1
|
Almhjell PJ, Johnston KE, Porter NJ, Kennemur JL, Bhethanabotla VC, Ducharme J, Arnold FH. The β-subunit of tryptophan synthase is a latent tyrosine synthase. Nat Chem Biol 2024; 20:1086-1093. [PMID: 38744987 PMCID: PMC11288773 DOI: 10.1038/s41589-024-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the β-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Merck & Co., Inc, South San Francisco, CA, USA
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Codexis, Inc., Redwood City, CA, USA
| | - Jennifer L Kennemur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vignesh C Bhethanabotla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Quebec Government Office, Los Angeles, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Villalona J, Higgins PM, Buller AR. Engineered Biocatalytic Synthesis of β-N-Substituted-α-Amino Acids. Angew Chem Int Ed Engl 2023; 62:e202311189. [PMID: 37625129 PMCID: PMC10592029 DOI: 10.1002/anie.202311189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,β-diamino acids. In this study, we used directed evolution to engineer the β-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l-serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show β-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Jairo Villalona
- Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Peyton M Higgins
- Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
3
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
4
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
5
|
l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by Corynebacterium glutamicum. BIOLOGY 2022; 11:biology11050744. [PMID: 35625472 PMCID: PMC9138238 DOI: 10.3390/biology11050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary l-tryptophan is an amino acid found in proteins. Its derivatives, such as hydroxylated or halogenated l-tryptophans, find applications in the chemical and pharmaceutical industries, for example, in therapeutic peptides. Biotechnology provides a sustainable way for the production of l-tryptophan and its derivatives. In the final reaction of l-tryptophan biosynthesis in bacteria, such as Corynebacterium glutamicum, another amino acid, l-serine, is incorporated. Here, we show that C. glutamicum TrpB is able to convert indole derivatives, which were added to cells synthesizing l-serine, to the corresponding l-tryptophan derivatives. The gene trpB was expressed under the control of the l-serine-responsive transcriptional activator SerR in the C. glutamicum cells engineered for this fermentation process. Abstract l-Tryptophan derivatives, such as hydroxylated or halogenated l-tryptophans, are used in therapeutic peptides and agrochemicals and as precursors of bioactive compounds, such as serotonin. l-Tryptophan biosynthesis depends on another proteinogenic amino acid, l-serine, which is condensed with indole-3-glycerophosphate by tryptophan synthase. This enzyme is composed of the α-subunit TrpA, which catalyzes the retro-aldol cleavage of indole-3-glycerol phosphate, yielding glyceraldehyde-3-phosphate and indole, and the β-subunit TrpB that catalyzes the β-substitution reaction between indole and l-serine to water and l-tryptophan. TrpA is reported as an allosteric actuator, and its absence severely attenuates TrpB activity. In this study, however, we showed that Corynebacterium glutamicum TrpB is catalytically active in the absence of TrpA. Overexpression of C. glutamicumtrpB in a trpBA double deletion mutant supported growth in minimal medium only when exogenously added indole was taken up into the cell and condensed with intracellularly synthesized l-serine. The fluorescence reporter gene of an l-serine biosensor, which was based on the endogenous transcriptional activator SerR and its target promoter PserE, was replaced by trpB. This allowed for l-serine-dependent expression of trpB in an l-serine-producing strain lacking TrpA. Upon feeding of the respective indole derivatives, this strain produced the l-tryptophan derivatives 5-hydroxytryptophan, 7-bromotryptophan, and 5-fluorotryptophan.
Collapse
|
6
|
Ghosh RK, Hilario E, Liu V, Wang Y, Niks D, Holmes JB, Sakhrani VV, Mueller LJ, Dunn MF. Mutation of βGln114 to Ala Alters the Stabilities of Allosteric States in Tryptophan Synthase Catalysis. Biochemistry 2021; 60:3173-3186. [PMID: 34595921 PMCID: PMC9122093 DOI: 10.1021/acs.biochem.1c00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and β-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by β-site residues proximal to the PLP cofactor have not yet been fully established. βGln114 is one such residue. To explore the roles played by βQ114, we conducted a detailed investigation of the βQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the β-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and βQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of βGln114, βAsn145, and βArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (βT state) and closed (βR state) conformations of the β-subunit and consequently alter the distribution of intermediates along the β-subunit catalytic path.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Jacob B. Holmes
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Varun V. Sakhrani
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| |
Collapse
|
7
|
Michalska K, Wellington S, Maltseva N, Jedrzejczak R, Selem-Mojica N, Rosas-Becerra LR, Barona-Gómez F, Hung DT, Joachimiak A. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Protein Sci 2021; 30:1904-1918. [PMID: 34107106 PMCID: PMC8376405 DOI: 10.1002/pro.4143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Intracellular growth and pathogenesis of Chlamydia species is controlled by the availability of tryptophan, yet the complete biosynthetic pathway for l‐Trp is absent among members of the genus. Some representatives, however, preserve genes encoding tryptophan synthase, TrpAB – a bifunctional enzyme catalyzing the last two steps in l‐Trp synthesis. TrpA (subunit α) converts indole‐3‐glycerol phosphate into indole and glyceraldehyde‐3‐phosphate (α reaction). The former compound is subsequently used by TrpB (subunit β) to produce l‐Trp in the presence of l‐Ser and a pyridoxal 5′‐phosphate cofactor (β reaction). Previous studies have indicated that in Chlamydia, TrpA has lost its catalytic activity yet remains associated with TrpB to support the β reaction. Here, we provide detailed analysis of the TrpAB from C. trachomatis D/UW‐3/CX, confirming that accumulation of mutations in the active site of TrpA renders it enzymatically inactive, despite the conservation of the catalytic residues. We also show that TrpA remains a functional component of the TrpAB complex, increasing the activity of TrpB by four‐fold. The side chain of non‐conserved βArg267 functions as cation effector, potentially rendering the enzyme less susceptible to the solvent ion composition. The observed structural and functional changes detected herein were placed in a broader evolutionary and genomic context, allowing identification of these mutations in relation to their trp gene contexts in which they occur. Moreover, in agreement with the in vitro data, partial relaxation of purifying selection for TrpA, but not for TrpB, was detected, reinforcing a partial loss of TrpA functions during the course of evolution. PDB Code(s): 6V82;
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Samantha Wellington
- Department of Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - L Rodrigo Rosas-Becerra
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - Deborah T Hung
- Department of Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Watkins-Dulaney E, Straathof S, Arnold F. Tryptophan Synthase: Biocatalyst Extraordinaire. Chembiochem 2021; 22:5-16. [PMID: 32677310 PMCID: PMC7935429 DOI: 10.1002/cbic.202000379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Tryptophan synthase (TrpS) has emerged as a paragon of noncanonical amino acid (ncAA) synthesis and is an ideal biocatalyst for synthetic and biological applications. TrpS catalyzes an irreversible, C-C bond-forming reaction between indole and serine to make l-tryptophan; native TrpS complexes possess fairly broad specificity for indole analogues, but are difficult to engineer to extend substrate scope or to confer other useful properties due to allosteric constraints and their heterodimeric structure. Directed evolution freed the catalytically relevant TrpS β-subunit (TrpB) from allosteric regulation by its TrpA partner and has enabled dramatic expansion of the enzyme's substrate scope. This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.
Collapse
Affiliation(s)
- Ella Watkins-Dulaney
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Sabine Straathof
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Frances Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Rix G, Watkins-Dulaney EJ, Almhjell PJ, Boville CE, Arnold FH, Liu CC. Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nat Commun 2020; 11:5644. [PMID: 33159067 PMCID: PMC7648111 DOI: 10.1038/s41467-020-19539-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023] Open
Abstract
Enzyme orthologs sharing identical primary functions can have different promiscuous activities. While it is possible to mine this natural diversity to obtain useful biocatalysts, generating comparably rich ortholog diversity is difficult, as it is the product of deep evolutionary processes occurring in a multitude of separate species and populations. Here, we take a first step in recapitulating the depth and scale of natural ortholog evolution on laboratory timescales. Using a continuous directed evolution platform called OrthoRep, we rapidly evolve the Thermotoga maritima tryptophan synthase β-subunit (TmTrpB) through multi-mutation pathways in many independent replicates, selecting only on TmTrpB's primary activity of synthesizing L-tryptophan from indole and L-serine. We find that the resulting sequence-diverse TmTrpB variants span a range of substrate profiles useful in industrial biocatalysis and suggest that the depth and scale of evolution that OrthoRep affords will be generally valuable in enzyme engineering and the evolution of biomolecular functions.
Collapse
Affiliation(s)
- Gordon Rix
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Ella J Watkins-Dulaney
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christina E Boville
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aralez Bio, Emeryville, CA, USA
| | - Frances H Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chang C Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
10
|
Kneuttinger AC, Zwisele S, Straub K, Bruckmann A, Busch F, Kinateder T, Gaim B, Wysocki VH, Merkl R, Sterner R. Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. Int J Mol Sci 2019; 20:E5106. [PMID: 31618845 PMCID: PMC6829457 DOI: 10.3390/ijms20205106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/24/2023] Open
Abstract
The spatiotemporal control of enzymes by light is of growing importance for industrial biocatalysis. Within this context, the photo-control of allosteric interactions in enzyme complexes, common to practically all metabolic pathways, is particularly relevant. A prominent example of a metabolic complex with a high application potential is tryptophan synthase from Salmonella typhimurium (TS), in which the constituting TrpA and TrpB subunits mutually stimulate each other via a sophisticated allosteric network. To control TS allostery with light, we incorporated the unnatural amino acid o-nitrobenzyl-O-tyrosine (ONBY) at seven strategic positions of TrpA and TrpB. Initial screening experiments showed that ONBY in position 58 of TrpA (aL58ONBY) inhibits TS activity most effectively. Upon UV irradiation, ONBY decages to tyrosine, largely restoring the capacity of TS. Biochemical characterization, extensive steady-state enzyme kinetics, and titration studies uncovered the impact of aL58ONBY on the activities of TrpA and TrpB and identified reaction conditions under which the influence of ONBY decaging on allostery reaches its full potential. By applying those optimal conditions, we succeeded to directly light-activate TS(aL58ONBY) by a factor of ~100. Our findings show that rational protein design with a photo-sensitive unnatural amino acid combined with extensive enzymology is a powerful tool to fine-tune allosteric light-activation of a central metabolic enzyme complex.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Stefanie Zwisele
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Barbara Gaim
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Michalska K, Gale J, Joachimiak G, Chang C, Hatzos-Skintges C, Nocek B, Johnston SE, Bigelow L, Bajrami B, Jedrzejczak RP, Wellington S, Hung DT, Nag PP, Fisher SL, Endres M, Joachimiak A. Conservation of the structure and function of bacterial tryptophan synthases. IUCRJ 2019; 6:649-664. [PMID: 31316809 PMCID: PMC6608616 DOI: 10.1107/s2052252519005955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and β (TrpB), functioning as a linear αββα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the β-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jennifer Gale
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Grazyna Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Catherine Hatzos-Skintges
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Besnik Bajrami
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Michael Endres
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
12
|
O'Neill CE, Skilton RJ, Pearson SA, Filardo S, Andersson P, Clarke IN. Genetic Transformation of a C. trachomatis Ocular Isolate With the Functional Tryptophan Synthase Operon Confers an Indole-Rescuable Phenotype. Front Cell Infect Microbiol 2018; 8:434. [PMID: 30619780 PMCID: PMC6302012 DOI: 10.3389/fcimb.2018.00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Different strains are associated with ocular or urogenital infections, and a proposed mechanism that may explain this tissue tropism is the active tryptophan biosynthesis pathway encoded by the genomic trpRBA operon in urogenital strains. Here we describe genetic complementation studies that are essential to confirm the role of tryptophan synthase in the context of an ocular C. trachomatis genomic background. Ocular strain A2497 was transformed with the (urogenital) pSW2::GFP shuttle vector showing that there is no strain tropism barrier to this plasmid vector; moreover, transformation had no detrimental effect on the growth kinetics of A2497, which is important given the low transformation efficiency of C. trachomatis. A derivative of the pSW2::GFP vector was used to deliver the active tryptophan biosynthesis genes from a urogenital strain of C. trachomatis (Soton D1) to A2497 with the aim of complementing the truncated trpA gene common to most ocular strains. After confirmation of intact TrpA protein expression in the transformed A2497, the resulting transformants were cultivated in tryptophan-depleted medium with and without indole or tryptophan, showing that complementation of the truncated trpA gene by the intact and functional urogenital trpRBA operon was sufficient to bestow an indole rescuable phenotype upon A2497. This study proves that pSW2::GFP derived vectors do not conform to the cross-strain transformation barrier reported for other chlamydia shuttle vectors, suggesting these as a universal vector for transformation of all C. trachomatis strains. This vector promiscuity enabled us to test the indole rescue hypothesis by transforming ocular strain A2497 with the functional urogenital trpRBA operon, which complemented the non-functional tryptophan synthase. These data confirm that the trpRBA operon is necessary and sufficient for chlamydia to survive in tryptophan-limited environments such as the female urogenital tract.
Collapse
Affiliation(s)
- Colette Elizabeth O'Neill
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Rachel Jane Skilton
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Sarah Ann Pearson
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian Nicholas Clarke
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| |
Collapse
|
13
|
Buller AR, van Roye P, Cahn JK, Scheele RA, Herger M, Arnold FH. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble. J Am Chem Soc 2018; 140:7256-7266. [PMID: 29712420 PMCID: PMC5999571 DOI: 10.1021/jacs.8b03490] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric enzymes contain a wealth of catalytic diversity that remains distinctly underutilized for biocatalysis. Tryptophan synthase is a model allosteric system and a valuable enzyme for the synthesis of noncanonical amino acids (ncAA). Previously, we evolved the β-subunit from Pyrococcus furiosus, PfTrpB, for ncAA synthase activity in the absence of its native partner protein PfTrpA. However, the precise mechanism by which mutation activated TrpB to afford a stand-alone catalyst remained enigmatic. Here, we show that directed evolution caused a gradual change in the rate-limiting step of the catalytic cycle. Concomitantly, the steady-state distribution of the intermediates shifts to favor covalently bound Trp adducts, which have increased thermodynamic stability. The biochemical properties of these evolved, stand-alone TrpBs converge on those induced in the native system by allosteric activation. High-resolution crystal structures of the wild-type enzyme, an intermediate in the lineage, and the final variant, encompassing five distinct chemical states, show that activating mutations have only minor structural effects on their immediate environment. Instead, mutation stabilizes the large-scale motion of a subdomain to favor an otherwise transiently populated closed conformational state. This increase in stability enabled the first structural description of Trp covalently bound in a catalytically active TrpB, confirming key features of catalysis. These data combine to show that sophisticated models of allostery are not a prerequisite to recapitulating its complex effects via directed evolution, opening the way to engineering stand-alone versions of diverse allosteric enzymes.
Collapse
Affiliation(s)
- Andrew R. Buller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul van Roye
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jackson K.B. Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Remkes A. Scheele
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael Herger
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
14
|
A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nat Chem Biol 2017; 13:943-950. [PMID: 28671682 DOI: 10.1038/nchembio.2420] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Abstract
New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.
Collapse
|
15
|
Francis D, Winn M, Latham J, Greaney MF, Micklefield J. An Engineered Tryptophan Synthase Opens New Enzymatic Pathways to β-Methyltryptophan and Derivatives. Chembiochem 2017; 18:382-386. [PMID: 28005309 DOI: 10.1002/cbic.201600471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 01/23/2023]
Abstract
β-Methyltryptophans (β-mTrp) are precursors in the biosynthesis of bioactive natural products and are used in the synthesis of peptidomimetic-based therapeutics. Currently β-mTrp is produced by inefficient multistep synthetic methods. Here we demonstrate how an engineered variant of tryptophan synthase from Salmonella (StTrpS) can catalyse the efficient condensation of l-threonine and various indoles to generate β-mTrp and derivatives in a single step. Although l-serine is the natural substrate for TrpS, targeted mutagenesis of the StTrpS active site provided a variant (βL166V) that can better accommodate l-Thr as a substrate. The condensation of l-Thr and indole proceeds with retention of configuration at both α- and β-positions to give (2S,3S)-β-mTrp. The integration of StTrpS (βL166V) with l-amino acid oxidase, halogenase enzymes and palladium chemocatalysts provides access to further d-configured and regioselectively halogenated or arylated β-mTrp derivatives.
Collapse
Affiliation(s)
- Daniel Francis
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Michael Winn
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jonathan Latham
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Michael F Greaney
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jason Micklefield
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
16
|
Loutchko D, Eisbach M, Mikhailov AS. Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase. J Chem Phys 2017; 146:025101. [DOI: 10.1063/1.4973544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Caulkins BG, Young RP, Kudla RA, Yang C, Bittbauer T, Bastin B, Hilario E, Fan L, Marsella MJ, Dunn MF, Mueller LJ. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity. J Am Chem Soc 2016; 138:15214-15226. [PMID: 27779384 PMCID: PMC5129030 DOI: 10.1021/jacs.6b08937] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.
Collapse
Affiliation(s)
- Bethany G. Caulkins
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Robert P. Young
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Ryan A. Kudla
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Chen Yang
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Thomas
J. Bittbauer
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Baback Bastin
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Eduardo Hilario
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Li Fan
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael J. Marsella
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael F. Dunn
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Leonard J. Mueller
- Department of Chemistry, and Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Loutchko D, Gonze D, Mikhailov AS. Single-Molecule Stochastic Analysis of Channeling Enzyme Tryptophan Synthase. J Phys Chem B 2016; 120:2179-86. [PMID: 26863529 DOI: 10.1021/acs.jpcb.5b12229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine. It possesses two active centers and, as a single molecule, catalyzes 13 different reaction steps with a complex pattern of allosteric regulation and with an intermediate product channeled from one active center to another. Here, the first single-molecule stochastic model of the enzyme is proposed and analyzed. All its transition rate constants were deduced from the experimental data available, and no fitting parameters were thus employed. Numerical simulations reveal strong correlations in the states of the active centers and the emergent synchronization of intramolecular processes in tryptophan synthase.
Collapse
Affiliation(s)
- Dimitri Loutchko
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society , 14195 Berlin, Germany
| | - Didier Gonze
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles , 1050 Brussels, Belgium
| | - Alexander S Mikhailov
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society , 14195 Berlin, Germany.,Department of Mathematical and Life Sciences, Hiroshima University , 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proc Natl Acad Sci U S A 2015; 112:14599-604. [PMID: 26553994 DOI: 10.1073/pnas.1516401112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes in heteromeric, allosterically regulated complexes catalyze a rich array of chemical reactions. Separating the subunits of such complexes, however, often severely attenuates their catalytic activities, because they can no longer be activated by their protein partners. We used directed evolution to explore allosteric regulation as a source of latent catalytic potential using the β-subunit of tryptophan synthase from Pyrococcus furiosus (PfTrpB). As part of its native αββα complex, TrpB efficiently produces tryptophan and tryptophan analogs; activity drops considerably when it is used as a stand-alone catalyst without the α-subunit. Kinetic, spectroscopic, and X-ray crystallographic data show that this lost activity can be recovered by mutations that reproduce the effects of complexation with the α-subunit. The engineered PfTrpB is a powerful platform for production of Trp analogs and for further directed evolution to expand substrate and reaction scope.
Collapse
|
20
|
Caulkins B, Bastin B, Yang C, Neubauer TJ, Young RP, Hilario E, Huang YMM, Chang CEA, Fan L, Dunn MF, Marsella MJ, Mueller LJ. Protonation states of the tryptophan synthase internal aldimine active site from solid-state NMR spectroscopy: direct observation of the protonated Schiff base linkage to pyridoxal-5'-phosphate. J Am Chem Soc 2014; 136:12824-7. [PMID: 25148001 PMCID: PMC4183654 DOI: 10.1021/ja506267d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 11/29/2022]
Abstract
The acid-base chemistry that drives catalysis in pyridoxal-5'-phosphate (PLP)-dependent enzymes has been the subject of intense interest and investigation since the initial identification of PLP's role as a coenzyme in this extensive class of enzymes. It was first proposed over 50 years ago that the initial step in the catalytic cycle is facilitated by a protonated Schiff base form of the holoenzyme in which the linking lysine ε-imine nitrogen, which covalently binds the coenzyme, is protonated. Here we provide the first (15)N NMR chemical shift measurements of such a Schiff base linkage in the resting holoenzyme form, the internal aldimine state of tryptophan synthase. Double-resonance experiments confirm the assignment of the Schiff base nitrogen, and additional (13)C, (15)N, and (31)P chemical shift measurements of sites on the PLP coenzyme allow a detailed model of coenzyme protonation states to be established.
Collapse
Affiliation(s)
- Bethany
G. Caulkins
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Baback Bastin
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Yang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Thomas J. Neubauer
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Robert P. Young
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Eduardo Hilario
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Yu-ming M. Huang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Li Fan
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael F. Dunn
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael J. Marsella
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Leonard J. Mueller
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 2013; 52:6396-411. [PMID: 23952479 DOI: 10.1021/bi400795e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. (19)F NMR studies of bound α-site substrate analogues, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in (19)F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformational states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of Biochemistry, University of California at Riverside , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch Biochem Biophys 2012; 519:154-66. [PMID: 22310642 DOI: 10.1016/j.abb.2012.01.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/24/2022]
Abstract
The tryptophan synthase α2β2 bi-enzyme complex catalyzes the last two steps in the synthesis of l-tryptophan (l-Trp). The α-subunit catalyzes cleavage of 3-indole-d-glycerol 3'-phosphate (IGP) to give indole and d-glyceraldehyde 3'-phosphate (G3P). Indole is then transferred (channeled) via an interconnecting 25Å-long tunnel, from the α-subunit to the β-subunit where it reacts with l-Ser in a pyridoxal 5'-phosphate-dependent reaction to give l-Trp and a water molecule. The efficient utilization of IGP and l-Ser by tryptophan synthase to synthesize l-Trp utilizes a system of allosteric interactions that (1) function to switch the α-site on and off at different stages of the β-subunit catalytic cycle, and (2) prevent the escape of the channeled intermediate, indole, from the confines of the α- and β-catalytic sites and the interconnecting tunnel. This review discusses in detail the chemical origins of the allosteric interactions responsible both for switching the α-site on and off, and for triggering the conformational changes between open and closed states which prevent the escape of indole from the bienzyme complex.
Collapse
|
23
|
van den Berg EMM, Jansen FJHM, de Goede ATJW, Baldew AU, Lugtenburg J. Chemo-enzymatic synthesis and characterization of L-tryptophans selectively 13C-enriched or hydroxylated in the six-membered ring using transformed Escherichia coli cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19901090405] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Dierkers AT, Niks D, Schlichting I, Dunn MF. Tryptophan synthase: structure and function of the monovalent cation site. Biochemistry 2009; 48:10997-1010. [PMID: 19848417 DOI: 10.1021/bi9008374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The monovalent cation (MVC) site of the tryptophan synthase from Salmonella typhimurium plays essential roles in catalysis and in the regulation of substrate channeling. In vitro, MVCs affect the equilibrium distribution of intermediates formed in the reaction of l-Ser with the alpha(2)beta(2) complex; the MVC-free, Cs(+)-bound, and NH(4)(+)-bound enzymes stabilize the alpha-aminoacrylate species, E(A-A), while Na(+) binding stabilizes the l-Ser external aldimine species, E(Aex(1)). Two probes of beta-site reactivity and conformation were used herein, the reactive indole analogue, indoline, and the l-Trp analogue, l-His. MVC-bound E(A-A) reacts rapidly with indoline to give the indoline quinonoid species, E(Q)(indoline), which slowly converts to dihydroiso-l-tryptophan. MVC-free E(A-A) gives very little E(Q)(indoline), and turnover is strongly impaired; the fraction of E(Q)(indoline) formed is <3.5% of that given by the Na(+)-bound form. The reaction of l-Ser with the MVC-free internal aldimine species, E(Ain), initially gives small amounts of an active E(A-A) which converts to an inactive species on a slower, conformational, time scale. This inactivation is abolished by the binding of MVCs. The inactive E(A-A) appears to have a closed beta-subunit conformation with an altered substrate binding site that is different from the known conformations of tryptophan synthase. Reaction of l-His with E(Ain) gives an equilibrating mixture of external aldimine and quinonoid species, E(Aex)(his) and E(Q)(his). The MVC-free and Na(+) forms of the enzyme gave trace amounts of E(Q)(his) ( approximately 1% of the beta-sites). The Cs(+) and NH(4)(+) forms gave approximately 17 and approximately 14%, respectively. The reactivity of MVC-free E(Ain) was restored by the binding of an alpha-site ligand. These studies show MVCs and alpha-site ligands act synergistically to modulate the switching of the beta-subunit from the open to the closed conformation, and this switching is crucial to the regulation of beta-site catalytic activity. Comparison of the structures of Na(+) and Cs(+) forms of the enzyme shows Cs(+) favors complexes with open indole binding sites poised for the conformational transition to the closed state, whereas the Na(+) form does not. The beta-subunits of Cs(+) complexes exhibit preformed indole subsites; the indole subsites of the open Na(+) complexes are collapsed, distorted, and too small to accommodate indole.
Collapse
Affiliation(s)
- Adam T Dierkers
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
25
|
Raboni S, Bettati S, Mozzarelli A. Tryptophan synthase: a mine for enzymologists. Cell Mol Life Sci 2009; 66:2391-403. [PMID: 19387555 PMCID: PMC11115766 DOI: 10.1007/s00018-009-0028-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 01/12/2023]
Abstract
Tryptophan synthase is a pyridoxal 5'-phosphate-dependent alpha(2)beta(2) complex catalyzing the last two steps of tryptophan biosynthesis in bacteria, plants and fungi. Structural, dynamic and functional studies, carried out over more than 40 years, have unveiled that: (1) alpha- and beta-active sites are separated by about 20 A and communicate via the selective stabilization of distinct conformational states, triggered by the chemical nature of individual catalytic intermediates and by allosteric ligands; (2) indole, formed at alpha-active site, is intramolecularly channeled to the beta-active site; and (3) naturally occurring as well as genetically generated mutants have allowed to pinpoint functional and regulatory roles for several individual amino acids. These key features have made tryptophan synthase a text-book case for the understanding of the interplay between chemistry and conformational energy landscapes.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Present Address: CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Stefano Bettati
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Italian National Institute of Biostructures and Biosystems, Parma, Italy
| | - Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Italian National Institute of Biostructures and Biosystems, Parma, Italy
| |
Collapse
|
26
|
Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci 2008; 33:254-64. [DOI: 10.1016/j.tibs.2008.04.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 01/25/2023]
|
27
|
Kriechbaumer V, Weigang L, Fießelmann A, Letzel T, Frey M, Gierl A, Glawischnig E. Characterisation of the tryptophan synthase alpha subunit in maize. BMC PLANT BIOLOGY 2008; 8:44. [PMID: 18430213 PMCID: PMC2395261 DOI: 10.1186/1471-2229-8-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/22/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP) by a tryptophan synthase alphabetabetaalpha heterotetramer. Plants have evolved multiple alpha (TSA) and beta (TSB) homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS) complex in Arabidopsis. On the other hand maize (Zea mays) expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. RESULTS In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase alpha-reaction (cleavage of IGP), and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the alpha-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native alpha-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. CONCLUSION It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as alpha-subunit in this complex.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Lehrstuhl für Genetik, Technische Universität München, D-85350 Freising, Germany
| | - Linda Weigang
- Analytische Forschungsgruppe des Lehrstuhls für Chemie der Biopolymere, Technische Universität München, D-85350 Freising, Germany
| | - Andreas Fießelmann
- Lehrstuhl für Genetik, Technische Universität München, D-85350 Freising, Germany
| | - Thomas Letzel
- Analytische Forschungsgruppe des Lehrstuhls für Chemie der Biopolymere, Technische Universität München, D-85350 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Technische Universität München, D-85350 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Technische Universität München, D-85350 Freising, Germany
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, D-85350 Freising, Germany
| |
Collapse
|
28
|
Miles EW. Structural basis for catalysis by tryptophan synthase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:93-172. [PMID: 2053470 DOI: 10.1002/9780470123102.ch3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E W Miles
- Laboratory of Biochemistry and Pharmacology, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Brzović PS, Dunn MF. Rapid-scanning stopped-flow spectrophotometry. METHODS OF BIOCHEMICAL ANALYSIS 2006; 37:191-273. [PMID: 8309367 DOI: 10.1002/9780470110584.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P S Brzović
- Department of Biochemistry, University of California, Riverside
| | | |
Collapse
|
30
|
Cash MT, Miles EW, Phillips RS. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[2H]indole. Arch Biochem Biophys 2004; 432:233-43. [PMID: 15542062 DOI: 10.1016/j.abb.2004.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 09/21/2004] [Indexed: 11/29/2022]
Abstract
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.
Collapse
Affiliation(s)
- Michael T Cash
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602-2556, USA
| | | | | |
Collapse
|
31
|
Wood H, Roshick C, McClarty G. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells. Mol Microbiol 2004; 52:903-16. [PMID: 15101993 DOI: 10.1111/j.1365-2958.2004.04029.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Comparative genomics indicates that vast differences in Chlamydia sp. host range and disease characteristics can be traced back to subtle variations in gene content within a region of the chromosome termed the plasticity zone. Genes required for tryptophan biosynthesis are located in the plasticity zone; however, the complement of genes encoded varies depending on the chlamydial species examined. Of the sequenced chlamydia genomes, Chlamydia psittaci GPIC contains the most complete tryptophan biosynthesis operon, encoding trpRDCFBA. Immediately downstream of the trp operon are genes encoding kynureninase and ribose phosphate pyrophosphokinase. Here, we show that, in GPIC, these genes are transcribed as a single transcript, the expression of which is regulated by tryptophan. Complementation analyses, using various mutant Escherichia coli isolates, indicate that the tryptophan biosynthesis, kynureninase and ribose phosphate pyrophosphokinase gene products are functional. Furthermore, growth of C. psittaci GPIC in HeLa cells, cultured in tryptophan-free medium, could be rescued by the addition of anthranilate, kynurenine or indole. In total, our results indicate that this complement of genes enables GPIC to recycle tryptophan and thus accounts for the interferon-gamma resistant phenotype displayed in indoleamine-2,3-dioxygenase-expressing host cells.
Collapse
Affiliation(s)
- Heidi Wood
- National Microbiology Laboratory, Health Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2
| | | | | |
Collapse
|
32
|
Schiaretti F, Bettati S, Viappiani C, Mozzarelli A. pH dependence of tryptophan synthase catalytic mechanism: I. The first stage, the beta-elimination reaction. J Biol Chem 2004; 279:29572-82. [PMID: 15117965 DOI: 10.1074/jbc.m401895200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pyridoxal 5'-phosphate-dependent beta-subunit of the tryptophan synthase alpha(2)beta(2) complex catalyzes the condensation of L-serine with indole to form L-tryptophan. The first stage of the reaction is a beta-elimination that involves a very fast interconversion of the internal aldimine in a highly fluorescent L-serine external aldimine that decays, via the alpha-carbon proton removal and beta-hydroxyl group release, to the alpha-aminoacrylate Schiff base. This reaction is influenced by protons, monovalent cations, and alpha-subunit ligands that modulate the distribution between open and closed conformations. In order to identify the ionizable residues that might assist catalysis, we have investigated the pH dependence of the rate of the external aldimine decay by rapid scanning UV-visible absorption and single wavelength fluorescence stopped flow. In the pH range 6-9, the reaction was found to be biphasic with the first phase (rate constants k(1)) accounting for more than 70% of the signal change. In the absence of monovalent cations or in the presence of sodium and potassium ions, the pH dependence of k(1) exhibits a bell shaped profile characterized by a pK(a1) of about 6 and a pK(a2) of about 9, whereas in the presence of cesium ions, the pH dependence exhibits a saturation profile characterized by a single pK(a) of 9. The presence of the allosteric effector indole acetylglycine increases the rate of reaction without altering the pH profile and pK(a) values. By combining structural information for the internal aldimine, the external aldimine, and the alpha-aminoacrylate with kinetic data on the wild type enzyme and beta-active site mutants, we have tentatively assigned pK(a1) to betaAsp-305 and pK(a2) to betaLys-87. The loss of pK(a1) in the presence of cesium ions might be due to a shift to lower values, caused by the selective stabilization of a closed form of the beta-subunit.
Collapse
Affiliation(s)
- Francesca Schiaretti
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
33
|
Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem 2002; 277:26893-903. [PMID: 12011099 DOI: 10.1074/jbc.m203937200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the cloning and sequencing of a region of the chlamydiae chromosome termed the "plasticity zone" from all the human serovars of C. trachomatis containing the tryptophan biosynthesis genes. Our results show that this region contains orthologues of the tryptophan repressor as well as the alpha and beta subunits of tryptophan synthase. Results from reverse transcription-PCR and Western blot analyses indicate that the trpBA genes are transcribed, and protein products are expressed. The TrpB sequences from all serovars are highly conserved. In comparison with other tryptophan synthase beta subunits, the chlamydial TrpB subunit retains all conserved amino acid residues required for beta reaction activity. In contrast, the chlamydial TrpA sequences display numerous mutations, which distinguish them from TrpA sequences of all other prokaryotes. All ocular serovars contain a deletion mutation resulting in a truncated TrpA protein, which lacks alpha reaction activity. The TrpA protein from the genital serovars retains conserved amino acids required for catalysis but has mutated several active site residues involved in substrate binding. Complementation analysis in Escherichia coli strains, with defined mutations in tryptophan biosynthesis, and in vitro enzyme activity data, with cloned TrpB and TrpA proteins, indicate these mutations result in a TrpA protein that is unable to utilize indole glycerol 3-phosphate as substrate. In contrast, the chlamydial TrpB protein can carry out the beta reaction, which catalyzes the formation of tryptophan from indole and serine. The activity of the chlamydial Trp B protein differs from that of the well characterized E. coli and Salmonella TrpBs in displaying an absolute requirement for full-length TrpA. Taken together our data indicate that genital, but not ocular, serovars are capable of utilizing exogenous indole for the biosynthesis of tryptophan.
Collapse
Affiliation(s)
- Christine Fehlner-Gardiner
- Department of Medical Microbiology, University of Manitoba and National Microbiology Laboratory, Health Canada, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Weyand M, Schlichting I, Herde P, Marabotti A, Mozzarelli A. Crystal structure of the beta Ser178--> Pro mutant of tryptophan synthase. A "knock-out" allosteric enzyme. J Biol Chem 2002; 277:10653-60. [PMID: 11756454 DOI: 10.1074/jbc.m111031200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic activity of the pyridoxal 5'-phosphate-dependent tryptophan synthase alpha(2)beta(2) complex is allosterically regulated. The hydrogen bond between the helix betaH6 residue betaSer(178) and the loop alphaL6 residue Gly(181) was shown to be critical in ligand-induced intersubunit signaling, with the alpha-beta communication being completely lost in the mutant betaSer(178) --> Pro (Marabotti, A., De Biase, D., Tramonti, A., Bettati, S., and Mozzarelli, A. (2001) J. Biol. Chem. 276, 17747-17753). The structural basis of the impaired allosteric regulation was investigated by determining the crystal structures of the mutant betaSer(178) --> Pro in the absence and presence of the alpha-subunit ligands indole-3-acetylglycine and glycerol 3-phosphate. The mutation causes local and distant conformational changes especially in the beta-subunit. The ligand-free structure exhibits larger differences at the N-terminal part of helix betaH6, whereas the enzyme ligand complexes show differences at the C-terminal side. In contrast to the wild-type enzyme loop alphaL6 remains in an open conformation even in the presence of alpha-ligands. This effects the equilibrium between active and inactive conformations of the alpha-active site, altering k(cat) and K(m), and forms the structural basis for the missing allosteric communication between the alpha- and beta-subunits.
Collapse
Affiliation(s)
- Michael Weyand
- Max-Planck-Institut für Molekulare Physiologie, Abteilung für Physikalische Biochemie, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
35
|
Weyand M, Schlichting I, Marabotti A, Mozzarelli A. Crystal structures of a new class of allosteric effectors complexed to tryptophan synthase. J Biol Chem 2002; 277:10647-52. [PMID: 11756456 DOI: 10.1074/jbc.m111285200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan synthase is a bifunctional alpha(2)beta(2) complex catalyzing the last two steps of l-tryptophan biosynthesis. The natural substrates of the alpha-subunit indole- 3-glycerolphosphate and glyceraldehyde-3-phosphate, and the substrate analogs indole-3-propanolphosphate and dl-alpha-glycerol-3-phosphate are allosteric effectors of the beta-subunit activity. It has been shown recently, that the indole-3-acetyl amino acids indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid are both alpha-subunit inhibitors and beta-subunit allosteric effectors, whereas indole-3-acetyl-l-valine is only an alpha-subunit inhibitor (Marabotti, A., Cozzini, P., and Mozzarelli, A. (2000) Biochim. Biophys. Acta 1476, 287-299). The crystal structures of tryptophan synthase complexed with indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid show that both ligands bind to the active site such that the carboxylate moiety is positioned similarly as the phosphate group of the natural substrates. As a consequence, the residues of the alpha-active site that interact with the ligands are the same as observed in the indole 3-glycerolphosphate-enzyme complex. Ligand binding leads to closure of loop alphaL6 of the alpha-subunit, a key structural element of intersubunit communication. This is in keeping with the allosteric role played by these compounds. The structure of the enzyme complex with indole-3-acetyl-l-valine is quite different. Due to the hydrophobic lateral chain, this molecule adopts a new orientation in the alpha-active site. In this case, closure of loop alphaL6 is no longer observed, in agreement with its functioning only as an inhibitor of the alpha-subunit reaction.
Collapse
Affiliation(s)
- Michael Weyand
- Max-Planck-Institut für Molekulare Physiologie, Abteilung für Physikalische Biochemie, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
36
|
Hettwer S, Sterner R. A novel tryptophan synthase beta-subunit from the hyperthermophile Thermotoga maritima. Quaternary structure, steady-state kinetics, and putative physiological role. J Biol Chem 2002; 277:8194-201. [PMID: 11756459 DOI: 10.1074/jbc.m111541200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan synthase catalyzes the last two steps in the biosynthesis of the amino acid tryptophan. The enzyme is an alpha beta beta alpha complex in mesophilic microorganisms. The alpha-subunit (TrpA) catalyzes the cleavage of indoleglycerol phosphate to glyceraldehyde 3-phosphate and indole, which is channeled to the active site of the associated beta-subunit (TrpB1), where it reacts with serine to yield tryptophan. The TrpA and TrpB1 proteins are encoded by the adjacent trpA and trpB1 genes in the trp operon. The genomes of many hyperthermophilic microorganisms, however, contain an additional trpB2 gene located outside of the trp operon. To reveal the properties and potential physiological role of TrpB2, the trpA, trpB1, and trpB2 genes of Thermotoga maritima were expressed heterologously in Escherichia coli, and the resulting proteins were purified and characterized. TrpA and TrpB1 form the familiar alpha beta beta alpha complex, in which the two different subunits strongly activate each other. In contrast, TrpB2 forms a beta(2)-homodimer that has a high catalytic efficiency k(cat)/K(m)(indole) because of a very low K(m)(indole) but does not bind to TrpA. These results suggest that TrpB2 acts as an indole rescue protein, which prevents the escape of this costly hydrophobic metabolite from the cell at the high growth temperatures of hyperthermophiles.
Collapse
Affiliation(s)
- Stefan Hettwer
- Universität zu Köln, Institut für Biochemie, Otto-Fischer-Str. 12-14, D-50674 Köln, Germany
| | | |
Collapse
|
37
|
Jhee KH, McPhie P, Miles EW. Yeast cystathionine beta-synthase is a pyridoxal phosphate enzyme but, unlike the human enzyme, is not a heme protein. J Biol Chem 2000; 275:11541-4. [PMID: 10766767 DOI: 10.1074/jbc.c000056200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our studies of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are aimed at clarifying the cofactor dependence and catalytic mechanism and obtaining a system for future investigations of the effects of mutations that cause human disease (homocystinuria or coronary heart disease). We report methods that yielded high expression of the yeast gene in Escherichia coli and of purified yeast cystathionine beta-synthase. The absorption and circular dichroism spectra of the homogeneous enzyme were characteristic of a pyridoxal phosphate enzyme and showed the absence of heme, which is found in human and rat cystathionine beta-synthase. The absence of heme in the yeast enzyme facilitates spectroscopic studies to probe the catalytic mechanism. The reaction of the enzyme with L-serine in the absence of L-homocysteine produced the aldimine of aminoacrylate, which absorbed at 460 nm and had a strong negative circular dichroism band at 460 nm. The formation of this intermediate from the product, L-cystathionine, demonstrates the partial reversibility of the reaction. Our results establish the overall catalytic mechanism of yeast cystathionine beta-synthase and provide a useful system for future studies of structure and function. The absence of heme in the functional yeast enzyme suggests that heme does not play an essential catalytic role in the rat and human enzymes. The results are consistent with the absence of heme in the closely related enzymes O-acetylserine sulfhydrylase, threonine deaminase, and tryptophan synthase.
Collapse
Affiliation(s)
- K H Jhee
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
38
|
Mozzarelli A, Peracchi A, Rovegno B, Dalè G, Rossi GL, Dunn MF. Effect of pH and monovalent cations on the formation of quinonoid intermediates of the tryptophan synthase alpha(2)beta(2) complex in solution and in the crystal. J Biol Chem 2000; 275:6956-62. [PMID: 10702257 DOI: 10.1074/jbc.275.10.6956] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate-dependent enzymes. Whereas the structures of other pyridoxal 5'-phosphate-bound intermediates have been determined, the structure of a quinonoid species has not yet been reported. Here, we investigate factors controlling the accumulation and stability of quinonoids formed at the beta-active site of tryptophan synthase both in solution and the crystal. The quinonoids were obtained by reacting the alpha-aminoacrylate Schiff base with different nucleophiles, focusing mainly on the substrate analogs indoline and beta-mercaptoethanol. In solution, both monovalent cations (Cs(+) or Na(+)) and alkaline pH increase the apparent affinity of indoline and favor accumulation of the indoline quinonoid. A similar pH dependence is observed when beta-mercaptoethanol is used. As indoline and beta-mercaptoethanol exhibit very distinct ionization properties, this finding suggests that nucleophile binding and quinonoid stability are controlled by some ionizable protein residue(s). In the crystal, alkaline pH favors formation of the indoline quinonoid as in solution, but the effect of cations is markedly different. In the absence of monovalent metal ions the quinonoid species accumulates substantially, whereas in the presence of sodium ions the accumulation is modest, unless alpha-subunit ligands are also present. Alpha-subunit ligands not only favor the formation of the intermediate, but also reduce significantly its decay rate. These findings define experimental conditions suitable for the stabilization of the quinonoid species in the crystal, a critical prerequisite for the determination of the three-dimensional structure of this intermediate.
Collapse
Affiliation(s)
- A Mozzarelli
- Institute of Biochemical Sciences, University of Parma, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Ro HS, Miles EW. Structure and function of the tryptophan synthase alpha(2)beta(2) complex. Roles of beta subunit histidine 86. J Biol Chem 1999; 274:36439-45. [PMID: 10593940 DOI: 10.1074/jbc.274.51.36439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To probe the structural and functional roles of active-site residues in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium, we have determined the effects of mutation of His(86) in the beta subunit. His(86) is located adjacent to beta subunit Lys(87), which forms an internal aldimine with the pyridoxal phosphate and catalyzes the abstraction of the alpha-proton of L-serine. The replacement of His(86) by leucine (H86L) weakened pyridoxal phosphate binding approximately 20-fold and abolished the circular dichroism signals of the bound coenzyme and of a reaction intermediate. Correlation of these results with previous crystal structures indicates that beta-His(86) plays a structural role in binding pyridoxal phosphate and in stabilizing the correct orientation of pyridoxal phosphate in the active site of the beta subunit. The H86L mutation also altered the pH profiles of absorbance and fluorescence signals and shifted the pH optimum for the synthesis of L-tryptophan from pH 7.5 to 8.8. We propose that the interaction of His(86) with the phosphate of pyridoxal phosphate and with Lys(87) lowers the pK(a) of Lys(87) in the wild-type alpha(2)beta(2) complex and thereby facilitates catalysis by Lys(87) in the physiological pH range.
Collapse
Affiliation(s)
- H S Ro
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
40
|
|
41
|
Ro HS, Wilson Miles E. Catalytic mechanism of the tryptophan synthase alpha(2)beta(2) complex. Effects of pH, isotopic substitution, and allosteric ligands. J Biol Chem 1999; 274:31189-94. [PMID: 10531312 DOI: 10.1074/jbc.274.44.31189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium is explored by determining the effects of pH, of temperature, and of isotopic substitution on the pyridoxal phosphate-dependent reaction of L-serine with indole to form L-tryptophan. The pH dependence of the kinetic parameters indicates that three ionizing groups are involved in substrate binding and catalysis with pK(a)1 = 6.5, pK(a)2 = 7.3, and pK(a)3 = 8.2-9. A significant primary isotope effect (approximately 3.5) on V and V/K is observed at low pH (pH 7), but not at high pH (pH 9), indicating that the base that accepts the alpha-proton (betaLys-87) is protonated at low pH, slowing the abstraction of the alpha-proton and making this step at least partially rate-limiting. pK(a)2 is assigned to betaLys-87 on the basis of the kinetic isotope effect results and of the observation that the competitive inhibitors glycine and oxindolyl-L-alanine display single pK(i) values of 7.3. The residue with this pK(a) (betaLys-87) must be unprotonated for binding glycine or oxindolyl-L-alanine, and, by inference, L-serine. Investigations of the temperature dependence of the pK(a) values support the assignment of pK(a)2 to betaLys-87 and suggest that the ionizing residue with pK(a)1 could be a carboxylate, possibly betaAsp-305, and that the residue associated with a conformational change at pK(a)3 may be betaLys-167. The occurrence of a closed to open conformational conversion at high pH is supported by investigations of the effects of pH on reaction specificity and on the equilibrium distribution of enzyme-substrate intermediates.
Collapse
Affiliation(s)
- H S Ro
- Laboratory of Biochemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
42
|
Schnackerz KD, Mozzarelli A. Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy. J Biol Chem 1998; 273:33247-53. [PMID: 9837895 DOI: 10.1074/jbc.273.50.33247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional properties of tryptophan synthase alpha2beta2 complex are modulated by a variety of allosteric effectors, including pH, monovalent cations, and alpha-subunit ligands. The dynamic properties of the beta-active site were probed by 31P NMR spectroscopy of the enzyme-bound coenzyme pyridoxal 5'-phosphate. The 31P NMR signal of the cofactor phosphate of the internal aldimine exhibits a single peak at 3.73 ppm with a line width of 12 Hz. In the presence of saturating concentrations of sodium ions, the 31P signal shifts to 3.97 ppm concomitant with a change in line width to 35 Hz. The latter indicates that sodium ions decrease the conformational flexibility of the coenzyme. In the absence of ions, lowering pH leads to the appearance of a second peak at 4.11 ppm, the intensity of which decreases in the presence of cesium ions. Addition of L-serine in the presence of sodium ions leads to the formation of the external aldimine, the first metastable catalytic intermediate. The 31P signal does not change its position, but a change in line width from 35 to 5 Hz is observed, revealing that this species is characterized by a considerable degree of rotational freedom around the coenzyme C-O bond. In the presence of L-serine and either cesium ions or the allosteric effector indole-3-acetylglycine, the accumulation of the second catalytic intermediate, alpha-aminoacrylate, is observed. The 31P signal is centered at 3.73 ppm with a line width of 5 Hz, indicating that the phosphate group of the coenzyme in the external aldimine and the alpha-aminoacrylate exhibits the same flexibility but a slightly different state of ionization. Because the alpha-aminoacrylate intermediate but not the external aldimine triggers the allosteric signal to the alpha-subunit, other portions of the beta-active site modify their dynamic properties in response to the progress of the catalytic process. A narrow line width was also observed for the quinonoid species formed by nucleophilic attack of indoline to the alpha-aminoacrylate. The 31P signal moves downfield to 4.2 ppm, indicating a possible change of the ionization state of the phosphate group. Thus, the modification of either the ionization state of the coenzyme phosphate or its flexibility or both are, at least in part, responsible for the conformational events that accompany the catalytic process.
Collapse
Affiliation(s)
- K D Schnackerz
- Theodor-Boveri-Institut für Biowissenschaften, Physiologische Chemie I, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
43
|
Ahmed SA, McPhie P, Miles EW. Mechanism of activation of the tryptophan synthase alpha2beta2 complex. Solvent effects of the co-substrate beta-mercaptoethanol. J Biol Chem 1996; 271:29100-6. [PMID: 8910565 DOI: 10.1074/jbc.271.46.29100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To characterize the conformational transitions that lead to activation of catalysis by the tryptophan synthase alpha2beta2 complex, we have determined the solvent effects of a co-substrate, beta-mercaptoethanol, and of a model nonsubstrate, ethanol, on the catalytic and spectroscopic properties of the enzyme. Our results show that ethanol and beta-mercaptoethanol both alter the equilibrium distribution of pyridoxal 5'-phosphate intermediates formed in the reactions of L-serine at the beta site in the alpha2beta2 complex. Addition of increasing concentrations of ethanol increases the proportion of the external aldimine of L-serine and decreases the proportion of the external aldimine of aminoacrylate. Low concentrations of the co-substrate beta-mercaptoethanol (Kd = approximately 13 mM) decrease the proportion of the external aldimine of aminoacrylate and induce formation of the quinonoid of S-hydroxyethyl-L-cysteine. Higher concentrations of beta-mercaptoethanol decrease the concentration of the quinonoid intermediate and increase the proportion of the external aldimine of L-serine. Data analysis shows that beta-mercaptoethanol and ethanol both interact or bind preferentially with the conformer of the enzyme that predominates when the aldimine of L-serine is formed and shift the equilibrium in favor of this conformer. We propose that a nonpolar region of the beta subunit, possibly the hydrophobic indole tunnel, becomes less exposed to solvent in the conformational transition that activates the alpha2beta2 complex.
Collapse
Affiliation(s)
- S A Ahmed
- Laboratory of Biochemical Pharmacology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
44
|
Abstract
Time-resolved and steady-state fluorescence of the tryptophan synthase alpha 2 beta 2 complex and of the beta 2 dimer from Salmonella typhimurium were measured to characterize the conformational properties of the beta subunit in the presence and in the absence of the alpha subunit when the catalytic species internal aldimine, external aldimine and alpha-aminoacrylate Schiff bases were selectively accumulated within the beta active site. The fluorescence decay of the coenzyme pyridoxal 5'-phosphate, bound via a Schiff base in the beta subunit of the alpha 2 beta 2 complex (internal aldimine species), is accounted for by two lifetimes (2.9 and 0.9 ns) of almost equal fractional intensity that are slightly affected by pH. Accordingly, both the absorption and emission spectra were found to be pH independent. The emission properties of the internal aldimine in the beta 2 dimer are pH dependent, suggesting that the alpha-subunit binding alters the microenvironment of the beta-subunit active site. This conclusion is also supported by the emission of the single tryptophanyl residue of the enzyme (Trp-177 beta). In the reaction of L-serine with the alpha 2 beta 2 complex, the predominant catalytic intermediate is the external aldimine (lambda(max) = 422 nm) at pH 10, and the alpha-aminoacrylate (lambda(max) = 350 nm) at pH 7. The external aldimine exhibits a high fluorescence intensity at 500 nm that decays with a single lifetime of 6.2 ns in the alpha 2 beta 2 complex, at pH 10, and at a similar value in the beta 2 dimer. The emission properties of the external aldimine with respect to the internal aldimine, and the small effects induced by alpha-subunit binding indicate a shielding of the coenzyme and a stabilization of its excited state. In contrast, the short fluorescence lifetime (0.4 ns) and the weak fluorescence emission of the alpha-aminoacrylate Schiff base indicate an increase of non-radiative processes possibly due to a more tight coupling of this intermediate with the protein matrix with respect to the external aldimine. Whereas the internal aldimine is distributed in two tautomeric forms, both the external aldimine and the alpha-aminoacrylate are present in single conformational states with distinct structural and/or dynamic properties that may modulate regulatory intersubunit signals.
Collapse
Affiliation(s)
- S Vaccari
- Institute of Physical Sciences, University of Parma, Italy
| | | | | | | |
Collapse
|
45
|
Ahmed SA, McPhie P, Miles EW. A thermally induced reversible conformational transition of the tryptophan synthase beta2 subunit probed by the spectroscopic properties of pyridoxal phosphate and by enzymatic activity. J Biol Chem 1996; 271:8612-7. [PMID: 8621491 DOI: 10.1074/jbc.271.15.8612] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A reversible thermally induced conformational transition of the beta2 subunit of tryptophan synthase from Salmonella typhimurium has been detected by use of the pyridoxal 5'-phosphate coenzyme as a spectroscopic probe. Increasing the temperature converts the major form of pyridoxal 5'-phosphate bound to the beta2 subunit from a ketoenamine species with lambdamax at 410 nm to a enolimine species with lambdamax at 336 nm (Tm = approximately 43 degrees C) and results in loss of the circular dichroism signal at 410 nm and of fluorescence emission at 510 nm. The results indicate that increasing the temperature favors a conformer of the enzyme that binds pyridoxal 5'-phosphate in a more nonpolar environment and leads to loss of asymmetric pyridoxal 5'-phosphate binding. The internal aldimine between pyridoxal 5'-phosphate and the epsilon-amino group of lysine 87 is not disrupted by increased temperature because sodium borohydride treatment of the enzyme at either 15 or 60 degrees C results in covalent attachment of [4'-3H]pyridoxal 5'-phosphate. The thermal transition of the beta2 subunit below 60 degrees C produces reversible thermal inactivation (Ti = approximately 52 degrees C) and occurs at a much lower temperature than the major reversible unfolding at approximately 80 degrees C (Remeta, D. P., Miles, E. W., and Ginsburg, A. (1995) Pure Appl. Chem. 67, 1859-1866). Our new results indicate that the 410 nm absorbing species of pyridoxal 5'-phosphate is the catalytically active form of the cofactor in the beta2 subunit and that the low temperature reversible conformational transition disturbs the active site and causes loss of catalytic activity.
Collapse
Affiliation(s)
- S A Ahmed
- Laboratory of Biochemical Pharmacology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Banik U, Ahmed SA, McPhie P, Miles EW. Subunit assembly in the tryptophan synthase alpha 2 beta 2 complex. Stabilization by pyridoxal phosphate aldimine intermediates. J Biol Chem 1995; 270:7944-9. [PMID: 7713891 DOI: 10.1074/jbc.270.14.7944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This work is aimed at understanding subunit assembly in the tryptophan synthase alpha 2 beta 2 complex and the importance of the internal aldimine between pyridoxal phosphate and lysine 87 of the beta 2 subunit of tryptophan synthase for subunit association. We utilize a mutant form of the beta 2 subunit that is unable to form the internal aldimine because lysine 87 is replaced by threonine (K87T). The K87T alpha 2 beta 2 complex is inactive in reactions catalyzed by the beta 2 subunit but retains activity in the reaction catalyzed by the alpha subunit. We find that dialysis removes pyridoxal phosphate much more rapidly from the K87T beta 2 subunit and alpha 2 beta 2 complex than from the wild type counterparts. Activity measurements, gel filtration, and subunit interchange experiments show that the alpha subunit dissociates more readily from the K87T beta 2 subunit than from the wild type beta 2 subunit. The reaction of L-serine to form an external aldimine with pyridoxal phosphate at the active site of the K87T beta 2 subunit markedly increases the affinity for the alpha subunit and slows removal of pyridoxal phosphate by dialysis. We propose that the external aldimine between L-serine and pyridoxal phosphate bridges the N-domain and the C-domain in the K87T beta 2 subunit. This interdomain bridge may mimic the internal aldimine bond in the wild type beta 2 subunit and stabilize pyridoxal phosphate binding. The interdomain bridges formed by the internal aldimine with the wild type beta 2 subunit and by the external aldimine with L-serine in the K87T beta 2 subunit may further stabilize interaction with the alpha subunit because the alpha/beta interaction site contains residues from both N- and C-domains of the beta 2 subunit.
Collapse
Affiliation(s)
- U Banik
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Thermal inactivation of tryptophan synthase. Stabilization by protein-protein interaction and protein-ligand interaction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32629-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Lu Z, Nagata S, McPhie P, Miles E. Lysine 87 in the beta subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transimination, catalysis, and product release. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52935-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|