues make up the mature protein. Three of the introns are in identical positions in the PetC gene of Chlamydomonas reinhardtii, suggesting that they are of ancient origin. RNA-blot hybridisation showed that the gene was expressed in shoots, but not roots, and was light regulated and repressed by sucrose. The expression of chimeric genes consisting of PetC promoter fragments fused to the beta-glucuronidase (GUS) reporter gene was examined in A. thaliana and tobacco. In A. thaliana, GUS activity was detected in leaves, stems, flowers and siliques, but not in roots, and showed a strong correlation with the presence of chloroplasts. In transgenic tobacco, low levels of GUS activity were also detected in light-exposed roots. GUS activity in transgenic tobacco seedlings was light regulated and was decreased by norflurazon in the light suggesting regulation of PetC expression by plastid signals.
Collapse
Affiliation(s)
- Julie S Knight
- Department of Plant Sciences and Cambridge Centre for Molecular Recognition, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | | | | | | | | |
Collapse
|
46
|
Bergström J, Andréasson LE, Vänngård T. The EPR spectrum of cytochrome b
-563 in the cytochrome bf
complex from spinach. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80021-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Hurt EC, Hauska G. Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacteriumChlorobium limicolaf.thiosulfatophilum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80225-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Oettmeier W, Masson K, Olschewski E. Photoaffinity labeling of chloroplast cytochrome b
6
-f
complex by an inhibitor azido-derivative. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80612-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Bendali D, Sanguansermsri M, Girard-Bascou J, Bennoun P. Mutations ofChlamydomonas reinhardtiiaffecting the cytochromebfcomplex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)81430-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
|